First Investigation of the Physiological Distribution of Legacy and Emerging Perfluoroalkyl Substances in Raw Bovine Milk According to the Component Fraction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection and Preparation for the Extraction
2.3. Extraction Procedure
2.4. UPLC-HRMS Analysis
2.5. Method Validation
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Detection Frequency and Quantification of PFASs in Bovine Milk
4.2. Physiological Pattern Distribution of PFASs According to the Different Bovine Milk Fraction
4.3. Detection Frequency of PFASs in Relation to the Number of Lactations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomassini, A.; Curone, G.; Solè, M.; Capuani, G.; Sciubba, F.; Conta, G.; Miccheli, A.; Vigo, D. NMR-based metabolomics to evaluate the milk composition from Friesian and autochthonous cows of Northern Italy at different lactation times. Nat. Prod. Res. 2019, 33, 1085–1091. [Google Scholar] [CrossRef]
- Hammon, H.M.; Liermann, W.; Frieten, D.; Koch, C. Review: Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal 2020, 14, s133–s143. [Google Scholar] [CrossRef]
- Christian, P.; Smith, E.R.; Lee, S.E.; Vargas, A.J.; Bremer, A.A.; Raiten, D.J. The need to study human milk as a biological system. Am. J. Clin. Nutr. 2021, 113, 1063–1072. [Google Scholar] [CrossRef]
- Bao, Z.; Lin, J.; Ye, L.; Zhang, Q.; Chen, J.; Yang, Q.; Yu, Q. Modulation of Mammary Gland Development and Milk Production by Growth Hormone Expression in GH Transgenic Goats. Front. Physiol. 2016, 7, 278. [Google Scholar] [CrossRef]
- Kobayashi, K.; Oyama, S.; Uejyo, T.; Kuki, C.; Rahman, M.; Kumura, H. Underlying mechanisms involved in the decrease of milk secretion during Escherichia coli endotoxin induced mastitis in lactating mice. Vet. Res. 2013, 44, 119. [Google Scholar] [CrossRef]
- Martinez, M.; Modric, S. Patient variation in veterinary medicine: Part I. Influence of altered physiological states. J. Vet. Pharmacol. Ther. 2010, 33, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Rychen, G.; Jurjanz, S.; Toussaint, H.; Feidt, C. Dairy ruminant exposure to persistent organic pollutants and excretion to milk. Animal 2008, 2, 312–323. [Google Scholar] [CrossRef] [PubMed]
- van Asselt, E.; Kowalczyk, J.; van Eijkeren, J.; Zeilmaker, M.; Ehlers, S.; Fürst, P.; Lahrssen-Wiederholt, M.; van der Fels-Klerx, H. Transfer of perfluorooctane sulfonic acid (PFOS) from contaminated feed to dairy milk. Food Chem. 2013, 141, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, F.M.; Caldas, E.D. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants. Environ. Res. 2016, 151, 671–688. [Google Scholar] [CrossRef]
- Ettinger, A.S.; Roy, A.; Amarasiriwardena, C.J.; Smith, D.; Lupoli, N.; Mercado-García, A.; Lamadrid-Figueroa, H.; Tellez-Rojo, M.M.; Hu, H.; Hernández-Avila, M. Maternal Blood, Plasma, and Breast Milk Lead: Lactational Transfer and Contribution to Infant Exposure. Environ. Health Perspect. 2014, 122, 87–92. [Google Scholar] [CrossRef]
- Astolfi, M.L.; Protano, C.; Schiavi, E.; Marconi, E.; Capobianco, D.; Massimi, L.; Ristorini, M.; Baldassarre, M.E.; Laforgia, N.; Vitali, M.; et al. A prophylactic multi-strain probiotic treatment to reduce the absorption of toxic elements: In-vitro study and biomonitoring of breast milk and infant stools. Environ. Int. 2019, 130, 104818. [Google Scholar] [CrossRef] [PubMed]
