Thermodynamics and Physicochemical Properties of Immobilized Maleic Anhydride-Modified Xylanase and Its Application in the Extraction of Oligosaccharides from Wheat Bran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MA-XY Immobilization
2.3. Xylanase Activity Assay
2.4. Characterization of Beads
2.4.1. Fourier Transform Infrared Spectroscopy (FT-IR)
2.4.2. Scanning Electron Microscope (SEM)
2.5. Enzymatic Properties of IMA-XY and FMA-XY
2.5.1. Organic Solvent Resistance
2.5.2. pH Stability
2.5.3. Thermal Stability
2.5.4. Kinetic Constants
2.5.5. Thermodynamic Constants
2.5.6. Reusability Assay
2.5.7. Storage Stability
2.6. Determination of Oligosaccharides Extracted from Wheat Bran
2.6.1. Hydrolysis Procedures for Oligosaccharides
2.6.2. High-Performance Liquid Chromatography (HPLC) Analysis
2.6.3. Matrix-Assisted Laser Desorption Ionization/Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) Analysis
2.6.4. Nuclear Magnetic Resonance Spectroscopy (NMR) Measurement
2.6.5. Antioxidant Activity In Vitro
- (1)
- DPPH· Radical Scavenging Assay
- (2)
- ABTS radical scavenging assay
- (3)
- Ferric reducing antioxidant power assay
3. Results
3.1. Effect of NaAlg and Calcium Chloride on the Immobilization of MA-XY
3.2. Characterization of Beads
3.2.1. FT-IR Analysis
3.2.2. SEM Analysis
3.3. Enzymatic Properties of IMA-XY and FMA-XY
3.3.1. Organic Tolerance Analysis
3.3.2. pH Tolerance Analysis
3.3.3. Thermal Resistance Analysis
3.3.4. Kinetic Constants Analysis
3.3.5. Mechanical Analysis of Thermal Inactivity
3.3.6. Thermodynamic Parameter Analysis
3.3.7. Reusability Analysis
3.3.8. Storage Stability Analysis
3.3.9. XOS75 Yield Analysis
3.3.10. HPLC Analysis
3.3.11. MALDI-TOF-MS Analysis
3.3.12. NMR Analysis
3.3.13. XOS75 Antioxidant Activity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaushal, J.; Khatri, M.; Singh, G.; Arya, S.K. A multifaceted enzyme conspicuous in fruit juice clarification: An elaborate review on xylanase. Int. J. Biol. Macromol. 2021, 193, 1350–1361. [Google Scholar] [CrossRef]
- Basit, A.; Liu, J.; Rahim, K.; Wei, J.; Lou, H. Thermophilic xylanases: From bench to bottle. Crit. Rev. Biotechnol. 2018, 38, 989–1002. [Google Scholar] [CrossRef]
- Fan, R.; Dresler, J.; Tissen, D.; Wen, L.; Czermak, P. In situ purification and enrichment of fructo-oligosaccharides by fermentative treatment with Bacillus coagulans and selective catalysis using immobilized fructosyltransferase. Bioresour. Technol. 2021, 342, 125969. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Niu, L.; Yu, Z.; Wang, M.; Shang, Z.; Yang, Y. Sodium alginate-grafted β-cyclodextrins as a matrix for immobilized Arthrobacter simplex for cortisone acetate biotransfromation. Appl. Surf. Sci. 2018, 444, 42–47. [Google Scholar] [CrossRef]
- Chiang, C.Y.; Chu, C.C. Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohydr. Polym. Sci. Technol. Asp. Ind. Important Polysacch. 2015, 119, 18–25. [Google Scholar] [CrossRef]
- Fernandez-Lopez, L.; Pedrero, S.G.; Lopez-Carrobles, N.; Gorines, B.C.; Fernandez-Lafuente, R. Effect of protein load on stability of immobilized enzymes. Enzym. Microb. Technol. 2017, 98, 18–25. [Google Scholar] [CrossRef]
