Discrimination of Filter Coffee Extraction Methods of a Medium Roasted Specialty Coffee Based on Volatile Profiles and Sensorial Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Filter Coffee Sample Extraction Methods
2.1.1. Pure Brew
2.1.2. V60
2.1.3. AeroPress
2.1.4. French Press
2.2. Volatile Profiling through HS-SPME/GC Mass Spectrometry Analysis
2.3. Sensorial Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Different Brewing Methods on VOC Composition by HS-SPME/GC Mass Spectrometry Analysis
3.2. Multivariate Statistical Discrimination of the Different Extraction Methods
3.3. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pereira, L.L.; Guarçoni, R.C.; da Luz, J.M.R.; de Oliveira, A.C.; Moreli, A.P.; Filete, C.A.; de Paiva, G.; Debona, D.G.; Gomes, W.d.S.; Cardoso, W.S.; et al. Impacts of brewing methods on sensory perception and organoleptic compounds of coffee. Food Chem. Adv. 2023, 2, 100185. [Google Scholar] [CrossRef]
- Pickard, S.; Becker, I.; Merz, K.-H.; Richling, E. Determination of the alkylpyrazine composition of coffee using stable isotope dilution–gas chromatography–mass spectrometry (SIDA-GC-MS). J. Agric. Food Chem. 2013, 61, 6274–6281. [Google Scholar] [CrossRef]
- Joët, T.; Laffargue, A.; Descroix, F.; Doulbeau, S.; Bertrand, B.; Dussert, S. Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chem. 2010, 118, 693–701. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Abouelenein, D.; Angeloni, S.; Maggi, F.; Navarini, L.; Sagratini, G.; Santanatoglia, A.; Torregiani, E.; Vittori, S.; Caprioli, G. A New HPLC-MS/MS Method for the Simultaneous Determination of Quercetin and Its Derivatives in Green Coffee Beans. Foods 2022, 11, 3033. [Google Scholar] [CrossRef]
- Kulapichitr, F.; Borompichaichartkul, C.; Suppavorasatit, I.; Cadwallader, K.R. Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chem. 2019, 291, 49–58. [Google Scholar] [CrossRef]
- Moeenfard, M.; Alves, A. New trends in coffee diterpenes research from technological to health aspects. Food Res. Int. 2020, 134, 109207. [Google Scholar] [CrossRef]
- Seninde, D.R.; Chambers, E., IV. Coffee flavor: A review. Beverages 2020, 6, 44. [Google Scholar] [CrossRef]
- Assis, C.; Pereira, H.V.; Amador, V.S.; Augusti, R.; de Oliveira, L.S.; Sena, M.M. Combining mid-infrared spectroscopy and paper spray mass spectrometry in a data fusion model to predict the composition of coffee blends. Food Chem. 2019, 281, 71–77. [Google Scholar] [CrossRef]
- Rusinek, R.; Dobrzański, B., Jr.; Oniszczuk, A.; Gawrysiak-Witulska, M.; Siger, A.; Karami, H.; Ptaszyńska, A.A.; Żytek, A.; Kapela, K.; Gancarz, M. How to Identify Roast Defects in Coffee Beans Based on the Volatile Compound Profile. Molecules 2022, 27, 8530. [Google Scholar] [CrossRef]
- Specialty Coffee Association of America. Protocols & Best Practices. Available online: https://sca.coffee/research/protocols-best-practices?page=resources&d=coffee-protocols (accessed on 20 July 2023).
- Specialty Coffee Association of America. Cupping Standards. 2015. Available online: https://www.scaa.org/PDF/resources/cupping-protocols.pdf (accessed on 1 January 2015).