- Isaac, C.P.J.; Sivakumar, A.; Kumar, C.R.P. Lead Levels in Breast Milk, Blood Plasma and Intelligence Quotient: A Health Hazard for Women and Infants. Bull. Environ. Contam. Toxicol. 2012, 88, 145–149. [Google Scholar] [CrossRef]
- Smith, N.W.; Fletcher, A.J.; Hill, J.P.; McNabb, W.C. Modeling the Contribution of Milk to Global Nutrition. Front. Nutr. 2022, 8, 1287. [Google Scholar] [CrossRef]
- Hill, J.P.; Rowan, A.M.; Boland, M.J.; Landells, V.A. Diabetes Mellitus and Consumption of Milk and Dairy Products. Ref. Modul. Food Sci. 2018, 1, 100596. [Google Scholar] [CrossRef]
- Calahorrano-Moreno, M.B.; Ordoñez-Bailon, J.J.; Baquerizo-Crespo, R.J.; Dueñas-Rivadeneira, A.A.; Montenegro, M.C.B.S.M.; Rodríguez-Díaz, J.M. Contaminants in the cow’s milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Research 2022, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Pšenková, M.; Toman, R.; Tančin, V. Concentrations of toxic metals and essential elements in raw cow milk from areas with potentially undisturbed and highly disturbed environment in Slovakia. Environ. Sci. Pollut. Res. 2020, 27, 26763–26772. [Google Scholar] [CrossRef]
- Schopf, M.F.; Pierezan, M.D.; Rocha, R.; Pimentel, T.C.; Esmerino, E.A.; Marsico, E.T.; De Dea Lindner, J.; da Cruz, A.G.; Verruck, S. Pesticide residues in milk and dairy products: An overview of processing degradation and trends in mitigating approaches. Crit. Rev. Food Sci. Nutr. 2022, 1, 1–15. [Google Scholar] [CrossRef]
- Nobile, M.; Danesi, L.; Pavlovic, R.; Mosconi, G.; Di Cesare, F.; Arioli, F.; Villa, R.; Chiesa, L.M.; Panseri, S. Presence of Chlorate and Perchlorate Residues in Raw Bovine Milk from Italian Farms. Foods 2022, 11, 2741. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Di Cesare, F.; Nobile, M.; Villa, R.; Decastelli, L.; Martucci, F.; Fontana, M.; Pavlovic, R.; Arioli, F.; Panseri, S. Antibiotics and Non-Targeted Metabolite Residues Detection as a Comprehensive Approach toward Food Safety in Raw Milk. Foods 2021, 10, 544. [Google Scholar] [CrossRef]
- Sora, V.M.; Panseri, S.; Nobile, M.; Di Cesare, F.; Meroni, G.; Chiesa, L.M.; Zecconi, A. Milk Quality and Safety in a One Health Perspective: Results of a Prevalence Study on Dairy Herds in Lombardy (Italy). Life 2022, 12, 786. [Google Scholar] [CrossRef]
- Berendsen, B.J.A.; Lakraoui, F.; Leenders, L.; van Leeuwen, S.P.J. The analysis of perfluoroalkyl substances at ppt level in milk and egg using UHPLC-MS/MS. Food Addit. Contam. Part A 2020, 37, 1707–1718. [Google Scholar] [CrossRef] [PubMed]
- Sznajder-Katarzyńska, K.; Surma, M.; Wiczkowski, W.; Cieślik, E. The perfluoroalkyl substance (PFAS) contamination level in milk and milk products in Poland. Int. Dairy J. 2019, 96, 73–84. [Google Scholar] [CrossRef]
- Still, M.; Schlummer, M.; Gruber, L.; Fiedler, D.; Wolz, G. Impact of Industrial Production and Packaging Processes on the Concentration of Per- and Polyfluorinated Compounds in Milk and Dairy Products. J. Agric. Food Chem. 2013, 61, 9052–9062. [Google Scholar] [CrossRef]
- Xing, Z.; Lu, J.; Liu, Z.; Li, S.; Wang, G.; Wang, X. Occurrence of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Milk and Yogurt and Their Risk Assessment. Int. J. Environ. Res. Public Health 2016, 13, 1037. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Y.; Pan, Y.; Cai, Y. Perfluorinated compounds in milk, milk powder and yoghurt purchased from markets in China. Chin. Sci. Bull. 2010, 55, 1020–1025. [Google Scholar] [CrossRef]
