Pore Evolution in Cell Walls of Food Tissue during Microwave-Assisted Drying: An In-Depth Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Apparatus
2.3. Moisture Content Determination
2.4. Microscopic Observation and Image Processing
3. Result and Discussion
3.1. Nano–Micro-Pore Formation
3.1.1. Temperature Evolution and MN-Pore Formation
3.1.2. Relationship between MW Power Level and MN Pore Formation
3.2. Significance of MN-Pores’ Formation in Moisture Migration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Askari, G.R.; Emam-Djomeh, Z.; Mousavi, S.M. An Investigation of the Effects of Drying Methods and Conditions on Drying Characteristics and Quality Attributes of Agricultural Products during Hot Air and Hot Air/Microwave-Assisted Dehydration. Dry. Technol. 2009, 27, 831–841. [Google Scholar] [CrossRef]
- Yang, J.; Di, Q.; Jiang, Q.; Zhao, J. Application of Pore Size Analyzers in Study of Chinese Angelica Slices Drying. Dry. Technol. 2010, 28, 214–221. [Google Scholar] [CrossRef]
- Gumeta-Chávez, C.; Chanona-Pérez, J.J.; Mendoza-Pérez, J.A.; Terrés-Rojas, E.; Garibay-Febles, V.; Gutiérrez-López, G.F. Shrinkage and Deformation of Agave atrovirens Karw Tissue during Convective Drying: Influence of Structural Arrangements. Dry. Technol. 2011, 29, 612–623. [Google Scholar] [CrossRef]
- Sablani, S.; Rahman, M.; Al-Kuseibi, M.; Al-Habsi, N.; Al-Belushi, R.; Al-Marhubi, I.; Al-Amri, I. Influence of shelf temperature on pore formation in garlic during freeze-drying. J. Food Eng. 2007, 80, 68–79. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Karim, A.; Kumar, C. Effect of Temperature Distribution on Predicting Quality of Microwave Dehydrated Food. J. Mech. Eng. Sci. 2013, 5, 562–568. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Kumar, C.; Karim, M.A. Effect of moisture and temperature distribution on dried food microstucture and porosity. In Proceedings of the From Model Foods to Food Models: The DREAM Project International Conference, Nantes, France, 24–26 June 2013. [Google Scholar]
- Orsat, V.; Yang, W.; Changrue, V.; Raghavan, G. Microwave-Assisted Drying of Biomaterials. Food Bioprod. Process. 2007, 85, 255–263. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Karim, M.; Kumar, C. Better Understanding of Food Material on the Basis of Water Distribution Using Thermogravimetric Analysis. In Proceedings of the International Conference on Mechanical, Industrial and Materials Engineering, Rajshahi, Bangladesh, 1–3 November 2013. [Google Scholar]
- Sharma, G.P.; Prasad, S. Specific energy consumption in microwave drying of garlic cloves. Energy 2005, 31, 1921–1926. [Google Scholar] [CrossRef]
- Soysal, Y.; Ayhan, Z.; Esturk, O.; Arıkan, M. Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosyst. Eng. 2009, 103, 455–463. [Google Scholar] [CrossRef]
- Kumar, C.; Karim, M.; Joardder, M.U. Intermittent drying of food products: A critical review. J. Food Eng. 2014, 121, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Soysal, Y.; Arslan, M.; Keskin, M. Intermittent Microwave-convective Air Drying of Oregano. Food Sci. Technol. Int. 2009, 15, 397–406. [Google Scholar] [CrossRef]
- Pham, N.; Joardder, K.; Martens, W.; Karim, M.A. Effect of intermittent microwave convective drying on quality attributes of food materials. In Proceedings of the 20th Internatonal Drying Symposium, Gifu, Japan, 7–10 August 2016. [Google Scholar]
- Joardder, M.U.; Karim, M. Drying kinetics and properties evolution of apple slices under convective and intermittent-MW drying. Therm. Sci. Eng. Prog. 2022, 30, 101279. [Google Scholar] [CrossRef]
- Esturk, O. Intermittent and Continuous Microwave-Convective Air-Drying Characteristics of Sage (Salvia officinalis) Leaves. Food Bioprocess Technol. 2012, 5, 1664–1673. [Google Scholar] [CrossRef]
- Botha, G.E.; Oliveira, J.; Ahrné, L. Microwave assisted air drying of osmotically treated pineapple with variable power programmes. J. Food Eng. 2012, 108, 304–311. [Google Scholar] [CrossRef]
