Valorisation of Side Stream Products through Green Approaches: The Rapeseed Meal Case
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. Protein Removal
2.4. Ethanol Extraction
2.5. SFE-CO2 Extraction
2.6. Transesterification Step and GC/MS Analysis
2.7. 1H NMR Analysis
2.8. HPLC Analysis
2.9. DPPH Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yields
3.2. 1H-NMR Analysis and GC/MS
3.3. HPLC-DAD Analysis
3.4. DPPH Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahbandeh, M. Production Volume of Repressed Oil Worldwide from 2012/13 to 2019/20. Statista Farming Report. Available online: statista.com/statistics/613487/rapeseed-oil-production-volumeworldwide (accessed on 25 April 2020).
- Di Lena, G.; Sanchez del Pulgar, J.; Lucarini, M.; Durazzo, A.; Ondrejíčková, P.; Oancea, F.; Frincu, R.-M.; Aguzzi, A.; Ferrari Nicoli, S.; Casini, I.; et al. Valorization Potentials of Rapeseed Meal in a Biorefinery Perspective: Focus on Nutritional and Bioactive Components. Molecules 2021, 26, 6787. [Google Scholar] [CrossRef]
- von Danwitz, A.; Schulz, C. Effects of dietary rapeseed glucosinolates, sinapic acid and phytic acid on feed intake, growth performance and fish health in turbot (Psetta maxima L.). Aquaculture 2020, 516, 734624. [Google Scholar] [CrossRef]
- Naczk, M.; Amarowicz, R.; Sullivan, A.; Shahidi, F. Current research developments on polyphenolics of rapeseed/canola: A review. Food Chem. 1998, 62, 489–502. [Google Scholar] [CrossRef]
- Chen, Y.; Thiyam-Hollander, U.; Barthet, V.J.; Aachary, A.A. Value-Added Potential of Expeller-Pressed Canola Oil Refining: Characterization of Sinapic Acid Derivatives and Tocopherols from Byproducts. J. Agric. Food Chem. 2014, 62, 9800–9807. [Google Scholar] [CrossRef]
- Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. 2016, 13, 27. [Google Scholar] [CrossRef]
- Oliveira, A.; Yu, P. Research progress and future study on physicochemical, nutritional, and structural characteristics of canola and rapeseed feedstocks and co-products from bio-oil processing and nutrient modeling evaluation methods. Crit. Rev. Food Sci. Nutr. 2022, 1–7. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, X.; Xiao, Q.; Zhang, F.; Liu, N.; Tang, L.; Wang, J.; Ma, X.; Tan, B.; Chen, J.; et al. Rapeseed Meal and Its Application in Pig Diet: A Review. Agriculture 2022, 12, 849. [Google Scholar] [CrossRef]
- Bojanowska, M. Changes in chemical composition of rapeseed meal during storage, influencing nutritional value of its protein and lipid fractions. J. Anim. Feed Sci. 2017, 26, 157–164. [Google Scholar] [CrossRef]
- Jia, W.; Rodriguez-Alonso, E.; Bianeis, M.; Keppler, J.K.; van der Goot, A.J. Assessing functional properties of rapeseed protein concentrate versus isolate for food applications. Innov. Food Sci. Emerg. Technol. 2021, 68, 102636. [Google Scholar] [CrossRef]
- Nandasiri, R.; Eskin, N.A.M.; Thiyam-Höllander, U. Antioxidative Polyphenols of Canola Meal Extracted by High Pressure: Impact of Temperature and Solvents. J. Food Sci. 2019, 84, 3117–3128. [Google Scholar] [CrossRef]
- Zhang, Z.; He, S.; Liu, H.; Sun, X.; Ye, Y.; Cao, X.; Wu, Z.; Sun, H. Effect of pH regulation on the components and functional properties of proteins isolated from cold-pressed rapeseed meal through alkaline extraction and acid precipitation. Food Chem. 2020, 327, 126998. [Google Scholar] [CrossRef] [PubMed]
- Cairone, F.; Salvitti, C.; Iazzetti, A.; Fabrizi, G.; Troiani, A.; Pepi, F.; Cesa, S. In-Depth Chemical Characterization of Punica granatum L. Seed Oil. Foods 2023, 12, 1592. [Google Scholar] [CrossRef] [PubMed]
- Cairone, F.; Garzoli, S.; Menghini, L.; Simonetti, G.; Casadei, M.A.; Di Muzio, L.; Cesa, S. Valorization of Kiwi Peels: Fractionation, Bioactives Analyses and Hypotheses on Complete Peels Recycle. Foods 2022, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Cairone, F.; Cesa, S.; Ciogli, A.; Fabrizi, G.; Goggiamani, A.; Iazzetti, A.; Di Lena, G.; Sanchez del Pulgar, J.; Lucarini, M.; Cantò, L.; et al. Valorization of By-Products from Biofuel Biorefineries: Extraction and Purification of Bioactive Molecules from Post-Fermentation Corn Oil. Foods 2022, 11, 153. [Google Scholar] [CrossRef]
