Nanostructured Antimicrobials for Quality and Safety Improvement in Dairy Products
Abstract
:1. Introduction
2. Natural Antimicrobials in Dairy Foods
3. Nanostructures for Antimicrobial Delivery
3.1. Metal and Polymeric Nanoparticles
3.2. Lipid-Based Nanostructures
3.3. Nanofibers
3.4. Nanofilms and Nanocoatings
4. Nanostructured Antimicrobials in Dairy Industry
4.1. Milk as a Model System
4.2. Antimicrobial Nanostructures as Additives in Dairy Products
4.3. Antimicrobial Nanostructures in Packaging Applications
5. Toxicity of Nanostructured Antimicrobials
6. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Claeys, W.; Cardoen, S.; Daube, G.; De Block, J.; Dewettinck, K.; Dierick, K. Raw or heated cow milk consumption: Review of risks and benefits. Food Control 2013, 31, 251–262. [Google Scholar] [CrossRef]
- Fusco, V.; Chieffi, D.; Fanelli, F.; Logrieco, A.F.; Cho, G.S.; Kabisch, J.; Böhnlein, C.; Franz, C.M.A.P. Microbial quality and safety of milk and milk products in the 21st century. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2013–2049. [Google Scholar] [CrossRef] [PubMed]
- Oever, S.V.; Mayer, H.K. Analytical assessment of the intensity of heat treatment of milk and dairy products. Int. Dairy J. 2021, 121, 105097. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Almeida, F.A.; Medeiros, M.M.; Miranda, B.R.; Pinto, U.M.; Alves, V.F. Listeria monocytogenes: An inconvenient hurdle for the dairy industry. Dairy 2023, 4, 316–344. [Google Scholar] [CrossRef]
- Dai, J.; Wu, S.; Huang, J.; Wu, Q.; Zhang, F.; Zhang, J.; Wang, J.; Ding, Y.; Zhang, S.; Yang, X.; et al. Prevalence and characterization of Staphylococcus aureus Isolated from pasteurized milk in China. Front. Microbiol. 2019, 10, 641. [Google Scholar] [CrossRef]
- Oliveira, R.; Pinho, E.; Almeida, G.; Azevedo, N.F.; Almeida, C. Prevalence and diversity of Staphylococcus aureus and staphylococcal enterotoxins in raw milk from Northern Portugal. Front. Microbiol. 2022, 13, 846653. [Google Scholar] [CrossRef]
- Lobacz, A.; Zulewska, J. Fate of Salmonella spp. in the fresh soft raw milk cheese during storage at different temperatures. Microorganisms 2021, 9, 938. [Google Scholar] [CrossRef]
- Ntuli, V.; Njage, P.M.K.; Buys, E.M. Characterization of Escherichia coli and other Enterobacteriaceae in producer-distributor bulk milk. J. Dairy Sci. 2016, 99, 9534–9549. [Google Scholar] [CrossRef] [Green Version]
- Deshwal, G.K.; Tiwari, S.; Kadyan, S. Applications of emerging processing technologies for quality and safety enhancement of non-bovine milk and milk products. LWT Food Sci. Technol. 2021, 149, 111845. [Google Scholar] [CrossRef]
- Lopes, N.A.; Brandelli, A. Nanostructures for delivery of natural antimicrobials in food. Crit. Rev. Food Sci. Nutr. 2018, 58, 2202–2212. [Google Scholar] [CrossRef]
- Poonia, A. Recent trends in nanomaterials used in dairy industry. In Nanoscience for Sustainable Agriculture; Pudake, R., Chauah, N., Kole, C., Eds.; Springer: Cham, Switzerland, 2019; pp. 375–396. [Google Scholar]
- Quinto, E.J.; Caro, I.; Villalobos-Delgado, L.H.; Mateo, J.; De-Mateo-Silleras, B.; Redondo-Del-Río, M.P. Food safety through natural antimicrobials. Antibiotics 2019, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Angiolillo, L.; Lucera, A.; Del Nobile, M.A.; Conte, A. Antimicrobial compounds applied to dairy foods. In Advances in Dairy Products; Contò, F., Del Nobile, M.A., Faccia, M., Zambrini, A.V., Conte, A., Eds.; John Wiley & Sons: London, UK, 2018; pp. 274–294. [Google Scholar]