- Lingle, T.R. Coffee Cuppers’ Handbook; Specialty Coffee Association of America (SCAA): Santa Ana, CA, USA, 1984. [Google Scholar]
- Lingle, T.R.; Menon, S.N. Cupping and grading—Discovering character and quality. In The Craft and Science of Coffee; Academic Press: Cambridge, MA, USA, 2017; pp. 181–203. [Google Scholar]
- Angeloni, S.; Mustafa, A.M.; Abouelenein, D.; Alessandroni, L.; Acquaticci, L.; Nzekoue, F.K.; Petrelli, R.; Sagratini, G.; Vittori, S.; Torregiani, E.; et al. Characterization of the aroma profile and main key odorants of espresso coffee. Molecules 2021, 26, 3856. [Google Scholar] [CrossRef]
- Jung, S.; Gu, S.; Lee, S.H.; Jeong, Y. Effect of roasting degree on the antioxidant properties of espresso and drip coffee extracted from Coffea arabica cv. Java. Appl. Sci. 2021, 11, 7025. [Google Scholar] [CrossRef]
- Santanatoglia, A.; Caprioli, G.; Cespi, M.; Ciarlantini, D.; Cognigni, L.; Fioretti, L.; Maggi, F.; Mustafa, A.M.; Nzekoue, F.; Vittori, S. A comprehensive comparative study among the newly developed Pure Brew method and classical ones for filter coffee production. LWT 2023, 175, 114471. [Google Scholar] [CrossRef]
- Hutachok, N.; Koonyosying, P.; Pankasemsuk, T.; Angkasith, P.; Chumpun, C.; Fucharoen, S.; Srichairatanakool, S. Chemical analysis, toxicity study, and free-radical scavenging and iron-binding assays involving coffee (Coffea arabica) extracts. Molecules 2021, 26, 4169. [Google Scholar] [CrossRef] [PubMed]
- Stanek, N.; Zarębska, M.; Biłos, Ł.; Barabosz, K.; Nowakowska-Bogdan, E.; Semeniuk, I.; Błaszkiewicz, J.; Kulesza, R.; Matejuk, R.; Szkutnik, K. Influence of coffee brewing methods on the chromatographic and spectroscopic profiles, antioxidant and sensory properties. Sci. Rep. 2021, 11, 21377. [Google Scholar] [CrossRef]
- Vezzulli, F.; Rocchetti, G.; Lambri, M.; Lucini, L. Metabolomics combined with sensory analysis reveals the impact of different extraction methods on coffee beverages from coffea arabica and coffea canephora var. robusta. Foods 2022, 11, 807. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, N.; Pataquiva, L.; Osorio, C.; Moreno, F.L.M.; Ruiz, R.Y. Effect of grinding, extraction time and type of coffee on the physicochemical and flavour characteristics of cold brew coffee. Sci. Rep. 2019, 9, 8440. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, N.; Fernandez-Alduenda, M.; Moreno, F.L.; Ruiz, Y. Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci. Technol. 2020, 96, 45–60. [Google Scholar] [CrossRef]
- Available online: https://www.scith.coffee/wp-content/uploads/2021/03/SCA-Cupping-Form.pdf (accessed on 20 July 2023).