- Dalagnol, L.M.G.; Silveira, V.C.C.; da Silva, H.B.; Manfroi, V.; Rodrigues, R.C. Improvement of pectinase, xylanase and cellulase activities by ultrasound: Effects on enzymes and substrates, kinetics and thermodynamic parameters. Process Biochem. 2017, 61, 80–87. [Google Scholar] [CrossRef]
- Mathew, S.; Karlsson, E.N.; Adlercreutz, P. Extraction of soluble arabinoxylan from enzymatically pretreated wheat bran and production of short xylo-oligosaccharides and arabinoxylo-oligosaccharides from arabinoxylan by glycoside hydrolase family 10 and 11 endoxylanases. J. Biotechnol. 2017, 260, 53–61. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, X.; Liu, H.; Lv, C.; Lu, J. Structural characterization and antioxidant activity of oligosaccharides from Panax ginseng C. A. Meyer. Int. J. Biol. Macromol. 2020, 150, 737–745. [Google Scholar] [CrossRef]
- Rinaudo, M. Polyelectrolytes derived from natural polysaccharides. In Monomers, Polymers and Composites from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2008; pp. 495–516. [Google Scholar]
- Jeong, D.; Choi, K.Y. Biodegradation of Tetracycline Antibiotic by Laccase Biocatalyst Immobilized on Chitosan-Tripolyphosphate Beads. Appl. Biochem. Microbiol. 2020, 56, 306–312. [Google Scholar] [CrossRef]
- Aslam, S.; Asgher, M.; Nasir, A.; Bilal, M. Immobilization of Pleurotus nebrodensis WC 850 laccase on glutaraldehyde cross-linked chitosan beads for enhanced biocatalytic degradation of textile dyes. J. Water Process Eng. 2021, 40, 101971. [Google Scholar] [CrossRef]
- Jordan, J.; Theegala, C. Probing the limitations for recycling cellulase enzymes immobilized on iron oxide (Fe3O4) nanoparticles. Biomass Convers. Biorefin. 2014, 4, 25–33. [Google Scholar] [CrossRef]
- Daemi, H.; Barikani, M. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci. Iran. 2012, 19, 2023–2028. [Google Scholar] [CrossRef] [Green Version]
- Bagewadi, Z.K.; Mulla, S.I.; Shouche, Y.; Ninnekar, H.Z. Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads. Biotech 2016, 6, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zohar-Perez, C.; Chet, I.; Nussinovitch, A. Irregular textural features of dried alginate–filler beads. Food Hydrocoll. 2004, 18, 249–258. [Google Scholar] [CrossRef]
- Rehman, H.U.; Aman, A.; Silipo, A.; Qader, S.A.U.; Molinaro, A.; Ansari, A. Degradation of complex carbohydrate: Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chem. 2013, 139, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.-Y.; Kong, L.-M.; Wang, X.-L.; Zhu, Q.; Chen, K.; Zhou, T. Preparation, characterization and catalytic behavior of pectinase covalently immobilized onto sodium alginate/graphene oxide composite beads. Food Chem. 2018, 253, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, D.; Yin, M.; Lucente, J.; Wang, W.; Ding, T.; Ye, X.; Liu, D. Characteristics of pectinase treated with ultrasound both during and after the immobilization process. Ultrason. Sonochem. 2017, 36, 1–10. [Google Scholar] [CrossRef]
- Sangeetha, K.; Abraham, T.E. Preparation and characterization of cross-linked enzyme aggregates (CLEA) of Subtilisin for controlled release applications. Int. J. Biol. Macromol. 2008, 43, 314–319. [Google Scholar] [CrossRef]