- Saad, N.Y.; Muller, C.D.; Lobstein, A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr. J. 2013, 23, 269–279. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; Ahmed, M.Y. Potential application of herbs and spices and their effects in functional dairy products. Heliyon 2019, 5, 01989. [Google Scholar] [CrossRef] [Green Version]
- Davidson, P.M.; Critzer, F.J.; Taylor, T.M. Naturally occurring antimicrobials for minimally processed foods. Annu. Rev. Food Sci. Technol. 2013, 4, 163–190. [Google Scholar] [CrossRef]
- Ibarra-Sánchez, L.A.; El-Haddad, N.; Mahmoud, D.; Miller, M.J.; Karam, L. Advances in nisin use for preservation of dairy products. J. Dairy Sci. 2020, 103, 2041–2052. [Google Scholar] [CrossRef]
- Meena, M.; Prajapati, P.; Ravichandran, C.; Sehrawat, R. Natamycin: A natural preservative for food applications—A review. Food Sci. Biotechnol. 2021, 30, 1481–1496. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Khorshidian, N.; Khanniri, E.; Koushki, M.R.; Sohrabvandi, S.; Yousefi, M. An overview of antimicrobial activity of lysozyme and its functionality in cheese. Front. Nutr. 2022, 9, 833618. [Google Scholar] [CrossRef]
- Niaz, B.; Saeed, F.; Ahmed, A.; Imran, M.; Maan, A.A.; Khan, M.K.I.; Tufail, T.; Anjum, F.M.; Hussain, S.; Suleria, H.A.R. Lactoferrin (LF): A natural antimicrobial protein. Int. J. Food Prop. 2019, 22, 1626–1641. [Google Scholar] [CrossRef] [Green Version]
- Todorov, S.D.; Popov, I.; Weeks, R.; Chikindas, M.L. Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: Benefits, challenges, concerns. Foods 2022, 11, 3145. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Malheiros, P.S.; Brandelli, A. Liposome encapsulation protects bacteriocin-like substance P34 against inhibition by Maillard reaction products. Food Res. Int. 2011, 44, 326–330. [Google Scholar] [CrossRef]
- Pinilla, C.M.B.; Lopes, N.A.; Brandelli, A. Lipid-based nanostructures for the delivery of natural antimicrobials. Molecules 2021, 26, 3587. [Google Scholar] [CrossRef] [PubMed]
- Brandelli, A.; Taylor, T.M. Nanostructured and nanoencapsulated natural antimicrobials for use in food products. In Handbook of Natural Antimicrobials for Food Safety and Quality; Taylor, T.M., Ed.; Elsevier: London, UK, 2015; pp. 229–257. [Google Scholar]
- Bahrami, A.; Delshadi, R.; Assadpour, E.; Jafari, S.M.; Williams, L. Antimicrobial-loaded nanocarriers for food packaging applications. Adv. Colloid Interface Sci. 2020, 278, 102140. [Google Scholar] [CrossRef] [PubMed]
- Brandelli, A. Nanostructures as promising tools for delivery of antimicrobial peptides. Mini-Rev. Med. Chem. 2012, 12, 731–741. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [Green Version]
- Mallia, J.O.; Galea, R.; Nag, R.; Cummins, E.; Gatt, R.; Valdramidis, V.P. Nanoparticle food applications and their toxicity: Current trends and needs in risk assessment strategies. J. Food Protec. 2022, 85, 355–372. [Google Scholar] [CrossRef]
- Brandelli, A. The interaction of nanostructured antimicrobials with biological systems: Cellular uptake, trafficking and potential toxicity. Food Sci. Hum. Wellness 2020, 9, 8–20. [Google Scholar] [CrossRef]
- Bayani Bandpey, N.; Aroujalian, A.; Raisi, A.; Fazel, S. Surface coating of silver nanoparticles on polyethylene for fabrication of antimicrobial milk packaging films. Int. J. Dairy Technol. 2017, 70, 204–211. [Google Scholar] [CrossRef]
- Elsherif, W.M.; El Hendy, A.H.M.; Elnisr, N.A.; Zakaria, I.M. Ameliorative effect of zeolite packaging on shelf life of milk. J. Packag. Technol. Res. 2020, 4, 171–186. [Google Scholar] [CrossRef]