- Bressanello, D.; Liberto, E.; Cordero, C.; Rubiolo, P.; Pellegrino, G.; Ruosi, M.R.; Bicchi, C. Coffee aroma: Chemometric comparison of the chemical information provided by three different samplings combined with GC–MS to describe the sensory properties in cup. Food Chem. 2017, 214, 218–226. [Google Scholar] [CrossRef]
- Bicchi, C.; Ruosi, M.R.; Cagliero, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B. Quantitative analysis of volatiles from solid matrices of vegetable origin by high concentration capacity headspace techniques: Determination of furan in roasted coffee. J. Chromatogr. A 2021, 1218, 753–762. [Google Scholar] [CrossRef]
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Galarza, G.; Figueroa, J.G. Volatile Compound Characterization of Coffee (Coffea arabica) Processed at Different Fermentation Times Using SPME–GC–MS. Molecules 2022, 27, 2004. [Google Scholar] [CrossRef] [PubMed]
- Lolli, V.; Acharjee, A.; Angelino, D.; Tassotti, M.; Del Rio, D.; Mena, P.; Caligiani, A. Chemical characterization of capsule-brewed espresso coffee aroma from the most widespread Italian brands by HS-SPME/GC-MS. Molecules 2020, 25, 1166. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Prediction of coffee aroma from single roasted coffee beans by hyperspectral imaging. Food Chem. 2022, 371, 131159. [Google Scholar] [CrossRef] [PubMed]
- Zapata, J.; Londoño, V.; Naranjo, M.; Osorio, J.; Lopez, C.; Quintero, M. Characterization of aroma compounds present in an industrial recovery concentrate of coffee flavour. CyTA-J. Food 2018, 16, 367–372. [Google Scholar] [CrossRef]
- Angeloni, G.; Guerrini, L.; Masella, P.; Bellumori, M.; Daluiso, S.; Parenti, A.; Innocenti, M. What kind of coffee do you drink? An investigation on effects of eight different extraction methods. Food Res. Int. 2019, 116, 1327–1335. [Google Scholar] [CrossRef]
- Heo, J.; Adhikari, K.; Choi, K.S.; Lee, J. Analysis of caffeine, chlorogenic acid, trigonelline, and volatile compounds in cold brew coffee using high-performance liquid chromatography and solid-phase microextraction—Gas chromatography-mass spectrometry. Foods 2020, 9, 1746. [Google Scholar] [CrossRef]
- Abdelwareth, A.; Zayed, A.; Farag, M.A. Chemometrics-based aroma profiling for revealing origin, roasting indices, and brewing method in coffee seeds and its commercial blends in the Middle East. Food Chem. 2021, 349, 129162. [Google Scholar] [CrossRef]