- Abdullah, J.; Ahmad, M.; Heng, L.Y. An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. Sensors 2007, 7, 2238–2250. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.D.; Dias, J.L.; Silva, O.; Porto, T.S. Immobilization of pectinase from Aspergillus aculeatus in alginate beads and clarification of apple and umbu juices in a packed bed reactor. Food Bioprod. Process. 2018, 109, 9–18. [Google Scholar] [CrossRef]
- Ortega, N.; Perez-Mateos, M.; Pilar, M.C.; Busto, M. Neutrase immobilization on alginate-glutaraldehyde beads by covalent attachment. J. Agric. Food Chem. 2009, 57, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Bibi, Z.; Shahid, F.; Qader, S.; Aman, A. Agar–agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan. Int. J. Biol. Macromol. 2015, 75, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, L.; Han, J.; Wu, J.; Li, C.; Ni, L.; Wang, Y. Improving laccase activity and stability by HKUST-1 with cofactor via one-pot encapsulation and its application for degradation of bisphenol A. J. Hazard. Mater. 2020, 383, 121130. [Google Scholar] [CrossRef]
- Rahman, M.A.; Culsum, U.; Kumar, A.; Gao, H.; Hu, N. Immobilization of a novel cold active esterase onto Fe3O4~cellulose nano-composite enhances catalytic properties. Int. J. Biol. Macromol. 2016, 87, 488–497. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Lau, Y.S.; Yang, K.L. Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose. Colloids Surf. B Biointerfaces 2016, 145, 862–869. [Google Scholar] [CrossRef]
- Lee, K.Y.; Bouhadir, K.H.; Mooney, D.J. Degradation Behavior of Covalently Cross-Linked Poly(aldehyde guluronate) Hydrogels. Macromolecules 2000, 33, 97–101. [Google Scholar] [CrossRef]
- Kunjukunju, S.; Roy, A.; Shekhar, S.; Kumta, P.N. Cross-linked enzyme aggregates of alginate lyase: A systematic engineered approach to controlled degradation of alginate hydrogel. Int. J. Biol. Macromol. 2018, 115, 176–184. [Google Scholar] [CrossRef]
- Ferrarotti, S.A.; Bolivar, J.M.; Mateo, C.; Wilson, L.; Guisan, J.M.; Fernandez-Lafuente, R. Immobilization and stabilization of a cyclodextrin glycosyltransferase by covalent attachment on highly activated glyoxyl-agarose supports. Biotechnol. Prog. 2010, 22, 1140–1145. [Google Scholar] [CrossRef]
- Singh, K.; Kayastha, A.M. Optimal immobilization of α-amylase from wheat (Triticum aestivum) onto DEAE-cellulose using response surface methodology and its characterization. J. Mol. Catal. B Enzym. 2014, 104, 75–81. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Mostafa, F.A.; Ouis, M.A. Enhancement stability and catalytic activity of immobilized alpha-amylase using bioactive phospho-silicate glass as a novel inorganic support. Int. J. Biol. Macromol. Struct. Funct. Interact. 2018, 112, 371–382. [Google Scholar] [CrossRef]
- Lm, A.; Jyp, A.; Crr, A.; Cab, A.; Dfaa, B. Improving the retention and reusability of Alpha-amylase by immobilization in nanoporous polyacrylamide-graphene oxide nanocomposites. Int. J. Biol. Macromol. 2019, 122, 1253–1261. [Google Scholar]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 2004, 37, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, S.S.; Kalyani, D. Characterization of a novel xylanase from Armillaria gemina and its immobilization onto SiO2 nanoparticles. Appl. Microbiol. Biotechnol. 2013, 97, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Q.; Dai, X.J.; Guan, R.F.; Xu, X. Immobilization of Aspergillus niger xylanase A on Fe3O4-coated chitosan magnetic nanoparticles for xylooligosaccharide preparation. Catal. Commun. 2014, 55, 6–10. [Google Scholar] [CrossRef]
