Hot Water Treatment Improves Date Drying and Maintains Phytochemicals and Fruit Quality Characteristics of Date Palm (Phoenix dactylifera)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physical and Physiological Parameters
2.1.1. Time Taken to Reach Tamar Stage (DAYS)
2.1.2. Ripening Index (%)
2.1.3. Weight Loss (%)
2.1.4. Moisture Content (%)
2.2. Biochemical Parameters
2.2.1. Total Soluble Solids (Brix%)
2.2.2. Titratable Acidity (%)
2.2.3. Ascorbic Acid (mg 100 mL−1)
2.3. Estimation of Sugar Contents by HPLC
2.4. Phytochemical Assay
2.4.1. Total Phenolic Content (mg GAE/100 g FW)
2.4.2. Antioxidant Activity (DPPH Scavenging Activity)
2.4.3. Total Flavonoids
2.4.4. Total Tannin Contents
2.5. Sensory Evaluation
2.6. Statistical Analysis
3. Results
3.1. Time Taken to Reach the Tamar Stage (Days)
3.2. Ripening Index (RI)
3.3. Weight Loss (WL)
3.4. Moisture Content (%)
3.5. Soluble Solids Content (SSC)
Titratable Acidity (TA)
3.6. Ascorbic Acid Content (AA)
3.7. Reducing Sugars (%)
3.8. Total Sugars (%)
3.9. Glucose, Fructose, and Sucrose
3.10. Total Phenolic Contents
3.11. Antioxidant Activity
3.12. Total Flavonoids
3.13. Total Tannin
3.14. Sensory Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chao, C.T.; Krueger, R.R. The Date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Agro-Statistics; Database; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; Available online: https://www.fao.org/statistics/en/ (accessed on 10 November 2020).
- Sarraf, M.; Jemni, M.; Kahramanoğlu, I.; Artés, F.; Shahkoomahally, S.; Namsi, A.; Ihtisham, M.; Brestic, M.; Mohammadi, M.; Rastogi, A. Commercial techniques for preserving date palm (Phoenix dactylifera) fruit quality and safety: A review. Saudi J. Biol. Sci. 2021, 28, 4408–4420. [Google Scholar] [CrossRef]
- Rangaraj, V.M.; Rambabu, K.; Banat, F.; Mittal, V. Effect of date fruit waste extract as an antioxidant additive on the properties of active gelatin films. Food Chem. 2021, 355, 129631. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.F.; Tu, K.; Zhao, Y.Z.; Chen, L.; Chen, Y.Y.; Wang, H. Effects of pre-storage heat treatment on fruit ripening and decay development in different apple cultivars. J. Hortic. Sci. Biotechnol. 2007, 82, 297–303. [Google Scholar] [CrossRef]
- Marrero, A.; Paull, R.E. Physiological effects of hot water treatments on banana fruits. Acta Hortic. 1998, 464, 518. [Google Scholar] [CrossRef]
- Khademi, O.; Salvador, A.; Zamani, Z.; Besada, C. Effects of hot water treatments on antioxidant enzymatic system in reducing flesh browning of persimmon. Food Bioprocess Technol. 2013, 6, 3038–3046. [Google Scholar] [CrossRef]
- Kim, Y.; Brecht, J.K.; Talcott, S.T. Antioxidant phytochemical and fruit quality changes in mango (Mangifera indica L.) following hot water immersion and controlled atmosphere storage. Food Chem. 2007, 105, 1327–1334. [Google Scholar] [CrossRef]
- Wall, M.M. Ripening behaviour and quality of ‘Brazilian’ bananas following hot water immersion to disinfest surface insects. HortScience 2004, 39, 1349–1353. [Google Scholar] [CrossRef] [Green Version]
- Nittaya, U.; Matsumoto, T.K.; Wall, M.M.; Seraypheap, K. Changes in antioxidants and fruit quality in hot water-treated ‘Hom Thong’ banana fruit during storage. Sci. Hortic. 2011, 130, 801–807. [Google Scholar]