- Gancarz, M.; Dobrzański, B., Jr.; Malaga-Toboła, U.; Tabor, S.; Combrzyński, M.; Ćwikła, D.; Strobel, W.R.; Oniszczuk, A.; Karami, H.; Darvishi, Y.; et al. Impact of coffee bean roasting on the content of pyridines determined by analysis of volatile organic compounds. Molecules 2022, 27, 1559. [Google Scholar] [CrossRef]
- De Melo Pereira, G.V.; de Carvalho Neto, D.P.; Júnior, A.I.M.; do Prado, F.G.; Pagnoncelli, M.G.B.; Karp, S.G.; Soccol, C.R. Chemical composition and health properties of coffee and coffee by-products. Adv. Food Nutr. Res. 2020, 91, 65–96. [Google Scholar]
- Regueiro, J.; Negreira, N.; Simal-Gándara, J. Challenges in relating concentrations of aromas and tastes with flavor features of foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 2112–2127. [Google Scholar] [CrossRef]
- Wang, Z.X.; He, Q.P.; Wang, J. Comparison of variable selection methods for PLS-based soft sensor modeling. J. Process. Control. 2015, 26, 56–72. [Google Scholar] [CrossRef]
- Barrios-Rodríguez, Y.F.; Reyes, C.A.R.; Campos, J.S.T.; Girón-Hernández, J.; Rodríguez-Gamir, J. Infrared spectroscopy coupled with chemometrics in coffee post-harvest processes as complement to the sensory analysis. LWT 2021, 145, 111304. [Google Scholar] [CrossRef]
6.00—Good | 7.00—Very Good | 8.00—Excellent | 9.00—Outstanding |
---|---|---|---|
6.25 | 7.25 | 8.25 | 9.25 |
6.50 | 7.50 | 8.50 | 9.50 |
6.75 | 7.75 | 8.75 | 9.75 |
Compounds Name and Classes | Sens. Threshold (ppb) | Aromatic Notes | Pure Brew | V60 | AeroPress | French Press | ||
---|---|---|---|---|---|---|---|---|
Aldehydes | ||||||||
1 | K | 2-Methylpropanal | Buttery oil | 0.26 ± 0.02 | 0.42 ± 0.12 | n.d. * | 0.2 ± 0.05 | |
2 | K | 2-Methylbutanal | 1.3/1.9 | Malty | 1.11 ± 0.16 | 0.59 ± 0.16 | 0.5 ± 0.32 | 1.08 ± 0.29 |
3 | K | 3-Methylbutanal | 0.35/0.4 | Malty, Fruity, Almond, Aldehydic | 0.98 ± 0.12 | 0.62 ± 0.17 | 0.44 ± 0.09 | 1.32 ± 0.27 |
4 | Furfural | Sweet, Caramel | 17.76 ± 0.8 | 19.51 ± 1.41 | 18.76 ± 1.03 | 16.46 ± 1.48 | ||
5 | Benzaldehyde | Strong, Sharp, Sweet, Bitter, Almond, Cherry | 0.65 ± 0.17 | 0.61 ± 0.1 | 0.69 ± 0.14 | 0.79 ± 0.3 | ||
6 | 5-Methyl, 2-furancarboxaldehyde | 6000 | Caramel | 9.74 ± 0.39 | 10.38 ± 1.11 | 10.7 ± 1.52 | 9.89 ± 0.84 | |
7 | 1-Methyl-1H-pyrrole-2-carboxaldehyde | Musty | 1.78 ± 0.26 | 1.20 ± 0.04 | 1.26 ± 0.14 | 1.72 ± 0.19 | ||
8 | 5-Ethylfurfural | 0.95 ± 0.04 | 0.58 ± 0.15 | 0.69 ± 0.2 | 0.39 ± 0.16 | |||
SUM | 32.97 ± 1.96 | 33.92 ± 3.26 | 33.04 ± 3.44 | 31.85 ± 3.58 | ||||
Ketones | ||||||||
9 | K | 2,3-Butanedione | 0.3/0.15 | Buttery oil | 0.28 ± 0.05 | 0.20 ± 0.03 | 0.25 ± 0.09 | 0.31 ± 0.15 |
10 | K | 2,3-Pentanedione | 20/30 | Buttery oil | 0.94 ± 0.03 | 0.78 ± 0.07 | 0.62 ± 0.22 | 0.59 ± 0.37 |