- Barbarossa, A.; Gazzotti, T.; Zironi, E.; Serraino, A.; Pagliuca, G. Short communication: Monitoring the presence of perfluoroalkyl substances in Italian cow milk. J. Dairy Sci. 2014, 97, 3339–3343. [Google Scholar] [CrossRef]
- Zheng, G.; Schreder, E.; Dempsey, J.C.; Uding, N.; Chu, V.; Andres, G.; Sathyanarayana, S.; Salamova, A. Per- and Polyfluoroalkyl Substances (PFAS) in Breast Milk: Concerning Trends for Current-Use PFAS. Environ. Sci. Technol. 2021, 55, 7510–7520. [Google Scholar] [CrossRef]
- Surma, M.; Piskuła, M.; Wiczkowski, W.; Zieliński, H. The perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonates (PFSAs) contamination level in spices. Eur. Food Res. Technol. 2017, 243, 297–307. [Google Scholar] [CrossRef]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; De Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; Van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2018, 29, 131–147. [Google Scholar] [CrossRef]
- Lasee, S.; McDermett, K.; Kumar, N.; Guelfo, J.; Payton, P.; Yang, Z.; Anderson, T.A. Targeted analysis and Total Oxidizable Precursor assay of several insecticides for PFAS. J. Hazard. Mater. Lett. 2022, 3, 100067. [Google Scholar] [CrossRef]
- Schwartz-Narbonne, H.; Xia, C.; Shalin, A.; Whitehead, H.D.; Yang, D.; Peaslee, G.F.; Wang, Z.; Wu, Y.; Peng, H.; Blum, A.; et al. Per- and Polyfluoroalkyl Substances in Canadian Fast Food Packaging. Environ. Sci. Technol. Lett. 2022, 10, 343–349. [Google Scholar] [CrossRef]
- Xia, C.; Diamond, M.L.; Peaslee, G.F.; Peng, H.; Blum, A.; Wang, Z.; Shalin, A.; Whitehead, H.D.; Green, M.; Schwartz-Narbonne, H.; et al. Per- and Polyfluoroalkyl Substances in North American School Uniforms. Environ. Sci. Technol. 2022, 56, 13845–13857. [Google Scholar] [CrossRef]
- Cahuas, L.; Muensterman, D.J.; Kim-Fu, M.L.; Reardon, P.N.; Titaley, I.A.; Field, J.A. Paints: A Source of Volatile PFAS in Air-Potential Implications for Inhalation Exposure. Environ. Sci. Technol. 2022, 56, 17070–17079. [Google Scholar] [CrossRef]
- Hu, X.C.; Andrews, D.Q.; Lindstrom, A.B.; Bruton, T.A.; Schaider, L.A.; Grandjean, P.; Lohmann, R.; Carignan, C.C.; Blum, A.; Balan, S.A.; et al. Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ. Sci. Technol. Lett. 2016, 3, 344–350. [Google Scholar] [CrossRef]
- Sznajder-Katarzyńska, K.; Surma, M.; Cieślik, I. A Review of Perfluoroalkyl Acids (PFAAs) in terms of Sources, Applications, Human Exposure, Dietary Intake, Toxicity, Legal Regulation, and Methods of Determination. J. Chem. 2019, 2019, 2717528. [Google Scholar] [CrossRef]
- Parsons, J.R.; Sáez, M.; Dolfing, J.; de Voogt, P. Biodegradation of Perfluorinated Compounds. Rev. Environ. Contam. Toxicol. 2008, 196, 53–71. [Google Scholar] [CrossRef]
- Wang, Z.; Dewitt, J.C.; Higgins, C.P.; Cousins, I.T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 2017, 51, 2508–2518. [Google Scholar] [CrossRef] [PubMed]
- Persistent Organic Pollutants Review Committee. Seventeenth Meeting of the Persistent Organic Pollutants Review Committee; 2022; 24–28. Available online: https://enb.iisd.org/stockholm-convention-pops-review-committee-17 (accessed on 4 April 2023).