- Jemric, T.; Ivic, D.; Fruk, G.; Matijas, H.S.; Cvjetkovic, B.; Bupic, M.; Pavkovic, B. Reduction of postharvest decay of peach and nectarine caused by Monilinia laxa using hot water dipping. Food Bioprocess Technol. 2011, 4, 149–154. [Google Scholar] [CrossRef]
- Sui, Y.; Droby, S.; Zhang, D.; Wang, W.; Liu, Y. Reduction of Fusarium rot and maintenance of fruit quality in melon using eco-friendly hot water treatment. Environ. Sci. Pollut. Res. 2014, 21, 13956–13963. [Google Scholar] [CrossRef] [PubMed]
- Villa-Rojas, R.; López-Malo, A.; Sosa-Morales, M.E. Hot water bath treatments assisted by microwave energy to delay postharvest ripening and decay in strawberries (Fragaria×ananassa). J. Sci. Food Agric. 2011, 91, 2265–2270. [Google Scholar] [CrossRef] [PubMed]
- Maxin, P.; Weber, R.W.S.; Pedersen, H.L.; Williams, M. Control of a wide range of storage rots in naturally infected apples by hot-water dipping and rinsing. Postharvest Biol. Technol. 2012, 70, 25–31. [Google Scholar] [CrossRef]
- Bai, J.; Mielke, E.A.; Chen, P.M.; Spotts, R.A.; Serdani, M.; Hansen, J.D.; Neven, L. Effect of high-pressure hot-water washing treatment on fruit quality, insects, and disease in apples and pears: Part I. System description and the effect on fruit quality of ‘d’Anjou’ pears. Postharvest Biol. Technol. 2006, 40, 207–215. [Google Scholar] [CrossRef]
- Fallik, E.; Grinberg, S.; Alkalai, O.S.; Yekutieli, O.; Wiseblum, A.; Regev, R.; Beres, H.; Bar-Lev, E. A unique rapid hot water treatment to improve storage quality of sweet pepper. Postharvest Biol. Technol. 1999, 15, 25–32. [Google Scholar] [CrossRef]
- Salazar-Salas, N.Y.; Chairez-Vega, D.A.; Vega-Alvarez, M.; González-Nuñez, D.G.; Pineda-Hidalgo, K.V.; Chávez-Ontiveros, J.; Delgado-Vargas, F.; Lopez-Valenzuela, J.A. Proteomic changes in mango fruit peel associated with chilling injury tolerance induced by quarantine hot water treatment. Postharvest Biol. Technol. 2022, 186, 111838. [Google Scholar] [CrossRef]
- Yanclo, L.; Fawole, O.A.; Opara, U.L. Effects of heat treatments on sensory attributes and decay incidence of pomegranate (‘Wonderful’) fruit. Acta Hortic. 2018, 1201, 183–189. [Google Scholar] [CrossRef]
- El-Assi, N.M. Alleviating chilling injury and maintaining quality of tomato fruit by hot water treatment. Emir. J. Agric. Sci. 2004, 16, 1–7. [Google Scholar]
- Wang, D.; Randhawa, M.S.; Azam, M.; Liu, H.; Ejaz, S.; Ilahy, R.; Qadri, R.; Khan, M.I.; Umer, M.A.; Khan, M.A.; et al. Exogenous melatonin treatment reduces postharvest senescence and maintains the quality of papaya fruit during cold storage. Front. Plant Sci. 2022, 13, 1039373. [Google Scholar] [CrossRef]
- Nafees, M.; Jaskani, M.J.; Ahmad, I.; Ashraf, M.I.; Maqsood, A.; Ahmar, S.; Azam, M.; Hussain, S.; Hanif, A.; Chen, J.T. Biochemical analysis of organic acids and soluble sugars in wild and cultivated pomegranate germplasm based in Pakistan. Plants 2020, 9, 493. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, A.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature 2007, 4, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, E.; Requejo-Jackman, C.; Stanley, R.; Woolf, A. Hot water treatment in combination with calcium ascorbate dips increases bioactive compounds and helps to maintain fresh-cut apple quality. Postharvest Biol. Technol. 2015, 110, 158–165. [Google Scholar] [CrossRef]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Analytical Chemists: Arlington, VA, USA, 1980. [Google Scholar]