- Shawkat, S.M.; Al-Jawasim, M.; Khaleefah, L.S. Extending shelf life of pasteurized milk via chitosan nanoparticles. J. Pure Appl. Microbiol. 2019, 13, 2471–2478. [Google Scholar] [CrossRef] [Green Version]
- Timbe, P.P.R.; Motta, A.S.; Isaia, H.A.; Brandelli, A. Polymeric nanoparticles loaded with Baccharis dracunculifolia DC essential oil: Preparation, characterization, and antibacterial activity in milk. J. Food Process. Preserv. 2020, 44, 14712. [Google Scholar] [CrossRef]
- Isaia, H.A.; Pinilla, C.M.B.; Brandelli, A. Evidence that protein corona reduces the release of antimicrobial peptides from polymeric nanocapsules in milk. Food Res. Int. 2021, 140, 110074. [Google Scholar] [CrossRef]
- Incoronato, A.L.; Conte, A.; Buonocore, G.G.; Del Nobile, M.A. Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. J. Dairy Sci. 2011, 94, 1697–1704. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.; Giannuzzi, L.; Arce, V.B.; García, M.A. Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocoll. 2017, 70, 152–162. [Google Scholar] [CrossRef]
- Ortega, F.; Minnaard, J.; Arce, V.B.; García, M.A. Nanocomposite starch films. Cytotoxicity studies and their application as cheese packaging. Food Biosci. 2023, 53, 102562. [Google Scholar] [CrossRef]
- Ellahi, H.; Sadrabad, E.K.; Hekmatimoghaddam, S.; Jebali, A.; Sarmast, E.; Mohajeri, F.A. Application of essential oil of Pistacia atlantica Gum, polypropylene and silica nanoparticles as a new milk packaging. Food Sci. Nutr. 2020, 8, 4037–4043. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Carbone, C.; Souto, E.B. Beyond liposomes: Recent advances on lipid-based nanostructures for poorly soluble/poorly permeable drug delivery. Prog. Lipid Res. 2017, 68, 1–11. [Google Scholar] [CrossRef]
- Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol. 2021, 9, 705886. [Google Scholar] [CrossRef]
- Malheiros, P.S.; Daroit, D.J.; Brandelli, A. Food applications of liposome-encapsulated antimicrobial peptides. Trends Food Sci. Technol. 2010, 21, 284–292. [Google Scholar] [CrossRef]
- Koller, D.; Lohner, K. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim. Biophys. Acta—Biomembr. 2014, 1838, 2250–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, N.A.; Mertins, O.; Pinilla, C.M.B.; Brandelli, A. Nisin induces lamellar to cubic liquid-crystalline transition in pectin and polygalacturonic acid liposomes. Food Hydrocoll. 2021, 112, 106320. [Google Scholar] [CrossRef]
- Al-Abduljabbar, A.; Farooq, I. Electrospun polymer nanofibers: Processing, properties, and applications. Polymers 2023, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.S.M.; Kumar, K.S.; Rajini, N.; Siengchin, S.; Ayrilmis, N.; Rajulu, A.V. A comprehensive review of electrospun nanofibers: Food and packaging perspective. Compos. Part B Eng. 2019, 175, 107074. [Google Scholar] [CrossRef]
- Mele, E. Electrospinning of essential oils. Polymers 2020, 12, 908. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Xu, H.; Zhao, H.; Liu, W.; Zhao, L.; Li, Y. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydr. Polym. 2017, 157, 842–849. [Google Scholar] [CrossRef]
- Al-Moghazy, M.; Mahmoud, M.; Nada, A.A. Fabrication of cellulose-based adhesive composite as an active packaging material to extend the shelf life of cheese. Int. J. Biol. Macromol. 2020, 160, 264–275. [Google Scholar] [CrossRef]
- Suvarna, V.; Nair, A.; Mallya, R.; Khan, T.; Omri, A. Antimicrobial nanomaterials for food packaging. Antibiotics 2022, 11, 729. [Google Scholar] [CrossRef]
- Petkoska, A.T.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef]