- Lee, J.E.; Choi, K. Perfluoroalkyl substances exposure and thyroid hormones in humans: Epidemiological observations and implications. Ann. Pediatr. Endocrinol. Metab. 2017, 22, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Barregard, L.; Xu, Y.; Scott, K.; Pineda, D.; Lindh, C.H.; Jakobsson, K.; Fletcher, T. Associations between perfluoroalkyl substances and serum lipids in a Swedish adult population with contaminated drinking water. Environ. Health 2020, 19, 33. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, B.; Hu, Y.; Rood, J.; Liang, L.; Qi, L.; Bray, G.A.; DeJonge, L.; Coull, B.; Grandjean, P.; et al. Associations of Perfluoroalkyl substances with blood lipids and Apolipoproteins in lipoprotein subspecies: The POUNDS-lost study. Environ. Health 2020, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- Fei, C.; McLaughlin, J.K.; Lipworth, L.; Olsen, J. Maternal levels of perfluorinated chemicals and subfecundity. Hum. Reprod. 2009, 24, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Šabović, I.; Cosci, I.; De Toni, L.; Ferramosca, A.; Stornaiuolo, M.; Di Nisio, A.; Dall’acqua, S.; Garolla, A.; Foresta, C. Perfluoro-octanoic acid impairs sperm motility through the alteration of plasma membrane. J. Endocrinol. Investig. 2020, 43, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- Hui, Z.; Li, R.; Chen, L. The impact of exposure to environmental contaminant on hepatocellular lipid metabolism. Gene 2017, 622, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.B.; Ducatman, A. Dynamics of associations between perfluoroalkyl substances and uric acid across the various stages of glomerular function. Environ. Sci. Pollut. Res. Int. 2019, 26, 12425–12434. [Google Scholar] [CrossRef]
- Blake, B.E.; Pinney, S.M.; Hines, E.P.; Fenton, S.E.; Ferguson, K.K. Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort. Environ. Pollut. 2018, 242, 894–904. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Risk to Human Health Related to the Presence of Perfluoroalkyl Substances in Food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Pavlovic, R.; Arioli, F.; Nobile, M.; Di Cesare, F.; Mosconi, G.; Falletta, E.; Malandra, R.; Panseri, S. Presence of perfluoroalkyl substances in Mediterranean sea and North Italian lake fish addressed to Italian consumer. Int. J. Food Sci. Technol. 2022, 57, 1303–1316. [Google Scholar] [CrossRef]
- Jogsten, I.E.; Perelló, G.; Llebaria, X.; Bigas, E.; Martí-Cid, R.; Kärrman, A.; Domingo, J.L. Exposure to perfluorinated compounds in Catalonia, Spain, through consumption of various raw and cooked foodstuffs, including packaged food. Food Chem. Toxicol. 2009, 47, 1577–1583. [Google Scholar] [CrossRef]
- Begley, T.H.; White, K.; Honigfort, P.; Twaroski, M.L.; Neches, R.; Walker, R.A. Perfluorochemicals: Potential sources of and migration from food packaging. Food Addit. Contam. 2005, 22, 1023–1031. [Google Scholar] [CrossRef]
- Stockholm Convention on Persistent Organic Pollutants. In Proceedings of the Report of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Fourth Meeting, Geneva, Switzerland, 4–8 May 2009; pp. 4–8.