- Ismail, B.; Haffar, I.; Baalbaki, R.; Henry, J. Development of a total quality scoring system based on consumer preference weightings and sensory profiles: Application to fruit dates (Tamr). Food Qual. Prefer. 2001, 12, 499–506. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Z.K.; Chai, H.K.; Cheng, N.; Yang, Y.; Wang, D.N. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol. Technol. 2016, 118, 103–110. [Google Scholar] [CrossRef]
- Shahnawaz, M.; Sheikh, S.A.; Panwar, A.A.; Khaskheli, S.G.; Awan, F.A. Effect of hot water treatment on the chemical, sensorial properties and ripening quality of chaunsa mango (Mangifera indica L.). J. Basic Appl. Sci. 2012, 8, 328–333. [Google Scholar] [CrossRef]
- Jacobi, K.; MacRae, E.; Hetherington, S. Postharvest heat disinfestations treatments of mango fruit (Review). Sci. Hortic. 2001, 89, 171–193. [Google Scholar] [CrossRef]
- Kaka, A.K.; Ibupoto, K.A.; Chattha, S.H.; Soomro, S.A.; Junejo, S.A.; Soomro, A.H.; Khaskheli, S.G.; Kaka, S.K. Effect of hot water treatments and storage period on the quality attributes of banana (Musa sp.) fruit. Pure Appl. Biol. 2019, 8, 363–371. [Google Scholar] [CrossRef]
- Hazbavi, I.; Khoshtaghaza, M.H.; Mostaan, A.; Banakar, A. Effect of postharvest hot-water and heat treatment on quality of date palm (cv. Stamaran). J. Saudi Soc. Agric. Sci. 2015, 14, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Ali, L. Effect of different chemical treatment on the physico-chemical characteristics and shelf-life of date fruit (Phoenix dactylifera L.). 1989. [Google Scholar]
- Lara, I.; García, P.; Vendrell, M. Post-harvest heat treatments modify cell wall composition of strawberry (Fragaria× ananassa Duch.) fruit. Sci. Hortic. 2006, 109, 48–53. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, Q.; Yin, X.R.; Lin, Q.; Chen, J.Y.; Allan, A.C.; Xu, C.J.; Chen, K.S. Effect of hot air treatment on organic acid-and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Sci. Hortic. 2012, 147, 118–125. [Google Scholar] [CrossRef]
- Vicente, A.R.; Martínez, G.A.; Civello, P.M.; Chaves, A.R. Quality of heat-treated strawberry fruit during refrigerated storage. Postharvest Biol. Technol. 2002, 25, 59–71. [Google Scholar] [CrossRef]
- Klein, J.D.; Lurie, S. Postharvest heat treatment and fruit quality. Postharvest News Inf. 1991, 2, 15–19. [Google Scholar]
- Ng, Z.X.; Kuppusamy, U.R. Effects of different heat treatments on the antioxidant activity and ascorbic acid content of bitter melon, Momordica charantia. Braz. J. Food Technol. 2019, 22, 1–12. [Google Scholar] [CrossRef]
- Tincheva, P.A. The effect of heating on the vitamin C content of selected vegetables. World J. Adv. Res. Rev. 2019, 3, 27–32. [Google Scholar]
- Glowacz, M.; Mogren, L.M.; Reade, J.P.; Cobb, A.H.; Monaghan, J.M. Can hot water treatments enhance or maintain postharvest quality of spinach leaves? Postharvest Biol. Technol. 2013, 81, 23–28. [Google Scholar] [CrossRef]
- Durán-Soria, S.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Sugar signaling during fruit ripening. Front. Plant Sci. 2020, 11, 564917. [Google Scholar] [CrossRef]
- Assirey, E.A.R. Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J. Taibah Univ. Sci. 2015, 9, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Borsani, J.; Budde, C.O.; Porrini, L.; Lauxmann, M.A.; Lombardo, V.A.; Murray, R.; Andreo, C.S.; Drincovich, M.F.; Lara, M.V. Carbon metabolism of peach fruit after harvest: Changes in enzymes involved in organic acid and sugar level modifications. J. Exp. Bot. 2009, 60, 1823–1837. [Google Scholar] [CrossRef] [Green Version]