- Kumar, A.; Patel, S.K.S.; Mardan, B.; Pagolu, R.; Lestari, R.; Jeong, S.-H.; Kim, T.; Haw, J.R.; Kim, S.-Y.; Kim, I.-W.; et al. Immobilization of Xylanase Using a Protein-Inorganic Hybrid System. J. Microbiol. Biotechnol. 2018, 28, 638–644. [Google Scholar] [CrossRef]
- Soozanipour, A.; Taheri-Kafrani, A.; Isfahani, A.L. Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 2015, 270, 235–243. [Google Scholar] [CrossRef]
- Patel, S.K.; Otari, S.V.; Kang, Y.C.; Lee, J.K. Protein-inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in L-xylulose production. RSC Adv. 2017, 7, 3488–3494. [Google Scholar] [CrossRef] [Green Version]
- Maisuria, V.B.; Nerurkar, A.S. Biochemical properties and thermal behavior of pectate lyase produced by Pectobacterium carotovorum subsp. carotovorum BR1 with industrial potentials. Biochem. Eng. J. 2012, 63, 22–30. [Google Scholar] [CrossRef]
- Alagoz, D.; Varan, N.E.; Toprak, A.; Yildirim, D.; Tukel, S.S.; Fernandez-Lafuente, R. Immobilization of xylanase on differently functionalized silica gel supports for orange juice clarification. Process Biochem. 2022, 113, 270–280. [Google Scholar] [CrossRef]
- Muley, A.B.; Thorat, A.S.; Singhal, R.S.; Babu, K.H. A tri-enzyme co-immobilized magnetic complex: Process details, kinetics, thermodynamics and applications. Int. J. Biol. Macromol. 2018, 118, 1781–1795. [Google Scholar] [CrossRef] [PubMed]
- Muley, A.B.; Chaudhari, S.A.; Mulchandani, K.H.; Singhal, R.S. Extraction and characterization of chitosan from prawn shell waste and its conjugation with cutinase for enhanced thermo-stability. Int. J. Biol. Macromol. 2018, 111, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Muley, A.B.; Chaudhari, S.A.; Singhal, R.S. Non-covalent conjugation of cutinase from Fusarium sp. ICT SAC1 with pectin for enhanced stability: Process minutiae, kinetics, thermodynamics and structural study. Int. J. Biol. Macromol. 2017, 102, 729. [Google Scholar] [CrossRef]
- Tayefi-Nasrabadi, H.; Asadpour, R. Effect of Heat Treatment on Buffalo (Bubalus bubalis) Lactoperoxidase Activity in Raw Milk. J. Biol. Sci. 2008, 8, 1310–1315. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ramírez, J.; Martínez-Hernández, J.L.; López-Campos, R.G.; Segura-Ceniceros, E.P.; Saade, H.; Ramos-González, R.; Neira-Velázquez, M.G.; Medina-Morales, M.A.; Aguilar, C.N.; Ilyina, A. Laccase Validation as Pretreatment of Agave Waste Prior to Saccharification: Free and Immobilized in Superparamagnetic Nanoparticles Enzyme Preparations. Waste Biomass Valoriz. 2018, 9, 223–234. [Google Scholar] [CrossRef]
- Nagar, S.; Mittal, A.; Kumar, D.; Kumar, L.; Gupta, V.K. Immobilization of xylanase on glutaraldehyde activated aluminum oxide pellets for increasing digestibility of poultry feed. Process Biochem. 2012, 47, 1402–1410. [Google Scholar] [CrossRef]
- Singh, R.K.; Zhang, Y.W.; Nguyen, N.; Jeya, M.; Lee, J.K. Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Appl. Microbiol. Biotechnol. 2011, 89, 337. [Google Scholar] [CrossRef]
- Khanum, F.; Pal, A. Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: Characterization of immobilized enzyme. Process Biochem. 2011, 46, 1315–1322. [Google Scholar]