11 | 1-(Acetyloxy)-2-butanone | 0.38 ± 0.15 | n.d. | 0.64 ± 0.16 | 0.34 ± 0.12 | |||
12 | 1-Propanone, 1-(2-furanyl)- | 1.07 ± 0.01 | 0.83 ± 0.07 | 0.55 ± 0.29 | 1.22 ± 0.2 | |||
13 | 2-Cyclopenten-1-one, 3-Ethyl-2-hydroxy- | Fruity, Caramel, Nutty | 1.22 ± 0.13 | 1.44 ± 0.17 | n.d. | 1.52 ± 0.35 | ||
SUM | 4.49 ± 0.37 | 3.25 ± 0.34 | 2.06 ± 0.76 | 3.98 ± 1.19 | ||||
Furans | ||||||||
14 | 2-Methylfuran | Ethereal, Acetone, Chocolate | n.d. | n.d. | 0.71 ± 0.19 | 0.51 ± 0.33 | ||
15 | 2-(Methoxymethyl)furan | n.d. | n.d. | 0.42 ± 0.22 | n.d. | |||
16 | 3(2H)-Furanone, dihydro-2-methyl- | 0.5 ± 0.12 | 0.49 ± 0.11 | 0.61 ± 0.26 | 0.44 ± 0.2 | |||
17 | 2-n-Butyl furan | 0.44 ± 0.1 | 0.71 ± 0.08 | 0.7 ± 0.2 | 0.56 ± 0.3 | |||
18 | 2-Furanmethanol acetate | Sweet, Fruity, Banana, Horseradish | 6.84 ± 0.58 | 7.90 ± 0.21 | 6.38 ± 0.86 | 6.54 ± 0.24 | ||
19 | 2-Furanmethanol propanoate | 0.77 ± 0.11 | 0.45 ± 0.14 | 0.52 ± 0.19 | 0.69 ± 0.22 | |||
20 | 2,2′-Methylenebisfuran | Roast | 0.78 ± 0.1 | 0.70 ± 0.15 | 0.93 ± 0.15 | 0.49 ± 0.37 | ||
21 | 2-Furanmethanol | Candy, Burnt, Smoky | 8.7 ± 0.26 | 9.54 ± 0.45 | 9.24 ± 1.19 | 9.28 ± 1.63 | ||
22 | 2-(2-Furanylmethyl)-5-methylfuran | Hearty, Mushroom | 0.5 ± 0.14 | 0.4 ± 0.05 | 0.8 ± 0.11 | 0.7 ± 0.28 | ||
23 | 2-Acetylfuran | 3.79 ± 0.97 | 3.73 ± 0.45 | 2.9 ± 1.4 | 2.84 ± 0.77 | |||
24 | α-Furfuryliden-α-furylmethylamine | 0.3 ± 0.14 | 0.43 ± 0.05 | 0.52 ± 0.08 | 0.45 ± 0.18 | |||
SUM | 22.62 ± 2.52 | 24.35 ± 1.69 | 23.73 ± 4.85 | 22.51 ± 4.52 | ||||
Phenolic Compounds | ||||||||
25 | K | Guaiacol | 2.5 | Phenolic, Burnt, Spicy | 0.44 ± 0.13 | n.d. | n.d. | 0.24 ± 0.08 |
26 | Phenol | 0.57 ± 0.09 | 0.38 ± 0.31 | 0.84 ± 0.33 | 0.51 ± 0.08 | |||
27 | K | 4-Vinylguaiacol | 0.75/20 | Spicy, Woody | 1.8 ± 0.11 | 1.58 ± 0.17 | 2.76 ± 0.77 | 1.62 ± 0.29 |
SUM | 2.81 ± 0.33 | 1.96 ± 0.48 | 0.8 ± 0.15 | 1.67 ± 0.44 | ||||
Pyridine | ||||||||
28 | Pyridine | 77 | Sour, Fishy, Amine | 1.49 ± 0.11 | 0.89 ± 0.06 | 0.43 ± 0.09 | 0.77 ± 0.17 | |
29 | 4(H)-Pyridine, N-acetyl- | 0.38 ± 0.33 | 0.32 ± 0.07 | 0.37 ± 0.06 | 0.57 ± 0.19 | |||
30 | 2-Acetylpyridine | 0.31 ± 0.09 | 0.08 ± 0.08 | n.d. | 0.33 ± 0.08 | |||
SUM | 2.18 ± 0.53 | 1.29 ± 0.21 | 0.8 ± 0.15 | 1.67 ± 0.44 | ||||
Pyrazine | Roasted odour of coffee | |||||||
31 | Methylpyrazine | Chocolate, Corn-like, Nutty | 2.91 ± 0.06 | 2.75 ± 0.17 | 2.57 ± 0.19 | 2.16 ± 0.11 | ||
32 | 2,5-Dimethylpyrazine | 80 | Musty, Earthy, Powdery and slightly roasted with Cocoa powder nuance | 2.77 ± 0.25 | 1.81 ± 0.38 | 2.24 ± 0.13 | 1.89 ± 0.42 | |
