Antioxidants Discovery for Differentiation of Monofloral Stingless Bee Honeys Using Ambient Mass Spectrometry and Metabolomics Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Honey Samples
2.2. Sample Extraction for Antioxidant Assays
2.3. Antioxidant Activities
2.3.1. DPPH Free Radical-Scavenging Assay
2.3.2. ABTS Free Radical-Scavenging Assay
2.3.3. Ferric Reducing Antioxidant Power Assay
2.3.4. Oxygen Radical Absorbance Capacity Assay
2.4. Direct Mass Spectrometry Analysis of SBH Extracts
2.5. Metabolite Profiling and Identification
2.6. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activities of Stingless Bee Honeys
3.2. Differentiation of Stingless Bee Honeys Using Direct MS and Chemometrics
3.3. Metabolites Profiling of Stingless Bee Honeys
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avila, S.; Hornung, P.S.; Teixeira, G.L.; Malunga, L.N.; Apea-Bah, F.B.; Beux, M.R.; Beta, T.; Ribani, R.H. Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Res. Int. 2019, 123, 1–10. [Google Scholar] [CrossRef]
- Abd Jalil, M.A.; Kasmuri, A.R.; Hadi, H. Stingless Bee honey, the natural wound healer: A review. Ski. Pharmacol. Physiol. 2017, 30, 66–75. [Google Scholar] [CrossRef]
- Vit, P.; Medina, M.; Enríquez, M.E. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World 2004, 85, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Rosli, F.N.; Hazemi, M.H.F.; Akbar, M.A.; Basir, S.; Kassim, H.; Bunawan, H. Stingless bee honey: Evaluating its antibacterial activity and bacterial diversity. Insects 2020, 11, 500. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chuah, W.C.; Chye, F.Y. Effect of drying on physicochemical and functional properties of stingless bee honey. J. Food Process. Preserv. 2021, 45, e15328. [Google Scholar]
- Popova, M.; Gerginova, D.; Trusheva, B.; Simova, S.; Tamfu, A.N.; Ceylan, O.; Clark, K.; Bankova, V. A preliminary study of chemical profiles of honey, cerumen, and propolis of the African stingless bee Meliponula ferruginea. Foods 2021, 10, 997. [Google Scholar] [CrossRef] [PubMed]
- Souza, E.C.A.; Menezes, C.; Flach, A. Stingless bee honey (hymenoptera, Apidae, meliponini): A review of quality control, chemical profile, and biological potential. Apidologie 2021, 52, 113–132. [Google Scholar] [CrossRef]
- Boorn, K.L.; Khor, Y.Y.; Sweetman, E.; Tan, F.; Heard, T.A.; Hammer, K.A. Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and time-kill methodology. J. Appl. Microbiol. 2010, 108, 1534–1543. [Google Scholar] [CrossRef]
- Ewnetu, Y.; Lemma, W.; Birhane, N. Antibacterial effects of Apis mellifera and stingless bees honeys on susceptible and resistant strains of Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae in Gondar, Northwest Ethiopia. BMC Complement. Altern. Med. 2013, 13, 269. [Google Scholar] [CrossRef] [Green Version]
- Massaro, C.F.; Shelley, D.; Heard, T.A.; Brooks, P. In vitro antibacterial phenolic extracts from “sugarbag” pot-honeys of Australian stingless bees (Tetragonula carbonaria). J. Agric. Food Chem. 2014, 62, 12209–12217. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.J.; Sit, N.W.; Ooi, P.A.; Ee, K.Y.; Lim, T.M. The antibacterial potential of honeydew honey produced by stingless bee (Heterotrigona itama) against antibiotic resistant bacteria. Antibiotics 2020, 9, 871. [Google Scholar] [CrossRef]
- Nishio, E.K.; Bodnar, G.C.; Perugini, M.R.E.; Andrei, C.C.; Proni, E.A.; Kobayashi, R.K.T.; Nakazato, G. Antibacterial activity of honey from stingless bees Scaptotrigona bipunctata Lepeletier, 1836 and S. postica Latreille, 1807 (Hymenoptera: Apidae: Meliponinae) against methicillin-resistant Staphylococcus aureus (MRSA). J. Apic. Res. 2016, 54, 452–460. [Google Scholar] [CrossRef]