- Abidi, W.; Cantin, C.M.; Jimenez, S.; Gimenez, R.; Moreno, M.A.; Gogorcena, Y. Influence of antioxidant compounds, total sugars and genetic background on the chilling injury susceptibility of a non-melting peach (Prunus persica (L.) Batsch) progeny. J. Sci. Food Agric. 2015, 95, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Shao, X.; Gong, Y.; Zhu, Y.; Wang, H.; Zhang, X.; Yu, D.; Yu, F.; Qiu, Z.; Lu, H. The metabolism of soluble carbohydrates related to chilling injury in peach fruit exposed to cold stress. Postharvest Biol. Technol. 2013, 86, 53–61. [Google Scholar] [CrossRef]
- Holland, N.; Menezes, H.C.; Lafuente, M.T. Carbohydrates as related to the heat-induced chilling tolerance and respiratory rate of ‘Fortune’ mandarin fruit harvested at different maturity stages. Postharvest Biol. Technol. 2002, 25, 181–191. [Google Scholar] [CrossRef]
- Yu, L.; Liu, H.; Shao, X.; Yu, F.; Wei, Y.; Ni, Z.; Xu, F.; Wang, H. Effects of hot air and methyl jasmonate treatment on the metabolism of soluble sugars in peach fruit during cold storage. Postharvest Biol. Technol. 2016, 113, 8–16. [Google Scholar] [CrossRef]
- Beirão-da-Costa, S.; Steiner, A.; Correira, L.; Empis, J.; Moldão-Martins, M. Effects of maturity stage and mild heat treatments on quality of minimally processed kiwifruit. J. Food Eng. 2006, 76, 616–625. [Google Scholar] [CrossRef]
- Saltveit, M.E. Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock. Postharvest Biol. Technol. 2000, 21, 61–69. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Marsh, K.; Shilton, R.; Babalar, M.; Woolf, A. Effect of hot water treatments on chilling injury and heat damage in ‘satsuma’ mandarins: Antioxidant enzymes and vacuolar ATPase, and pyrophosphatase. Postharvest Biol. Technol. 2008, 48, 364–371. [Google Scholar] [CrossRef]
- Spadoni, A.; Guidarelli, M.; Sanzani, S.M.; Ippolito, A.; Mari, M. Influence of hot water treatment on brown rot of peach and rapid fruit response to heat stress. Postharvest Biol. Technol. 2014, 94, 66–73. [Google Scholar] [CrossRef]
- Yuan, L.; Bi, Y.; Ge, Y.; Wang, Y.; Liu, Y.; Li, G. Postharvest hot water dipping reduces decay by inducing disease resistance and maintaining firmness in muskmelon (Cucumis melo L.) fruit. Sci. Hortic. 2013, 161, 101–110. [Google Scholar] [CrossRef]
- Schirra, M.; Palma, A.D.; Aquino, S.; Angioni, A.; Minello, E.V.; Melis, M. Influence of postharvest hot water treatment on nutritional and functional properties of Kumquat (Fortunella japonica Lour. Swingle Cv. Ovale) fruit. J. Agric. Food Chem. 2008, 56, 455–460. [Google Scholar] [CrossRef]
- Lafuente, M.T.; Ballester, A.R.; Calejero, J.; González-Candelas, L. Effect of high-temperature-conditioning treatments on quality, flavonoid composition and vitamin C of cold stored ‘Fortune’ mandarins. Food Chem. 2011, 128, 1080–1086. [Google Scholar] [CrossRef] [Green Version]
- Naser, F.; Rabiei, V.; Razavi, F.; Khademi, O. Effect of calcium lactate in combination with hot water treatment on the nutritional quality of persimmon fruit during cold storage. Sci. Hortic. 2018, 233, 114–123. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Rahemi, M.; Serrano, M.; Guillén, F.; Martínez-Romero, D.; Valero, D. Prestorage heat treatment to maintain nutritive and functional properties during postharvest cold storage of pomegranate. J. Agric. Food Chem. 2006, 54, 8495–8500. [Google Scholar] [CrossRef] [PubMed]