33 | 2,6-Dimethylpyrazine | 2.23 ± 0.21 | n.d. | n.d. | 2.05 ± 0.02 | |||
34 | 2,3-Dimethylpyrazine | 800 | Musty, Nut skins, Cocoa powdery with potato and coffee nuances | 0.32 ± 0.06 | 0.43 ± 0.08 | 0.33 ± 0.13 | 0.36 ± 0.06 | |
35 | K | 2-Ethyl-6-methylpyrazine | Earthy, Musty | 1.55 ± 0.17 | 1.81 ± 0.18 | 1.61 ± 0.16 | 1.82 ± 0.1 | |
36 | 2-Ethyl-5-methylpyrazine | n.d. | 1.57 ± 0.19 | 1.42 ± 0.08 | 1.59 ± 0.14 | |||
37 | 2-Ethyl-3-methylpyrazine | 1.62 ± 0.09 | 1.56 ± 0.11 | 0.63 ± 0.21 | 1.58 ± 0.12 | |||
38 | 2,6-Diethylpyrazine | 0.51 ± 0.21 | 0.39 ± 0.06 | 0.27 ± 0.06 | 0.51 ± 0.12 | |||
39 | K | 3-Ethyl-2,5-dimethylpyrazine | Fried, Peanut aroma and Chocolate | 1.51 ± 0.04 | 1.47 ± 0.09 | 1.45 ± 0.06 | 1.56 ± 0.18 | |
40 | 2-Ethyl-3,5-dimethylpyrazine | 0.83 ± 0.01 | 1.62 ± 0.18 | 1.79 ± 0.19 | 0.55 ± 0.09 | |||
41 | K | 3,5-Diethyl-2-methylpyrazine | Earthy | 0.63 ± 0.05 | 0.73 ± 0.05 | 0.48 ± 0.06 | 0.61 ± 0.24 | |
SUM | 14.88 ± 1.15 | 14.14 ± 1.49 | 12.79 ± 1.27 | 14.68 ± 1.61 | ||||
Acids | ||||||||
42 | Isovaleric acid | 0.67 ± 0.16 | 0.32 ± 0.06 | n.d. | 0.29 ± 0.1 | |||
43 | Nonanoic acid | n.d. | 0.35 ± 0.07 | n.d. | 0.18 ± 0.06 | |||
SUM | 0.67 ± 0.16 | 0.67 ± 0.13 | n.d. | 0.47 ± 0.16 | ||||
Terpene Alchols | ||||||||
44 | Linalool | 0.17 | Flowery | 0.45 ± 0.11 | 0.45 ± 0.17 | 0.59 ± 0.11 | 0.44 ± 0.12 | |
45 | cis-Linalool oxide (furan) | 0.38 ± 0.21 | 0.31 ± 0.08 | 0.44 ± 0.12 | 0.35 ± 0.09 | |||
46 | trans-Linalool oxide (furanoid) | 0.7 ± 0.11 | 0.67 ± 0.17 | 0.54 ± 0.25 | 0.48 ± 0.14 | |||
SUM | 1.53 ± 0.43 | 0.76 ± 0.42 | 1.57 ± 0.48 | 1.27 ± 0.35 | ||||
Pyrrole | ||||||||
47 | 1-Furfurylpyrrole | Defective beans, negative notes | 1.78 ± 0.04 | 1.63 ± 0.25 | 1.85 ± 0.29 | 0.31 ± 0.11 | ||
48 | Pyrrole-2-aldehyde | 1.27 ± 0.21 | 1.57 ± 0.33 | 1.46 ± 0.22 | 1.22 ± 0.07 | |||
49 | 2-Acetylpyrrole | 1.79 ± 0.06 | 0.76 ± 0.35 | 1.27 ± 0.11 | 0.66 ± 0.06 | |||
SUM | 4.84 ± 0.31 | 3.96 ± 0.93 | 4.58 ± 0.62 | 2.19 ± 0.24 | ||||
TOTAL IDENTIFIED COMPOUNDS % | 86.99 ± 7.76 | 84.3 ± 8.95 | 82.17 ± 12.67 | 80.98 ± 12.53 |
SAMPLES | Aroma | Flavor | Aftertaste | Acidity | Body | Balance | Overall | |
---|---|---|---|---|---|---|---|---|
PB 1 | Pure Brew | 6.5 | 7 | 7 | 7.5 | 7.25 | 7.5 | 7.75 |
PB 2 | 7.5 | 7 | 7.5 | 7.75 | 7.75 | 7.75 | 8 | |
PB 3 | 7.75 | 7.75 | 7.75 | 7.75 | 8 | 8 | 8 | |
PB 4 | 7 | 7.5 | 7.5 | 7.75 | 7.5 | 7.5 | 7.5 | |
PB 5 | 7.5 | 7.75 | 7.5 | 7.5 | 7.75 | 7.75 | 7.75 | |
PB 6 | 7.75 | 7.25 | 7.5 | 7.5 | 7.5 | 7.75 | 7.5 | |
Mean Values | 7.33 a | 7.38 a | 7.46 a | 7.63 | 7.63 a | 7.71 a | 7.75 a | |