- United Nations Environment Programme (UNEP). Stockholm Convention on Persistent Organic Pollutants Guidance on Alternatives to Perfluorooctane Sulfonic Acid and Its Derivatives, UNEP/POPS/POPRC.6/13/Add.3/Rev.1. 2011.
- Krippner, J.; Falk, S.; Brunn, H.; Georgii, S.; Schubert, S.; Stahl, T. Accumulation Potentials of Perfluoroalkyl Carboxylic Acids (PFCAs) and Perfluoroalkyl Sulfonic Acids (PFSAs) in Maize (Zea mays). J. Agric. Food Chem. 2015, 63, 3646–3653. [Google Scholar] [CrossRef]
- Wang, T.; Vestergren, R.; Herzke, D.; Yu, J.; Cousins, I.T. Levels, Isomer Profiles, and Estimated Riverine Mass Discharges of Perfluoroalkyl Acids and Fluorinated Alternatives at the Mouths of Chinese Rivers. Environ. Sci. Technol. 2016, 50, 11584–11592. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.D.; Hu, W.; De Coen, W.; Newsted, J.L.; Giesy, J.P. Binding of Perfluorinated fatty acids to serum proteins. Environ. Toxicol. Chem. 2003, 22, 2639–2649. [Google Scholar] [CrossRef] [PubMed]
- Rickard, B.P.; Rizvi, I.; Fenton, S.E. Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology 2022, 465, 153031. [Google Scholar] [CrossRef] [PubMed]
- Shabalina, I.G.; Kalinovich, A.V.; Cannon, B.; Nedergaard, J. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria. Arch. Toxicol. 2016, 90, 1117–1128. [Google Scholar] [CrossRef]
- Lamichhane, S.; Siljander, H.; Duberg, D.; Honkanen, J.; Virtanen, S.M.; Orešič, M.; Knip, M.; Hyötyläinen, T. Exposure to per- and polyfluoroalkyl substances associates with an altered lipid composition of breast milk. Environ. Int. 2021, 157, 106855. [Google Scholar] [CrossRef]
- Brantsæter, A.L.; Whitworth, K.W.; Ydersbond, T.A.; Haug, L.S.; Haugen, M.; Knutsen, H.K.; Thomsen, C.; Meltzer, H.M.; Becher, G.; Sabaredzovic, A.; et al. Determinants of plasma concentrations of perfluoroalkyl substances in pregnant Norwegian women. Environ. Int. 2013, 54, 74–84. [Google Scholar] [CrossRef]
- Rawn, D.F.K.; Dufresne, G.; Clément, G.; Fraser, W.D.; Arbuckle, T.E. Perfluorinated alkyl substances in Canadian human milk as part of the Maternal-Infant Research on Environmental Chemicals (MIREC) study. Sci. Total. Environ. 2022, 831, 154888. [Google Scholar] [CrossRef]
- Thomsen, C.; Haug, L.S.; Stigum, H.; Frøshaug, M.; Broadwell, S.L.; Becher, G. Changes in Concentrations of Perfluorinated Compounds, Polybrominated Diphenyl Ethers, and Polychlorinated Biphenyls in Norwegian Breast-Milk during Twelve Months of Lactation. Environ. Sci. Technol. 2010, 44, 9550–9556. [Google Scholar] [CrossRef]