- Hristov, A.N.; Domitrovich, C.; Wachter, A.; Cassidy, T.; Lee, C.; Shingfield, K.J.; Kairenius, P.; Davis, J.; Brown, J. Effect of replacing solvent-extracted canola meal with high-oil traditional canola, high-oleic acid canola, or high-erucic acid rapeseed meals on rumen fermentation, digestibility, milk production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2011, 94, 4057–4074. [Google Scholar] [CrossRef]
- Mustafa, Y. Synthesis, Characterization and Preliminary Cytotoxic Study of Sinapic Acid and its Analogues. J. Glob. Pharma Technol. 2019, 11, 1–10. [Google Scholar]
- Pedroche, J.; Yust, M.M.; Lqari, H.; Girón-Calle, J.; Alaiz, M.; Vioque, J.; Millán, F. Brassica carinata protein isolates: Chemical composition, protein characterization and improvement of functional properties by protein hydrolysis. Food Chem. 2004, 88, 337–346. [Google Scholar] [CrossRef]
- Hassas-Roudsari, M.; Chang, P.R.; Pegg, R.B.; Tyler, R.T. Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem. 2009, 114, 717–726. [Google Scholar] [CrossRef]
- Long, C.; Qi, X.L.; Venema, K. Chemical and nutritional characteristics, and microbial degradation of rapeseed meal recalcitrant carbohydrates: A review. Front. Nutr. 2022, 9, 948302. [Google Scholar] [CrossRef]
- Yu, Y.; Pauli, G.F.; Huang, L.; Gan, L.S.; van Breemen, R.B.; Li, D.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N. Classification of Flavonoid Metabolomes via Data Mining and Quantification of Hydroxyl NMR Signals. Anal. Chem. 2020, 92, 4954–4962. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A. Rapeseed and its products—Sources of bioactive compounds: A review of their characteristics and analysis. Crit. Rev. Food Sci. Nutr. 2013, 53, 307–330. [Google Scholar] [CrossRef]
- Zago, E.; Lecomte, J.; Barouh, N.; Aouf, C.; Carré, P.; Fine, F.; Villeneuve, P. Influence of rapeseed meal treatments on its total phenolic content and composition in sinapine, sinapic acid and canolol. Ind. Crops Prod. 2015, 76, 1061–1070. [Google Scholar] [CrossRef]
- Cai, R.; Arntfield, S.D. A rapid high-performance liquid chromatographic method for the determination of sinapine and sinapic acid in canola seed and meal. J. Am. Oil Chem. Soc. 2001, 78, 903–910. [Google Scholar] [CrossRef]
- Li, J.; Wu, K.; Xiao, W.; Zhang, J.; Lin, J.; Gong, Y.; Liu, Z. Effect of antioxidant extraction on the enzymatic hydrolysis and bioethanol production of the extracted steam-exploded sugarcane bagasse. Biochem. Eng. J. 2014, 82, 91–96. [Google Scholar] [CrossRef]
- Yeo, J.; Jeong, M.K.; Lee, J. Correlation of antioxidant content and absorbance changes of DPPH during lipid oxidation. Food Sci. Biotechnol. 2012, 21, 199–203. [Google Scholar] [CrossRef]
Residue | Yield (%) | |
---|---|---|
Ethanol extraction | R1a | 11.6 |
R2a | 9.0 | |
R3a | 35 | |
SFE- CO2 | R1b | 0.65 |
R2b | 1.5 | |
R3b | 3.6 |
R1a | R1b | R2a | R2b | R3a | R3b | |
---|---|---|---|---|---|---|
Benzoic acid $ | - | - | - | 0.26 ± 0.13 | 0.52 ± 0.12 | 0.39 ± 0.16 |
Chlorogenic acid | - | - | - | 0.36 ± 0.19 | - | - |
Caffeic acid | - | - | - | 0.16 ± 0.07 | - | - |
Sinapic acid | 6.59 ± 0.21 | - | 4.63 ± 0.16 | 19.38 ± 0.97 | 4.82 ± 0.21 | 6.15 ± 0.15 |
Flavonols * | 0.67 ± 0.34 | - | - | 1.20 ± 0.12 | - | - |
mg/g of Gallic Acid Equivalents of Dry Extract | |
---|---|
R1a | 2.60 ± 0.27 |
R1b | 0.76 ± 0.13 |
R2a | 3.24 ± 0.07 |
R2b | 6.35 ± 0.58 |
R3a | 3.49 ± 0.03 |
R3b | 5.42 ± 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cairone, F.; Allevi, D.; Cesa, S.; Fabrizi, G.; Goggiamani, A.; Masci, D.; Iazzetti, A. Valorisation of Side Stream Products through Green Approaches: The Rapeseed Meal Case. Foods 2023, 12, 3286. https://doi.org/10.3390/foods12173286
Cairone F, Allevi D, Cesa S, Fabrizi G, Goggiamani A, Masci D, Iazzetti A. Valorisation of Side Stream Products through Green Approaches: The Rapeseed Meal Case. Foods. 2023; 12(17):3286. https://doi.org/10.3390/foods12173286
Chicago/Turabian StyleCairone, Francesco, Dario Allevi, Stefania Cesa, Giancarlo Fabrizi, Antonella Goggiamani, Domiziana Masci, and Antonia Iazzetti. 2023. "Valorisation of Side Stream Products through Green Approaches: The Rapeseed Meal Case" Foods 12, no. 17: 3286. https://doi.org/10.3390/foods12173286
APA StyleCairone, F., Allevi, D., Cesa, S., Fabrizi, G., Goggiamani, A., Masci, D., & Iazzetti, A. (2023). Valorisation of Side Stream Products through Green Approaches: The Rapeseed Meal Case. Foods, 12(17), 3286. https://doi.org/10.3390/foods12173286