- Brandelli, A.; Brum, L.F.W.; Santos, J.H.Z. Nanostructured bioactive compounds for ecological food packaging. Environ. Chem. Lett. 2017, 15, 193–204. [Google Scholar] [CrossRef]
- Neethirajan, S.; Jayas, D. Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 2011, 4, 39–47. [Google Scholar] [CrossRef]
- Leite, L.S.F.; Bilatto, S.; Paschoalin, R.T.; Soares, A.C.; Moreira, F.K.V.; Oliveira, O.N., Jr.; Mattoso, L.H.C.; Bras, J. Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging. Int. J. Biol. Macromol. 2020, 165, 2974–2983. [Google Scholar] [CrossRef] [PubMed]
- Motelica, L.; Ficai, D.; Oprea, O.-C.; Ficai, A.; Ene, V.-L.; Vasile, B.-S.; Andronescu, E.; Holban, A.-M. Antibacterial biodegradable films based on alginate with silver nanoparticles and lemongrass essential oil–innovative packaging for cheese. Nanomaterials 2021, 11, 2377. [Google Scholar] [CrossRef]
- Malheiros, P.S.; Daroit, D.J.; Silveira, N.P.; Brandelli, A. Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiol. 2010, 27, 175–178. [Google Scholar] [CrossRef]
- Malheiros, P.S.; Sant’Anna, V.; Utpott, M.; Brandelli, A. Antilisterial activity and stability of nanovesicle-encapsulated antimicrobial peptide P34 in milk. Food Control 2012, 23, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Malheiros, P.S.; Cuccovia, I.M.; Franco, B. Inhibition of Listeria monocytogenes in vitro and in goat milk by liposomal nanovesicles containing bacteriocins produced by Lactobacillus sakei subsp sakei 2a. Food Control 2016, 63, 158–164. [Google Scholar] [CrossRef]
- Pinilla, C.M.; Noreña, C.Z.; Brandelli, A. Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chem. 2017, 220, 470–476. [Google Scholar] [CrossRef]
- Pinilla, C.M.; Brandelli, A. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innov. Food Sci. Emerg. Technol. 2016, 36, 287–293. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Afzali, M. Investigation into the antibacterial behavior of suspensions of magnesium oxide nanoparticles in combination with nisin and heat against Escherichia coli and Staphylococcus aureus in milk. Food Control 2016, 68, 208–215. [Google Scholar] [CrossRef]
- Tatlisu, N.B.; Yılmaz, M.T.; Arıcı, M. Fabrication and characterization of thymol-loaded nanofiber mats as a novel antimould surface material for coating cheese surface. Food Packag. Shelf Life 2019, 21, 100347. [Google Scholar] [CrossRef]
- Soto, K.M.; Hernández-Iturriaga, M.; Lóarca-Piña, G.; Luna-Bárcenas, G.; Mendoza, S. Antimicrobial effect of nisin electrospun amaranth: Pullulan nanofibers in apple juice and fresh cheese. Int. J. Food Microbiol. 2019, 295, 25–32. [Google Scholar] [CrossRef]
- Lin, L.; Gu, Y.; Cui, H. Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packag. Shelf Life 2019, 19, 86–93. [Google Scholar] [CrossRef]
- Lu, Z.; Saldaña, M.D.; Jin, Z.; Wuliang, S.; Gao, P.; Bilige, M.; Sun, W. Layer-by-layer electrostatic self-assembled coatings based on flaxseed gum and chitosan for Mongolian cheese preservation. Innov. Food Sci. Emerg. Technol. 2021, 73, 102785. [Google Scholar] [CrossRef]
- Ligaj, M.; Tichoniuk, M.; Cierpiszewski, R.; Foltynowicz, Z. Efficiency of novel antimicrobial coating based on iron nanoparticles for dairy products’ packaging. Coatings 2020, 10, 156. [Google Scholar] [CrossRef] [Green Version]
- Beigmohammadi, F.; Peighambardoust, S.H.; Hesari, J.; Azadmard-Damirchi, S.; Peighambardoust, S.J.; Khosrowshahi, N.K. Antibacterial properties of LPDE nanocomposite films in packaging of UF cheese. LWT Food Sci. Technol. 2016, 65, 106–111. [Google Scholar] [CrossRef]