- Vicente, A.R.; Martı´nez, G.A.; Chaves, A.R.; Civello, P.M. Effect of heat treatment on strawberry fruit damage and oxidative metabolism during storage. Postharvest Biol. Technol. 2006, 40, 116–122. [Google Scholar] [CrossRef]
- Wang, C.Y. Heat treatment affects postharvest quality of kale and collard, but not of brussels sprouts. HortScience 1998, 33, 881–883. [Google Scholar] [CrossRef]
- Nasef, I.N. Short hot water as safe treatment induces chilling tolerance and antioxidant enzymes, prevents decay and maintains quality of cold-stored cucumbers. Postharvest Biol. Technol. 2018, 138, 1–10. [Google Scholar] [CrossRef]
- Loayza, F.E.; Brecht, J.K.; Plotto, A.; Baldwin, E.A.; Bai, J. Evaluation of the impact of hot water treatment on the sensory quality of fresh tomatoes. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium, Lisbon, Portugal, 22 August 2010; Volume 934, pp. 1305–1311. [Google Scholar]
- Grzegorzewska, M.; Badełek, E.; Szczech, M.; Kosson, R.; Wrzodak, A.; Kowalska, B.; Colelli, G.; Szwejda-Grzybowska, J.; Maciorowski, R. The effect of hot water treatment on the storage ability improvement of fresh-cut Chinese cabbage. Sci. Hortic. 2022, 291, 110551. [Google Scholar] [CrossRef]
- Dadzie, B.K.; Orchard, J.E. Routine Post Harvest Screening of Banana/Plantain Hybrids: Criteria and Methods; INIBAP Technical Guidelines 2; Peter, K.V., Ed.; New India Publishing Agency: Pitam Pura, New Delhi, India, 1997. [Google Scholar]
Reducing Sugars a | Hillawi | Khadrawi |
Control | 33.14 ± 1.12 g | 30.03 ± 3.01 g |
HWT-1 min | 62.79 ± 3.02 b | 40.29 ± 2.85 e |
HWT-3 min | 69.83 ± 2.05 a | 49.12 ± 1.98 de |
HWT-5 min | 55.96 ± 1.54 c | 57.01 ± 2.08 bc |
HWT-7 min | 47.43 ± 2.63 e | 54.95 ± 2.63 cd |
Total sugars b | ||
Control | 34.47 ± 1.32 g | 31.14 ± 2.14 g |
HWT-1 min | 65.53 ± 2.65 b | 41.53 ± 2.31 f |
HWT-3 min | 73.02 ± 2.01 a | 50.81 ± 2.41 de |
HWT-5 min | 58.45 ± 1.85 c | 59.71 ± 3.05 bc |
HWT-7 min | 49.26 ± 2.23 e | 57.39 ± 2.35 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Hussain, I.; Azam, M.; Khan, M.A.; Akram, M.T.; Naveed, K.; Asif, M.; Anjum, N.; Zeng, J.; Zhang, J.; et al. Hot Water Treatment Improves Date Drying and Maintains Phytochemicals and Fruit Quality Characteristics of Date Palm (Phoenix dactylifera). Foods 2023, 12, 2405. https://doi.org/10.3390/foods12122405
Li J, Hussain I, Azam M, Khan MA, Akram MT, Naveed K, Asif M, Anjum N, Zeng J, Zhang J, et al. Hot Water Treatment Improves Date Drying and Maintains Phytochemicals and Fruit Quality Characteristics of Date Palm (Phoenix dactylifera). Foods. 2023; 12(12):2405. https://doi.org/10.3390/foods12122405
Chicago/Turabian StyleLi, Jianhui, Imtiaz Hussain, Muhammad Azam, Muhammad Arslan Khan, Muhammad Tahir Akram, Khalid Naveed, Muhammad Asif, Naveeda Anjum, Jiaoke Zeng, Jiukai Zhang, and et al. 2023. "Hot Water Treatment Improves Date Drying and Maintains Phytochemicals and Fruit Quality Characteristics of Date Palm (Phoenix dactylifera)" Foods 12, no. 12: 2405. https://doi.org/10.3390/foods12122405
APA StyleLi, J., Hussain, I., Azam, M., Khan, M. A., Akram, M. T., Naveed, K., Asif, M., Anjum, N., Zeng, J., Zhang, J., & Liu, H. (2023). Hot Water Treatment Improves Date Drying and Maintains Phytochemicals and Fruit Quality Characteristics of Date Palm (Phoenix dactylifera). Foods, 12(12), 2405. https://doi.org/10.3390/foods12122405