- Zou, X.; Wei, S.; Badieyan, S.; Schroeder, M.; Jasensky, J.; Brooks, C.L., 3rd; Marsh, E.N.G.; Chen, Z. Investigating the Effect of Two-Point Surface Attachment on Enzyme Stability and Activity. J. Am. Chem. Soc. 2018, 140, 16560–16569. [Google Scholar] [CrossRef]
- Osmar, S.; Rodrigo, L.; Jonatas, D.; Converti, A.; Porto, T.S. Thermodynamic investigation of an alkaline protease from Aspergillus tamarii URM4634: A comparative approach between crude extract and purified enzyme. Int. J. Biol. Macromol. 2017, 109, 1039–1044. [Google Scholar]
- Driss, D.; Zouari-Ellouzi, S.; Chaari, F.; Kallel, F.; Ghazala, I.; Bouaziz, F.; Ghorbel, R.; Chaabouni, S.E. Production and in vitro evaluation of xylooligosaccharides generated from corncobs using immobilized Penicillium occitanis xylanase. J. Mol. Catal. B Enzym. 2014, 102, 146–153. [Google Scholar] [CrossRef]
- Sandro, M.D.O.; Moreno-Perez, S.; Fanchini Terrasan, C.R.; Romero-Fernandez, M.; Vieira, M.F.; Guisan, J.M.; Rocha-Martin, J. Covalent immobilization-stabilization of β-1,4-endoxylanases from Trichoderma reesei: Production of xylooligosaccharides. Process Biochem. 2018, 64, 170–176. [Google Scholar]
- Mostafa, F.A.; El Aty, A.A.; Hassan, M.E.; Awad, G.E. Immobilization of xylanase on modified grafted alginate polyethyleneimine bead based on impact of sodium cation effect. Int. J. Biol. Macromol. 2019, 140, 1284–1295. [Google Scholar] [CrossRef]
- Andriani, D.; Sunwoo, C.; Ryu, H.W.; Prasetya, B.; Park, D.H. Immobilization of cellulase from newly isolated strain Bacillus subtilis TD6 using calcium alginate as a support material. Bioprocess Biosyst. Eng. 2012, 35, 29–33. [Google Scholar] [CrossRef]
- Gürdaş, S.; Güleç, H.; Mutlu, M. Immobilization of Aspergillus oryzae β-Galactosidase onto Duolite A568 Resin via Simple Adsorption Mechanism. Food Bioprocess Technol. 2012, 5, 904–911. [Google Scholar] [CrossRef]
- Romo-Sánchez, S.; Camacho, C.; Ramirez, H.L.; Arévalo-Villena, M. Immobilization of Commercial Cellulase and Xylanase by Different Methods Using Two Polymeric Supports. Adv. Biosci. Biotechnol. 2014, 5, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Landarani-Isfahani, A.; Taheri-Kafrani, A.; Amini, M.; Mirkhani, V.; Moghadam, M.; Soozanipour, A.; Razmjou, A. Xylanase Immobilized on Novel Multifunctional Hyperbranched Polyglycerol-Grafted Magnetic Nanoparticles: An Efficient and Robust Biocatalyst. Langmuir 2015, 31, 9219–9227. [Google Scholar] [CrossRef]
- Jeddou, K.B.; Chaari, F.; Maktouf, S.; Nouri-Ellouz, O.; Helbert, C.B.; Ghorbel, R.E. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem. 2016, 205, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-B.; Pei, J.-J.; Ma, H.-L.; Cai, P.-F.; Yan, J.-K. Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides. Carbohydr. Polym. 2014, 109, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.-H.; Wei, Q.-Y.; Du, X.-J.; Qu, Y.-S. Investigating desorption during ethanol elution to improve the quality and antioxidant activity of xylo-oligosaccharides from corn stalk. Bioresour. Technol. 2018, 249, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Fuso, A.; Dejonghe, W.; Cauwenberghs, L.; Rosso, G.; Rosso, F.; Manera, I.; Caligiani, A. DPPH radical scavenging activity of xylo-oligosaccharides mixtures of controlled composition: A step forward in understanding structure–activity relationship. J. Funct. Foods 2023, 101, 105417. [Google Scholar] [CrossRef]