- Villacrés-Granda, I.; Coello, D.; Proaño, A.; Ballesteros, I.; Roubik, D.W.; Jijón, G.; Alvarez-Suarez, J.M. Honey quality parameters, chemical composition and antimicrobial activity in twelve Ecuadorian stingless bees (Apidae: Apinae: Meliponini) tested against multiresistant human pathogens. LWT-Food Sci. Technol. 2021, 140, 110737. [Google Scholar] [CrossRef]
- Borsato, D.M.; Prudente, A.S.; Döll-Boscardin, P.M.; Borsato, A.V.; Luz, C.F.P.; Maia, B.H.L.N.S.; Cabrini, D.A.; Otuki, M.F.; Miguel, M.D.; Farago, P.V.; et al. Topical Anti-inflammatory activity of a monofloral honey of Mimosa scabrella Provided by Melipona marginata during winter in Southern Brazil. J. Med. Food 2014, 17, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Zamora, G.; Beukelman, K.; Van Den Berg, B.; Arias, M.L.; Umaña, E.; Aguilar, I.; Sánchez, L.A.; Fallas, N.; Van Ufford, L.Q.; Gross, N. The antimicrobial activity and microbiological safety of stingless bee honeys from Costa Rica. J. Apic. Res. 2014, 53, 503–513. [Google Scholar] [CrossRef]
- Saiful Yazan, L.; Muhamad Zali, M.F.; Mohd Ali, R.; Zainal, N.A.; Esa, N.; Sapuan, S.; Ong, Y.S.; Tor, Y.S.; Gopalsamy, B.; Voon, F.L.; et al. Chemopreventive properties and toxicity of kelulut honey in sprague dawley rats induced with azoxymethane. BioMed Res. Int. 2016, 2016, 4036926. [Google Scholar]
- Ali, H.; Abu Bakar, M.F.; Majid, M.; Muhammad, N.; Lim, S.Y. In vitro anti-diabetic activity of stingless bee honey from different botanical origins. Food Res. 2020, 4, 1421–1426. [Google Scholar] [CrossRef]
- da Silva, I.A.; da Silva, T.M.; Camara, C.A.; Queiroz, N.; Magnani, M.; de Novais, J.S.; Soledade, L.E.; Lima Ede, O.; de Souza, A.L.; de Souza, A.G. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chem. 2013, 141, 3552–3558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramon-Sierra, J.M.; Ruiz-Ruiz, J.C.; de la Luz Ortiz-Vazquez, E. Electrophoresis characterisation of protein as a method to establish the entomological origin of stingless bee honeys. Food Chem. 2015, 183, 43–48. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Giampieri, F.; Brenciani, A.; Mazzoni, L.; Gasparrini, M.; González-Paramás, A.M.; Santos-Buelga, C.; Morroni, G.; Simoni, S.; Forbes-Hernández, T.Y.; et al. Apis mellifera vs. Melipona beecheii Cuban polifloral honeys: A comparison based on their physicochemical parameters, chemical composition and biological properties. LWT-Food Sci. Technol. 2018, 87, 272–279. [Google Scholar]
- Nweze, J.A.; Okafor, J.I.; Nweze, E.I.; Nweze, J.E. Evaluation of physicochemical and antioxidant properties of two stingless bee honeys: A comparison with Apis mellifera honey from Nsukka, Nigeria. BMC Res. Notes 2017, 10, 566. [Google Scholar] [CrossRef] [Green Version]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Mahmoud, A.M. Stingless bee honey protects against lipopolysaccharide induced-chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-kappaB and p38 MAPK. Nutr. Metab. 2019, 16, 15. [Google Scholar] [CrossRef] [Green Version]
- Ranneh, Y.; Ali, F.; Zarei, M.; Akim, A.M.; Hamid, H.A.; Khazaai, H. Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. LWT Food Sci. Technol. 2018, 89, 1–9. [Google Scholar] [CrossRef]