V60 1 | V60 | 6.75 | 7 | 7 | 6.75 | 7.25 | 6.75 | 7 |
V60 2 | 7 | 7.75 | 7.5 | 7 | 7 | 7.5 | 7.5 | |
V60 3 | 7 | 7.75 | 8 | 7.75 | 7.5 | 7.75 | 8 | |
V60 4 | 6.5 | 7.75 | 7.5 | 7.5 | 7.5 | 7.75 | 7.75 | |
V60 5 | 7 | 7.25 | 7.5 | 7.5 | 7.5 | 7.5 | 7 | |
V60 6 | 6.75 | 7.5 | 7.75 | 7.25 | 7 | 7.75 | 7.75 | |
Mean Values | 6.83 a | 7.50 a | 7.54 a | 7.29 | 7.29 a,b | 7.50 a,b | 7.50 a | |
AP 1 | AeroPress | 7.25 | 7.5 | 7.25 | 7 | 7.25 | 7.25 | 7.25 |
AP 2 | 7.25 | 7.5 | 7.25 | 7.25 | 7.5 | 7.25 | 7.5 | |
AP 3 | 7.25 | 7.75 | 7.5 | 7.75 | 7.75 | 7.75 | 7.75 | |
AP 4 | 7 | 7.25 | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 | |
AP 5 | 7.5 | 7.25 | 7.25 | 7.5 | 7.75 | 7.5 | 7.25 | |
AP 6 | 7.25 | 7.5 | 7.5 | 7.25 | 7.25 | 7.25 | 7.5 | |
Mean Values | 7.25 a | 7.46 a | 7.38 a | 7.38 | 7.50 a,b | 7.42 a,b | 7.46 a | |
FP 1 | French Press | 6 | 6.5 | 6.5 | 7 | 7.25 | 7 | 6.75 |
FP 2 | 6.5 | 7 | 6.75 | 7.25 | 7.25 | 7 | 6.75 | |
FP 3 | 6.75 | 7 | 7.25 | 7.75 | 7.5 | 7.5 | 6.75 | |
FP 4 | 7 | 6.75 | 7 | 7.25 | 7 | 7.25 | 7 | |
FP 5 | 6.25 | 6.75 | 6.75 | 7.5 | 7 | 7 | 7 | |
FP 6 | 6.5 | 6.5 | 6.5 | 7.5 | 7.25 | 7 | 6.75 | |
Mean Values | 6.50 b | 6.75 b | 6.79 b | 7.38 | 7.21 b | 7.13 b | 6.83 b | |
p.value | 0.0009 | 0.0004 | 0.0003 | 0.1962 | 0.0209 | 0.0082 | 0.5666 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santanatoglia, A.; Alessandroni, L.; Fioretti, L.; Sagratini, G.; Vittori, S.; Maggi, F.; Caprioli, G. Discrimination of Filter Coffee Extraction Methods of a Medium Roasted Specialty Coffee Based on Volatile Profiles and Sensorial Traits. Foods 2023, 12, 3199. https://doi.org/10.3390/foods12173199
Santanatoglia A, Alessandroni L, Fioretti L, Sagratini G, Vittori S, Maggi F, Caprioli G. Discrimination of Filter Coffee Extraction Methods of a Medium Roasted Specialty Coffee Based on Volatile Profiles and Sensorial Traits. Foods. 2023; 12(17):3199. https://doi.org/10.3390/foods12173199
Chicago/Turabian StyleSantanatoglia, Agnese, Laura Alessandroni, Lauro Fioretti, Gianni Sagratini, Sauro Vittori, Filippo Maggi, and Giovanni Caprioli. 2023. "Discrimination of Filter Coffee Extraction Methods of a Medium Roasted Specialty Coffee Based on Volatile Profiles and Sensorial Traits" Foods 12, no. 17: 3199. https://doi.org/10.3390/foods12173199
APA StyleSantanatoglia, A., Alessandroni, L., Fioretti, L., Sagratini, G., Vittori, S., Maggi, F., & Caprioli, G. (2023). Discrimination of Filter Coffee Extraction Methods of a Medium Roasted Specialty Coffee Based on Volatile Profiles and Sensorial Traits. Foods, 12(17), 3199. https://doi.org/10.3390/foods12173199