- Schössler, K.; Jäger, H.; Knorr, D. Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. J. Food Eng. 2012, 108, 103–110. [Google Scholar] [CrossRef]
- Shahriar, F.; Joardder, M.U.H.; Karim, A. Recent trends and future potential of microwave-assisted fish drying. Dry. Technol. 2022, 40, 3389–3401. [Google Scholar] [CrossRef]
- Masud, M.H.; Joardder, M.U.H.; Ananno, A.A.; Nasif, S. Feasibility study and optimization of solar-assisted intermittent microwave–convective drying condition for potato. Eur. Food Res. Technol. 2022, 248, 1335–1349. [Google Scholar] [CrossRef]
- Thibault, B.; Ratti, C.; Khalloufi, S. A mathematical tool for estimating the efficiency of pore formation during dehydration. J. Food Eng. 2022, 323, 110981. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Karim, A.; Kumar, C.; Brown, R.J. Factors Affecting Porosity. In Porosity; Springer: Cham, Switzerland, 2016; pp. 25–46, (In English). [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Karim, A.; Kumar, C.; Brown, R.J. Pore Formation and Evolution During Drying. In Porosity; Springer: Cham, Switzerland, 2016; pp. 15–23. [Google Scholar] [CrossRef]
- Joardder, M.U.H. A Study on Pore Formation and Evolution, and Its Effect on Food Quality during Intermittent Microwave-Convective Drying (IMCD); Queensland University of Technology: Brisbane, Australia, 2016. [Google Scholar]
- McCann, M.C.; Wells, B.; Roberts, K. Direct visualization of cross-links in the primary plant cell wall. J. Cell Sci. 1990, 96, 323–334. [Google Scholar] [CrossRef]
- Davies, L.M.; Harris, P.J. Atomic force microscopy of microfibrils in primary cell walls. Planta 2003, 217, 283–289. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Assembly and enlargement of the primary cell wall in plants. Annu. Rev. Cell Dev. Biol. 1997, 13, 171–201. [Google Scholar] [CrossRef] [Green Version]
- Takenaka, Y.; Kato, K.; Ogawa-Ohnishi, M.; Tsuruhama, K.; Kajiura, H.; Yagyu, K.; Takeda, A.; Takeda, Y.; Kunieda, T.; Hara-Nishimura, I.; et al. Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family. Nat. Plants 2018, 4, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, M.C.; Briggs, S.P.H.; Knox, J.P. Intercellular adhesion and cell separation in plants. Cell Environ. 2003, 26, 977–989. [Google Scholar] [CrossRef]
- Aguilera, J.M.; Chiralt, A.F.P. Food dehydration and product structure. Trends Food Sci. Technol. 2003, 14, 432–437. [Google Scholar] [CrossRef]
- Waldron, K.W.; Parker, M.; Smith, A. Plant Cell Walls and Food Quality. Compr. Rev. Food Sci. Food Saf. 2006, 2, 128–146. [Google Scholar] [CrossRef] [PubMed]
- Joardder, M.U.H.; Mourshed, M.; Masud, M.H. State of Bound Water: Measurement and Significant in Food Processing; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Joardder, M.U.H.; Bosunia, H.; Hasan, M.; Ananno, A.A.; Karim, A. Significance of Glass Transition Temperature of Food Material in Selecting Drying Condition: An In-Depth Analysis. Food Rev. Int. 2023, 1–22. [Google Scholar] [CrossRef]
- Içier, F.; Baysal, T. Dielectrical properties of food materials—1: Factors affecting and industrial uses. Crit. Rev. Food Sci. Nutr. 2004, 44, 465–471. [Google Scholar] [CrossRef]
- Hellebrand, H.J.; Beuche, H.; Linke, M. Determination of thermal emissivity and surface temperature distribution of horticultural products. In Proceedings of the Sixth International Symposium on Fruit, Nut and Vegetable Production Engineering, Potsdam, Germany, 11–19 September 2001. [Google Scholar]
- Fan, D.; Wang, L.; Zhang, N.; Xiong, L.; Huang, L.; Zhao, J.; Wang, M.; Zhang, H. Full-time response of starch subjected to microwave heating. Sci. Rep. 2017, 7, 3967. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Tang, J.; Cavalieri, R.P. Dielectric properties of dehydrated apples as affected by moisture and temperature. Trans. ASAE 2002, 45, 129. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Achkar, G.E.L.; Liu, B.; Bennacer, R. Experimental study on moisture kinetics and microstructure evolution in apples during high power microwave drying process. J. Food Eng. 2021, 292, 110362. [Google Scholar] [CrossRef]