- Göksen, G.; Fabra, M.J.; Ekiz, M.I.; López-Rubio, A. Phytochemical-loaded electrospun nanofibers as novel active edible films: Characterization and antibacterial efficiency in cheese slices. Food Control 2020, 112, 107133. [Google Scholar] [CrossRef]
- Bagale, U.; Kadi, A.; Abotaleb, M.; Potoroko, I.; Sonawane, S.H. Prospect of bioactive curcumin nanoemulsion as effective agency to improve milk based soft cheese by using ultrasound encapsulation approach. Int. J. Mol. Sci. 2023, 24, 2663. [Google Scholar] [CrossRef]
- Veras, F.F.; Ritter, A.C.; Roggia, I.; Pranke, P.; Pereira, C.N.; Brandelli, A. Natamycin-loaded electrospun poly(ε-caprolactone) nanofibers as an innovative platform for antifungal applications. SN Appl. Sci. 2020, 2, 1105. [Google Scholar] [CrossRef]
- Favaro, L.; Penna, A.L.B.; Todorov, S.D. Bacteriocinogenic LAB from cheeses—Application in biopreservation? Trends Food Sci. Technol. 2015, 41, 37–48. [Google Scholar] [CrossRef]
- Schmidt, S.E.; Holub, G.; Sturino, J.M.; Taylor, T.M. Suppression of Listeria monocytogenes Scott A in fluid milk by free and liposome-entrapped nisin. Probiotics Antimicrob. Prot. 2009, 1, 152–158. [Google Scholar] [CrossRef]
- Lopes, N.A.; Pinilla, C.M.B.; Brandelli, A. Pectin and polygalacturonic acid-coated liposomes as novel delivery system for nisin: Preparation, characterization and release behavior. Food Hydrocoll. 2017, 70, 1–7. [Google Scholar] [CrossRef]
- Moshtaghi, H.; Rashidimehr, A.; Shareghi, B. Antimicrobial activity of nisin and lysozyme on foodborne pathogens Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium, and Escherichia coli at different pH. J. Nutr. Food Secur. 2018, 3, 193–201. [Google Scholar] [CrossRef]
- Lopes, N.A.; Pinilla, C.M.B.; Brandelli, A. Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocoll. 2019, 93, 1–9. [Google Scholar] [CrossRef]
- Mohammadi, R.; Mahmoudzadeh, M.; Atefi, M.; Khosravi-Darani, K.; Mozafari, M.R. Applications of nanoliposomes in cheese technology. Int. J. Dairy Technol. 2015, 68, 11–23. [Google Scholar] [CrossRef]
- Malheiros, P.S.; Sant’Anna, V.; Barbosa, M.S.; Brandelli, A.; Franco, B.D.G.F. Effect of liposome-encapsulated nisin and bacteriocin-like substance P34 on Listeria monocytogenes growth in Minas frescal cheese. Int. J. Food Microbiol. 2012, 156, 272–277. [Google Scholar] [CrossRef]
- Malheiros, P.S.; Daroit, D.J.; Brandelli, A. Inhibition of Listeria monocytogenes in Minas frescal cheese by free and nanovesicle-encapsulated nisin. Braz. J. Microbiol. 2012, 43, 1414–1418. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, H.S.; El-Sayed, S.M. A modern trend to preserve white soft cheese using nano-emulsified solutions containing cumin essential oil. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100499. [Google Scholar] [CrossRef]
- Kisanthini, S.; Kavitha, M.B. Microbial contamination of yoghurt—An overview. Int. J. Sci. Res. 2019, 10, 954–957. [Google Scholar]
- Mohaisen, M.J.M.; Yildirim, R.M.; Yilmaz, M.T.; Durak, M.Z. Production of functional yogurt drink, apple and orange juice using nano-encapsulated L. brevis within sodium alginate-based biopolymers. Sci. Adv. Mater. 2019, 11, 1788–1797. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Salehabadi, A.; Nafchi, A.M.; Oladzadabbasabadi, N.; Jafari, S.M. Cheese packaging by edible coatings and biodegradable nanocomposites; improvement in shelf life, physicochemical and sensory properties. Trends Food Sci. Technol. 2021, 116, 218–231. [Google Scholar] [CrossRef]