- Proudfoot, K.L.; Veira, D.M.; Weary, D.M.; von Keyserlingk, M.A.G. Competition at the feed bunk changes the feeding, standing, and social behavior of transition dairy cows. J. Dairy Sci. 2009, 92, 3116–3123. [Google Scholar] [CrossRef] [PubMed]
Parity (n) | Days in Milk (Days) | Milk Yield (Kg) | Fat % | Proteins % | Somatic Cell Count (cells/mL) | |
---|---|---|---|---|---|---|
Primiparous | 325.1 ± 105 | 24.53 ± 4.09 | 3.4 3± 0.4 | 3.41 ± 0.23 | 119,800 ± 78,000 | |
Multiparous | 2.69 | 184.6 ± 86 | 28.48 ± 6.29 | 3.64 ± 0.58 | 3.17 ± 0.39 | 183,769 ± 59,000 |
Percentile | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fractions | Mean ± SD | Median | Min–Max | 25th | 75th | LOD | LOQ | Samples > LOD | ||
PFBA | Skimmed | 317.81 ± 785.40 | 59.00 | 0–3713.20 | 0.90 | 262.00 | 3.60 | 11.00 | 60.56% | |
Cream | 95.73 ± 137.80 | 21.10 | 0–494.50 | 0.00 | 141.95 | 56.52% | ||||
Whole Milk | 255.61 ± 551.30 | 77.40 | 0–2639.30 | 32.30 | 224.70 | 78.26% | ||||
PFPeA | Skimmed | 3.62 ± 5.60 | 0.00 | 0–12.90 | 0.00 | 10.30 | 2.80 | 8.60 | 30.43% | |
Cream | 4.34 ± 6.20 | 0.00 | 0–16.90 | 0.00 | 10.85 | 34.78% | ||||
Whole Milk | 2.28 ± 4.50 | 0.00 | 0–12.30 | 0.00 | 0.00 | 21.74% | ||||
PFHxA | Skimmed | 6.86 ± 11.80 | 0.00 | 0–29.00 | 0.00 | 12.10 | 2.80 | 8.40 | 26.09% | |
Cream | 12.42 ± 21.10 | 0.00 | 0–64.30 | 0.00 | 25.75 | 30.43% | ||||
Whole Milk | 3.94 ± 8.60 | 0.00 | 0–29.20 | 0.00 | 2.10 | 26.09% | ||||
PFHpA | Skimmed | 4.01 ± 9.40 | 0.00 | 0–43.70 | 0.00 | 5.80 | 2.70 | 8.10 | 17.39% | |
Cream | 4.31 ± 7.40 | 0.00 | 0–23.90 | 0.00 | 6.65 | 43.48% | ||||
Whole Milk | 1.64 ± 3.30 | 0.00 | 0–10.60 | 0.00 | 0.65 | 26.09% | ||||
PFOA | Skimmed | 61.43 ± 207.40 | 0.00 | 0–1002.70 | 0.00 | 66.00 | 2.30 | 6.90 | 30.43% | |
Cream | 31.04 ± 52.40 | 0.00 | 0–174.40 | 0.00 | 58.00 | 34.78% | ||||
Whole Milk | 11.54 ± 27.00 | 0.00 | 0–86.30 | 0.00 | 3.85 | 26.09% | ||||
PFNA | Skimmed | 0.43 ± 0.66 | 0.00 | 0–1.40 | 0.00 | 1.40 | 2.90 | 8.80 | 0% | |
Cream | 1.00 ± 1.40 | 0.00 | 0–4.40 | 0.00 | 1.40 | 13.04% | ||||
Whole Milk | 0.55 ± 0.70 | 0.00 | 0–1.40 | 0.00 | 1.40 | 0% | ||||
PFDA | Skimmed | N.D. | N.D. | - | - | - | 2.90 | 8.80 | 0% | |
Cream | N.D. | N.D. | - | - | - | 0% | ||||
Whole Milk | N.D. | N.D. | - | - | - | 0% | ||||
FOUEA | Skimmed | 2.87 ± 5.10 | 0.00 | 0–13.10 | 0.00 | 2.50 | 3.30 | 10.00 | 26.09% | |
Cream | 3.10 ± 5.60 | 0.00 | 0–18.40 | 0.00 | 5.00 | 30.43% | ||||
Whole Milk | 1.32 ± 3.10 | 0.00 | 0–10.20 | 0.00 | 0.00 | 17.39% | ||||
NADONA | Skimmed | N.D. | - | - | - | - | 1.80 | 5.50 | 0% | |
Cream | N.D. | - | - | - | - | 0% | ||||