- Silva Dos Santos, J.; Goncalves Cirino, J.P.; de Oliveira Carvalho, P.; Ortega, M.M. The pharmacological action of kaempferol in central nervous system diseases: A review. Front. Pharmacol. 2020, 11, 565700. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.M.S.; dos Santos, F.P.; Evangelista-Rodrigues, A.; da Silva, E.M.S.; da Silva, G.S.; de Novais, J.S.; dos Santos, F.d.A.R.; Camara, C.A. Phenolic compounds, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey. J. Food Compos. Anal. 2013, 29, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.B.; Hannan, A.; Akhtar, N.; Fayyaz, G.Q.; Imran, M.; Saleem, S.; Qureshi, I.A. Evaluation of the antibacterial activity of selected Pakistani honeys against multi-drug resistant Salmonella typhi. BMC Complement. Med. Ther. 2015, 15, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, J.M.; de Souza, E.L.; Marques, G.; Meireles, B.; de Magalhães Cordeiro, Â.T.; Gullón, B.; Pintado, M.M.; Magnani, M. Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Res. Int. 2016, 84, 61–68. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Topal, E.; Balkanska, R.; Yücel, B.; Oravecz, T.; Cornea-Cipcigan, M.; Vodnar, D.C. Monofloral Honeys as a Potential Source of Natural Antioxidants, Minerals and Medicine. Antioxidants 2021, 10, 1023. [Google Scholar] [CrossRef]
- Machado De-Melo, A.A.; Almeida-Muradian, L.B.D.; Sancho, M.T.; Pascual-Maté, A. Composition and properties of Apis mellifera honey: A review. J. Apic. Res. 2017, 57, 5–37. [Google Scholar] [CrossRef]
- Sant’Ana, L.D.O.; Buarque Ferreira, A.B.; Lorenzon, M.C.A.; Berbara, R.L.L.; Castro, R.N. Correlation of total phenolic and flavonoid contents of Brazilian honeys with colour and antioxidant capacity. Int. J. Food Prop. 2013, 17, 65–76. [Google Scholar] [CrossRef]
- Sharin, S.N.; Sani, M.S.A.; Jaafar, M.A.; Yuswan, M.H.; Kassim, N.K.; Manaf, Y.N.; Wasoh, H.; Zaki, N.N.M.; Hashim, A.M. Discrimination of malaysian stingless bee honey from different entomological origins based on physicochemical properties and volatile compound profiles using chemometrics and machine learning. Food Chem. 2021, 346, 128654. [Google Scholar] [CrossRef]
- Tuksitha, L.; Chen, Y.-L.S.; Wong, K.-Y.; Peng, C.-C. Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). J. Asia-Pac. Èntomology 2018, 21, 563–570. [Google Scholar] [CrossRef]
- Pang, Z.; Zhou, G.; Ewald, J. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef]
- Hamlaoui, I.; Bencheraiet, R.; Bensegueni, R.; Bencharif, M. Experimental and theoretical study on DPPH radical scavenging mechanism of some chalcone quinoline derivatives. J. Mol. Struct. 2018, 1156, 385–389. [Google Scholar] [CrossRef]
- Biluca, F.C.; de Gois, J.S.; Schulz, M.; Braghini, F.; Gonzaga, L.V.; Maltez, H.F.; Rodrigues, E.; Vitali, L.; Micke, G.A.; Borges, D.L.G.; et al. Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). J. Food Compos. Anal. 2017, 63, 89–97. [Google Scholar] [CrossRef]
- Biluca, F.C.; da Silva, B.; Caon, T.; Mohr, E.T.B.; Vieira, G.N.; Gonzaga, L.V.; Vitali, L.; Micke, G.; Fett, R.; Dalmarco, E.M.; et al. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res. Int. 2020, 129, 108756. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, M.; Sulaiman, S.A.; Azlan, S.A.; Gan, S.H. Two-year variations of phenolics, flavonoids and antioxidant contents in acacia honey. Molecules 2013, 18, 14694–14710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krpan, M.; Marković, K.; ŠariĆ, G.; Skoko, B.; Hruškar, M.; Vahčić, N. Antioxidant Activities and Total Phenolics of Acacia Honey. Czech J. Food Sci. 2009, 27, S246–S247. [Google Scholar] [CrossRef] [Green Version]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2021, 129, 139–148. [Google Scholar] [CrossRef]
- Loh, L.X.; Lee, H.H.; Stead, S.; Ng, D.H.J. Manuka honey authentication by a compact atmospheric solids analysis probe mass spectrometer. J. Food Compos. Anal. 2022, 105, 104254. [Google Scholar] [CrossRef]
- Lee, H.H.; Ng, D.J.H. Rapid Discrimination of Authentic Honey and Adulterants Using RADIAN ASAP; Waters Application Note 720007135EN; Waters Corporation: Milford, MA, USA, 2021. [Google Scholar]