- Gammariello, D.; Conte, A.; Buonocore, G.G.; Del Nobile, M.A. Bio-based nanocomposite coating to preserve quality of Fiori di latte cheese. J. Dairy Sci. 2011, 94, 5298–5304. [Google Scholar] [CrossRef] [Green Version]
- Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Univerity Sci. 2016, 28, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, Z.; Wu, K. Effect of antibacterial nanocomposite film on the preservation of cheese. Food Sci. Technol. 2022, 42, 93321. [Google Scholar] [CrossRef]
- Boelter, J.F.; Brandelli, A. Innovative bionanocomposite films of edible proteins containing liposome-encapsulated nisin and halloysite nanoclay. Colloids Surf. B Biointerfaces 2016, 145, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Meira, S.M.M.; Zehetmeyer, G.; Jardim, A.I.; Scheibel, J.M.; Oliveira, R.V.B.; Brandelli, A. Polypropylene/montmorillonite nanocomposites containing nisin as antimicrobial food packaging. Food Bioprocess Technol. 2014, 7, 3349–3357. [Google Scholar] [CrossRef]
- Meira, S.M.M.; Zehetmeyer, G.; Werner, J.O.; Brandelli, A. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll. 2017, 63, 561–570. [Google Scholar] [CrossRef]
- Meira, S.M.M.; Zehetmeyer, G.; Scheibel, J.M.; Werner, J.O.; Brandelli, A. Starch-halloysite nanocomposites containing nisin: Characterization and inhibition of Listeria monocytogenes in cheese. LWT Food Sci Technol. 2016, 68, 226–234. [Google Scholar] [CrossRef]
- Pluta-Kubica, A.; Jamróz, E.; Khachatryan, G.; Florkiewicz, A.; Kopel, P. Application of furcellaran nanocomposite film as packaging of cheese. Polymers 2021, 13, 1428. [Google Scholar] [CrossRef]
- Zehetmeyer, G.; Meira, S.M.M.; Scheibel, J.M.; Silva, C.B.; Rodembusch, F.S.; Brandelli, A.; Soares, R.M.D. Biodegradable and antimicrobial films based on poly(butylene adipate-co-terephthalate) electrospun fibers. Polym. Bull. 2017, 74, 3243–3268. [Google Scholar] [CrossRef]
- Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J. Nanopart. Res. 2023, 25, 43. [Google Scholar] [CrossRef]
- McClements, D.J.; Xiao, H. Is nano safe in foods? Establishing the factors impacting gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. Sci. Food. 2017, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Brandelli, A. Toxicity and safety evaluation of nanoclays. In Nanomaterias: Ecotoxicity, Safety and Public Perception; Rai, M., Biswas, J.K., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 57–76. [Google Scholar]
- Azeredo, H.M.C.; Otoni, C.G.; Corrêa, D.S.; Assis, O.B.G.; Moura, M.R.; Mattoso, L.H.C. Nanostructured antimicrobials in food packaging—Recent advances. Biotechnol. J. 2019, 14, e1900068. [Google Scholar] [CrossRef]
- McClements, D.J.; Xiao, H. Potential biological fate of ingested nanoemulsions: Influence of particle characteristics. Food Funct. 2012, 3, 202–220. [Google Scholar] [CrossRef]
- Wang, T.; Luo, Y. Biological fate of ingested lipid-based nanoparticles: Current understanding and future directions. Nanoscale 2019, 11, 11048–11063. [Google Scholar] [CrossRef]
- Li, B.; Chua, S.L.; Yu, D.; Chan, S.H.; Li, A. Detection, identification and size distribution of silver nanoparticles (AgNPs) in milk and migration study for breast milk storage bags. Molecules 2022, 27, 2539. [Google Scholar] [CrossRef]
- Haitao, Y.; Yifan, C.; Mingchao, S.; Shuaijuan, H. A novel polymeric nanohybrid antimicrobial engineered by antimicrobial peptide MccJ25 and chitosan nanoparticles exerts strong antibacterial and anti-inflammatory activities. Front. Immunol. 2022, 12, 811381. [Google Scholar] [CrossRef]
Dairy Product | Nanostructure * | Antimicrobial | Target Bacteria | Main Results | Ref. |
---|---|---|---|---|---|