Temperature/°C | Kd (min−1) | t1/2 (min) | D-Value (min) | |||
---|---|---|---|---|---|---|
IMA-XY | FMA-XY | IMA-XY | FMA-XY | IMA-XY | FMA-XY | |
40 | 0.0016 ± 0.00 a | 0.0029 ± 0.00 a | 431.13 ± 2.82 a | 238.94 ± 0.08 a | 1432.17 ± 9.37 a | 793.73 ± 0.26 a |
45 | 0.0027 ± 0.00 b | 0.0027 ± 0.00 b | 255.87 ± 0.57 b | 170.90 ± 1.56 b | 849.98 ± 1.90 b | 567.72 ± 5.17 b |
50 | 0.0046 ± 0.00 c | 0.0046 ± 0.00 c | 150.42 ± 0.31 c | 127.23 ± 1.84 c | 499.69 ± 1.03 c | 422.65 ± 6.13 c |
55 | 0.0096 ± 0.00 d | 0.0135 ± 0.00 d | 72.17 ± 0.05 d | 51.33 ± 0.01 d | 239.75 ± 0.19 d | 170.54 ± 0.04 d |
60 | 0.0117 ± 0.00 e | 0.00179 ± 0.00 e | 59.18 ± 0.09 e | 38.72 ± 0.01 e | 196.60 ± 0.30 e | 128.63 ± 0.04 e |
Temperature/°C | ΔH* (kJ mol−1) | ΔG* (kJ mol−1) | ΔS* (J/ mol−1 K−1) | |||
---|---|---|---|---|---|---|
IMA-XY | FMA-XY | IMA-XY | FMA-XY | IMA-XY | FMA-XY | |
40 | 88.35 ± 0.30 a | 81.24 ± 0.15 a | 92.24 ± 0.02 b | 90.70 ± 0.00 a | −12.42 ± 0.90 ab | −30.21 ± 0.48 c |
45 | 88.31 ± 0.30 a | 81.20 ± 0.15 a | 92.33 ± 0.01 c | 91.26 ± 0.02 c | −12.65 ± 0.93 ab | −31.63 ± 0.40 b |
50 | 88.27 ± 0.30 a | 81.16 ± 0.15 a | 92.35 ± 0.01 d | 91.91 ± 0.04 e | −12.66 ± 0.91 ab | −33.25 ± 0.46 a |
55 | 88.22 ± 0.30 a | 81.12 ± 0.15 a | 92.63 ± 0.00 a | 90.85 ± 0.00 b | −10.84 ± 0.91 b | −29.66 ± 0.46 c |
60 | 88.27 ± 0.30 a | 81.08 ± 0.15 a | 92.27 ± 0.29 e | 91.46 ± 0.00 d | −13.35 ± 0.91 a | −31.15 ± 0.45 b |
Monosaccharide Composition (%) | ||||||
---|---|---|---|---|---|---|
Sample | Ara | Xyl | Glc | GlcA | Gal | Man |
XOS75 | 46.2 | 43.1 | 5.6 | 1.7 | 2.6 | 0.8 |
Fraction | Ions (m/z) | Ion Structure |
---|---|---|
DP 5 | 701.15 | [5Pent + Na]+ |
DP 6 | 833.20 | [6Pent + Na]+ |
DP 7 | 965.25 | [7Pent + Na]+ |
DP 8 | 1097.29 | [8Pent + Na]+ |
DP 9 | 1229.33 | [9Pent + Na]+ |
DP 10 | 1361.37 | [10Pent + Na]+ |
DP 11 | 1493.38 | [11Pent + Na]+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, X.; Guo, S.; Xu, J.; Cui, Y.; Zheng, M.; Liu, J. Thermodynamics and Physicochemical Properties of Immobilized Maleic Anhydride-Modified Xylanase and Its Application in the Extraction of Oligosaccharides from Wheat Bran. Foods 2023, 12, 2424. https://doi.org/10.3390/foods12122424
Zhao Y, Li X, Guo S, Xu J, Cui Y, Zheng M, Liu J. Thermodynamics and Physicochemical Properties of Immobilized Maleic Anhydride-Modified Xylanase and Its Application in the Extraction of Oligosaccharides from Wheat Bran. Foods. 2023; 12(12):2424. https://doi.org/10.3390/foods12122424
Chicago/Turabian StyleZhao, Yang, Xinrui Li, Shuo Guo, Jingwen Xu, Yan Cui, Mingzhu Zheng, and Jingsheng Liu. 2023. "Thermodynamics and Physicochemical Properties of Immobilized Maleic Anhydride-Modified Xylanase and Its Application in the Extraction of Oligosaccharides from Wheat Bran" Foods 12, no. 12: 2424. https://doi.org/10.3390/foods12122424
APA StyleZhao, Y., Li, X., Guo, S., Xu, J., Cui, Y., Zheng, M., & Liu, J. (2023). Thermodynamics and Physicochemical Properties of Immobilized Maleic Anhydride-Modified Xylanase and Its Application in the Extraction of Oligosaccharides from Wheat Bran. Foods, 12(12), 2424. https://doi.org/10.3390/foods12122424