Whole Milk | N.D. | - | - | - | - | 0% | ||||
PFBS | Skimmed | N.D. | - | - | - | - | 2.70 | 8.10 | 0% | |
Cream | 0.23 ± 0.50 | 0.00 | 0–1.30 | 0.00 | 0.00 | 0% | ||||
Whole Milk | N.D. | - | - | - | - | 0% | ||||
PFHxS | Skimmed | N.D. | - | - | - | - | 2.80 | 8.40 | 0% | |
Cream | 1.74 ± 4.90 | 0.00 | 0–20.00 | 0.00 | 0.00 | 13.04% | ||||
Whole Milk | N.D. | - | - | - | - | 0% | ||||
PFOS | Skimmed | 8.53 ± 22.50 | 0.00 | 0–97.10 | 0.00 | 5.20 | 2.10 | 6.30 | 39.13% | |
Cream | 148.30 ± 152.30 | 89.60 | 3.10–543.20 | 68.30 | 117.40 | 100% | ||||
Whole Milk | 21.64 ± 56.50 | 1.00 | 0–250.60 | 0.00 | 9.70 | 43.48% | ||||
NmetFOSAA | Skimmed | N.D. | - | - | - | - | 2.20 | 6.80 | 0% | |
Cream | N.D. | - | - | - | - | 0% | ||||
Whole Milk | N.D. | - | - | - | - | 0% | ||||
6-2FTS | Skimmed | 14.33 ± 36.00 | 0.00 | 0–148.00 | 0.00 | 0.00 | 1.90 | 5.70 | 17.39% | |
Cream | 20.58 ± 56.20 | 0.00 | 0–236.10 | 0.00 | 0.00 | 17.39% | ||||
Whole Milk | 2.83 ± 13.60 | 0.00 | 0–65.00 | 0.00 | 0.00 | 4.35% |
p | p | ||||
---|---|---|---|---|---|
PFBA | Skim vs. Cream | 0.42 | PFBS | Skim vs. Cream | 0.096 |
Skim vs. Whole Milk | 0.959 | Skim vs. Whole Milk | NaN | ||
Cream vs. Whole Milk | 0.297 | Cream vs. Whole Milk | 0.096 | ||
PFPeA | Skim vs. Cream | 0.955 | PFHxS | Skim vs. Cream | 0.051 |
Skim vs. Whole Milk | 0.589 | Skim vs. Whole Milk | NaN | ||
Cream vs. Whole Milk | 0.388 | Cream vs. Whole Milk | 0.051 | ||
PFHxA | Skim vs. Cream | 0.647 | PFOS | Skim vs. Cream | <0 .001 |
Skim vs. Whole Milk | 0.961 | Skim vs. Whole Milk | 0.465 | ||
Cream vs. Whole Milk | 0.579 | Cream vs. Whole Milk | <0 .001 | ||
PFHpA | Skim vs. Cream | 0.696 | NmetFOSAA | Skim vs. Cream | NaN |
Skim vs. Whole Milk | 0.879 | Skim vs. Whole Milk | NaN | ||
Cream vs. Whole Milk | 0.378 | Cream vs. Whole Milk | NaN | ||
PFOA | Skim vs. Cream | 0.857 | 6-2FTS | Skim vs. Cream | 0.999 |
Skim vs. Whole Milk | 0.904 | Skim vs. Whole Milk | 0.319 | ||
Cream vs. Whole Milk | 0.501 | Cream vs. Whole Milk | 0.319 | ||
PFNA | Skim vs. Cream | 0.475 | NADONA | Skim vs. Cream | NaN |
Skim vs. Whole Milk | 0.814 | Skim vs. Whole Milk | NaN | ||
Cream vs. Whole Milk | 0.803 | Cream vs. Whole Milk | NaN | ||
PFDA | Skim vs. Cream | NaN | |||
Skim vs. Whole Milk | NaN | ||||
Cream vs. Whole Milk | NaN | ||||
FOUEA | Skim vs. Cream | 0.98 | |||
Skim vs. Whole Milk | 0.593 | ||||
Cream vs. Whole Milk | 0.477 |
Skim | Cream | Whole | Skim | Cream | Whole | ||||
---|---|---|---|---|---|---|---|---|---|
PFBA | Primiparous | 40% | 20% | 60% | PFBS | Primiparous | N.D | 0% | N.D |