Fluid milk | PC liposomes | Nisin | L. monocytogenes | Reduction in viable counts in whole and skim milk | [56] |
PC liposomes | Peptide P34 | L. monocytogenes | 5 log reduction in skim milk | [57] | |
PCL and Eudragit nanocapsules | Peptide P34 | L. monocytogenes | Protein corona hinders antimicrobial activity in milk | [35] | |
PC/DOTAP liposomes | Sakacin | L. monocytogenes | 5 log reduction in goat milk | [58] | |
Eudragit RS100 nanoparticles | Baccharis dracunculifolia EO | S. aureus, B. cereus, L. monocytogenes and S. Enteritidis | 2 log reduction in skim milk | [34] | |
PC liposomes | Garlic extract | L. monocytogenes | 4 log reduction in whole milk | [59] | |
PC liposomes | Nisin–garlic extract | L. monocytogenes, S. aureus, E. coli, S. Enteritidis | Synergic effect in the control of pathogens in whole milk | [60] | |
Metallic nanoparticles | Magnesium oxide nanoparticles in combination with nisin | E. coli and S. aureus | Synergic effect in the control of the pathogens in milk | [61] | |
Cheese | Thymol-loaded nanofiber | Thymol | Aspergillus parasiticus | Prevented the growth of A. parasiticus on Kashar cheese | [62] |
Amaranth protein isolate: pullulan nanofibers | Nisin | Sakmonella Typhimurium, L. monocytogenes and L. mesenteroides | Inactivation of S. Typhimurium, L. monocytogenes and L. mesenteroides in fresh cheese | [63] | |
Moringa oil/chitosan nanoparticles embedded gelatin nanofibers | Moringa-oil-loaded and chitosan | L. monocytogenes and S. aureus | High antibacterial activity at 4 °C and 25 °C for 10 days, without any effect on the sensory quality of cheese | [64] | |
Layer-by-layer electrostatic self-assembled coatings based on flaxseed gum and chitosan | Chitosan | E. coli and S. aureus | Inhibition of molds, yeasts, E. coli and S. aureus in Mongolian cheese | [65] | |
PLA films containing zero-valent iron (ZVI) | Fe2O3 nanoparticles | Spoilage bacteria and fungi | Inhibited the growth of spoiled microorganisms in goat cheese | [66] | |
LDPE films | Ag, CuO and ZnO nanoparticles | Coliforms | Decrease 4.21 log CFU/g of coliforms in ultra-filtrated cheese after 4 weeks of storage at 4 ± 0.5 °C | [67] | |
EOs-zein nanofibers | EOs of Laurus nobilis and Rosmarinus officinalis | L. monocytogenes and S. aureus | Reduction of ~2 log units of L. monocytogenes and S. aureus in cheese slices | [68] | |
Safflower oil nanoemulsion | Curcumin | S. aureus and E. coli | Improved sensory evaluation of cheese. Antibacterial activity against S. aureus and E. coli | [69] | |
Milk agar (model system) | PCL nanofibers | Natamycin | Filamentous fungi and yeasts | Inhibition zones ranged from 4.3 to 25.6 mm of fungi in skim milk agar | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandelli, A.; Lopes, N.A.; Pinilla, C.M.B. Nanostructured Antimicrobials for Quality and Safety Improvement in Dairy Products. Foods 2023, 12, 2549. https://doi.org/10.3390/foods12132549
Brandelli A, Lopes NA, Pinilla CMB. Nanostructured Antimicrobials for Quality and Safety Improvement in Dairy Products. Foods. 2023; 12(13):2549. https://doi.org/10.3390/foods12132549
Chicago/Turabian StyleBrandelli, Adriano, Nathalie Almeida Lopes, and Cristian Mauricio Barreto Pinilla. 2023. "Nanostructured Antimicrobials for Quality and Safety Improvement in Dairy Products" Foods 12, no. 13: 2549. https://doi.org/10.3390/foods12132549
APA StyleBrandelli, A., Lopes, N. A., & Pinilla, C. M. B. (2023). Nanostructured Antimicrobials for Quality and Safety Improvement in Dairy Products. Foods, 12(13), 2549. https://doi.org/10.3390/foods12132549