- Andrés, A.; Bilbao, C.; Fito, P. Drying kinetics of apple cylinders under combined hot air–microwave dehydration. J. Food Eng. 2004, 63, 71–78. [Google Scholar] [CrossRef]
- Reeja-Jayan, B.; Harrison, K.L.; Yang, K.; Wang, C.-L.; Yilmaz, A.E.; Manthiram, A. Microwave-assisted Low-temperature Growth of Thin Films in Solution. Sci. Rep. 2012, 2, 01003. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, I.; Susantyoko, R.; Wu, C.-H.; Ahmed, F.; Hashaikeh, R.; Almarzooqi, F.; Almheiri, S. Nanoscopic and Macro-Porous Carbon Nano-foam Electrodes with Improved Mass Transport for Vanadium Redox Flow Batteries. Sci. Rep. 2019, 9, 17655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prothon, F.; Ahrné, L.; Sjöholm, I. Mechanisms and Prevention of Plant Tissue Collapse during Dehydration: A Critical Review. Crit. Rev. Food Sci. Nutr. 2003, 43, 447–479. [Google Scholar] [CrossRef]
- Halder, A.; Datta, K.A.; Spanswick, R.M. Water Transport in Cellular Tissues during Thermal Processing. AIChE J. 2011, 57, 2574–2588. [Google Scholar] [CrossRef]
- Khan, I.H.; Wellard, R.M.; Nagy, S.A.; Joardder, M.; Karim, M. Experimental investigation of bound and free water transport process during drying of hygroscopic food material. Int. J. Therm. Sci. 2017, 117, 266–273. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Farrell, T.; Nagy, S.A.; Karim, M.A. Fundamental Understanding of Cellular Water Transport Process in Bio-Food Material during Drying. Sci. Rep. 2018, 8, 15191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, C.; Joardder, M.; Karim, A.; Millar, G.J.; Amin, Z. Temperature Redistribution Modelling During Intermittent Microwave Convective Heating. Procedia Eng. 2014, 90, 544–549. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Joardder, M.U.; Karim, A. Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosyst. Eng. 2018, 169, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Funebo, T.; Ahrné, L.; Kidman, S.; Langton, M.; Skjöldebrand, C. Microwave heat treatment of apple before air dehydration-effect on physical properties and microstructure. J. Food Eng. 2000, 46, 173–182. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Kumar, C.; Karim, M.A. Food structure: Its formation and relationships with other properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1190–1205. [Google Scholar] [CrossRef] [Green Version]
- Izli, G.; Taskin, O.; Izli, N. Convective, Microwave and Combined Microwave-Convective Drying of Pepino. Erwerbs-Obstbau 2021, 63, 175–184. [Google Scholar] [CrossRef]
Drying Condition | Drying Time (min) | Effective Diffusivity (m2/s) | SEC (kJ/kg) |
---|---|---|---|
Convective Drying | 200 | 2.43 × 10−09 | 153,500.7 |
CMD | 10 | 4.70 × 10−07 | 1666.67 |
IMCD | 25 | 2.45 × 10−08 | 4444.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joardder, M.U.H.; Karim, A. Pore Evolution in Cell Walls of Food Tissue during Microwave-Assisted Drying: An In-Depth Investigation. Foods 2023, 12, 2497. https://doi.org/10.3390/foods12132497
Joardder MUH, Karim A. Pore Evolution in Cell Walls of Food Tissue during Microwave-Assisted Drying: An In-Depth Investigation. Foods. 2023; 12(13):2497. https://doi.org/10.3390/foods12132497
Chicago/Turabian StyleJoardder, Mohammad U. H., and Azharul Karim. 2023. "Pore Evolution in Cell Walls of Food Tissue during Microwave-Assisted Drying: An In-Depth Investigation" Foods 12, no. 13: 2497. https://doi.org/10.3390/foods12132497
APA StyleJoardder, M. U. H., & Karim, A. (2023). Pore Evolution in Cell Walls of Food Tissue during Microwave-Assisted Drying: An In-Depth Investigation. Foods, 12(13), 2497. https://doi.org/10.3390/foods12132497