Multiparous | 100% | 76.92% | 92.30% | Multiparous | N.D | 0% | N.D | ||
PFPeA | Primiparous | 10% | 10% | 10% | PFHxS | Primiparous | N.D | 10% | N.D |
Multiparous | 46.15% | 53.84% | 30.77% | Multiparous | N.D | 15.38% | N.D | ||
PFHxA | Primiparous | 10% | 10% | 10% | PFOS | Primiparous | 10% | 100% | 10% |
Multiparous | 38.46% | 46.15% | 38.46% | Multiparous | 53.85% | 100% | 69.23% | ||
PFHpA | Primiparous | 20% | 10% | 10% | NmetFOSAA | Primiparous | N.D | N.D | N.D |
Multiparous | 38.46% | 46.15% | 30.77% | Multiparous | N.D | N.D | N.D | ||
PFOA | Primiparous | 20% | 10% | 10% | 6-2FTS | Primiparous | 10% | 20% | N.D |
Multiparous | 38.46% | 53.84% | 38.46% | Multiparous | 30% | 15.38% | 7.69% | ||
PFNA | Primiparous | 0% | 0% | 0% | NADONA | Primiparous | N.D | N.D | N.D |
Multiparous | 0% | 23.08% | 0% | Multiparous | N.D | N.D | N.D | ||
PFDA | Primiparous | N.D | N.D | N.D | |||||
Multiparous | N.D | N.D | N.D | ||||||
FOUEA | Primiparous | 10% | 10% | 10% | |||||
Multiparous | 38.46% | 46.15% | 23.08% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Draghi, S.; Pavlovic, R.; Pellegrini, A.; Fidani, M.; Riva, F.; Brecchia, G.; Agradi, S.; Arioli, F.; Vigo, D.; Di Cesare, F.; et al. First Investigation of the Physiological Distribution of Legacy and Emerging Perfluoroalkyl Substances in Raw Bovine Milk According to the Component Fraction. Foods 2023, 12, 2449. https://doi.org/10.3390/foods12132449
Draghi S, Pavlovic R, Pellegrini A, Fidani M, Riva F, Brecchia G, Agradi S, Arioli F, Vigo D, Di Cesare F, et al. First Investigation of the Physiological Distribution of Legacy and Emerging Perfluoroalkyl Substances in Raw Bovine Milk According to the Component Fraction. Foods. 2023; 12(13):2449. https://doi.org/10.3390/foods12132449
Chicago/Turabian StyleDraghi, Susanna, Radmila Pavlovic, Alberto Pellegrini, Marco Fidani, Federica Riva, Gabriele Brecchia, Stella Agradi, Francesco Arioli, Daniele Vigo, Federica Di Cesare, and et al. 2023. "First Investigation of the Physiological Distribution of Legacy and Emerging Perfluoroalkyl Substances in Raw Bovine Milk According to the Component Fraction" Foods 12, no. 13: 2449. https://doi.org/10.3390/foods12132449
APA StyleDraghi, S., Pavlovic, R., Pellegrini, A., Fidani, M., Riva, F., Brecchia, G., Agradi, S., Arioli, F., Vigo, D., Di Cesare, F., & Curone, G. (2023). First Investigation of the Physiological Distribution of Legacy and Emerging Perfluoroalkyl Substances in Raw Bovine Milk According to the Component Fraction. Foods, 12(13), 2449. https://doi.org/10.3390/foods12132449