- Yu, J.; Wang, Y.; Lin, J.; Li, J.; Qiu, W. Application of RADIAN ASAP-LiveID Platform in Flavor Type Discrimination of Chinese Baijiu and Authentication of Maotai; Waters Application Note 720007188EN; Waters Corporation: Milford, MA, USA, 2021. [Google Scholar]
- Chan, L.Y.; Chang, Y.; Peng, H.; Zhang, G. Authentication of Cocoa Butter by Direct Analysis using RADIAN ASAP with LiveID; Waters Application Note 720007100EN; Waters Corporation: Milford, MA, USA, 2021. [Google Scholar]
- Li, J.; Xing, Z.; Yu, J.; Qiu, W.; Wang, F. Rapid Identification of Adulteration in Edible Oils Using Direct Analysis Mass Detection Platform (RADIAN ASAP-LiveID); Waters Application Note 720007189EN; Waters Corporation: Milford, MA, USA, 2021. [Google Scholar]
- Stead, S.; Dreolin, N.; Damiani, T.; Sammarco, G.; Suman, M.; Dall’Asta, C. RADIAN ASAP LiveID as a Routine Screening Solution for Substitution Fraud in Dried Herbs; Waters Application Note 720007045EN; Waters Corporation: Milford, MA, USA, 2020. [Google Scholar]
- Lamponi, S.; Baratto, M.C.; Miraldi, E.; Baini, G.; Biagi, M. Chemical Profile, Antioxidant, Anti-Proliferative, Anticoagulant and Mutagenic Effects of a Hydroalcoholic Extract of Tuscan Rosmarinus officinalis. Plants 2021, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Attanzio, A.; Tesoriere, L.; Allegra, M.; Livrea, M.A. Monofloral honeys by Sicilian black honeybee (Apis mellifera ssp. sicula) have high reducing power and antioxidant capacity. Heliyon 2016, 2, e00193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, A.F.L.; Tirador, A.D.G.; Villorente, Z.M.; Bagarinao, C.F.; Sollesta, J.V.N.; Dumancas, G.G.; Sun, Z.; Zhan, Z.Q.; Saludes, J.P.; Dalisay, D.S. The Isorhamnetin-Containing Fraction of Philippine Honey Produced by the Stingless Bee Tetragonula biroi Is an Antibiotic against Multidrug-Resistant Staphylococcus aureus. Molecules 2021, 26, 1688. [Google Scholar] [CrossRef] [PubMed]
Honey | DPPH (mM TE/mg) | ABTS (mM TE/mg) | FRAP (mM Fe2+/mg) | ORAC (mM TE/mg) |
---|---|---|---|---|
Acacia | 24.42 ± 1.91 bc | 29.85 ± 1.68 a | 89.27 ± 2.44 a | 167.55 ± 2.14 a |
Agarwood | 19.70 ± 1.08 e | 16.05 ± 0.86 d | 45.50 ± 1.08 e | 77.25 ± 2.93 e |
Coconut | 31.41 ± 0.46 a | 22.23 ± 1.71 c | 66.94 ± 1.75 c | 98.60 ± 3.63 c |
DMP | 21.15 ± 1.07 de | 20.57 ± 1.07 c | 56.84 ± 1.91 d | 69.03 ± 3.71 f |
MC | 23.28 ± 1.59 cd | 27.63 ± 1.22 ab | 66.89 ± 1.12 c | 87.59 ± 3.18 d |
Rubber | 26.65 ± 0.74 b | 25.35 ± 0.75 b | 73.61 ± 3.29 b | 123.79 ± 1.04 b |
Starfruit | 19.96 ± 1.81 e | 17.45 ± 1.04 d | 55.92 ± 1.92 d | 91.70 ± 4.00 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuah, W.C.; Lee, H.H.; Ng, D.H.J.; Ho, A.L.; Sulaiman, M.R.; Chye, F.Y. Antioxidants Discovery for Differentiation of Monofloral Stingless Bee Honeys Using Ambient Mass Spectrometry and Metabolomics Approaches. Foods 2023, 12, 2404. https://doi.org/10.3390/foods12122404
Chuah WC, Lee HH, Ng DHJ, Ho AL, Sulaiman MR, Chye FY. Antioxidants Discovery for Differentiation of Monofloral Stingless Bee Honeys Using Ambient Mass Spectrometry and Metabolomics Approaches. Foods. 2023; 12(12):2404. https://doi.org/10.3390/foods12122404
Chicago/Turabian StyleChuah, Wei Chean, Huei Hong Lee, Daniel H. J. Ng, Ai Ling Ho, Mohd Rosni Sulaiman, and Fook Yee Chye. 2023. "Antioxidants Discovery for Differentiation of Monofloral Stingless Bee Honeys Using Ambient Mass Spectrometry and Metabolomics Approaches" Foods 12, no. 12: 2404. https://doi.org/10.3390/foods12122404
APA StyleChuah, W. C., Lee, H. H., Ng, D. H. J., Ho, A. L., Sulaiman, M. R., & Chye, F. Y. (2023). Antioxidants Discovery for Differentiation of Monofloral Stingless Bee Honeys Using Ambient Mass Spectrometry and Metabolomics Approaches. Foods, 12(12), 2404. https://doi.org/10.3390/foods12122404