Oxidative Stability of Avocado Snacks Formulated with Olive Extract as an Active Ingredient for Novel Food Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Antioxidant Activity
2.3. Total Phenolic Content
2.4. Chip Preparation and Shelf-Life Study
2.5. ATR-FTIR Spectroscopy Analysis
2.6. Fatty Acid Composition
2.6.1. Microwave-Assisted Extraction (MAE) Process
2.6.2. Analysis of Major Fatty Acid Composition by GC–MS
2.7. Hexanal Quantification
2.8. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity and TPC of Active Extracts
3.2. Oxidative Stability Study of Packaged Avocado Chips
3.2.1. Structural Characterization by ATR-FTIR
3.2.2. Fatty Acid Composition
Selection of Solvent in MAE
Analysis of Major Fatty Acid Composition by GC–MS
3.2.3. Hexanal Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, F.A.; Queiroga, R.d.C.R.D.E.; de Souza, E.L.; Voss, G.B.; Pintado, M.M.E.; da Silva Vasconcelos, M.A. Ingredients from Integral Valorization of Isabel Grape to Formulate Goat Yogurt with Stimulatory Effects on Probiotics and Beneficial Impacts on Human Colonic Microbiota in Vitro. Food Sci. Hum. Wellness 2023, 12, 1331–1342. [Google Scholar] [CrossRef]
- Ni, D.; Gunness, P.; Smyth, H.E.; Gidley, M.J. Exploring Relationships between Satiation, Perceived Satiety and Plant-Based Snack Food Features. Int. J. Food Sci. Technol. 2021, 56, 5340–5351. [Google Scholar] [CrossRef]
- Ahmad, M.; Gani, A. Development of Novel Functional Snacks Containing Nano-Encapsulated Resveratrol with Anti-Diabetic, Anti-Obesity and Antioxidant Properties. Food Chem. 2021, 352, 129323. [Google Scholar] [CrossRef] [PubMed]
- Benkhoud, H.; Baâti, T.; Njim, L.; Selmi, S.; Hosni, K. Antioxidant, Antidiabetic, and Antihyperlipidemic Activities of Wheat Flour-Based Chips Incorporated with Omega-3-Rich Fish Oil and Artichoke Powder. J. Food Biochem. 2021, 45, 13297. [Google Scholar] [CrossRef]
- Monteiro Cordeiro de Azeredo, H.; Carvalho de Matos, M.; Madazio Niro, C. Something to Chew on: Technological Aspects for Novel Snacks. J. Sci. Food Agric. 2022, 102, 2191–2198. [Google Scholar] [CrossRef]
- The Business Research Company. Snack Food Global Market Report; The Business Research Company: London, UK, 2023. [Google Scholar]
- Janssen, M.; Chang, B.P.I.; Hristov, H.; Pravst, I.; Profeta, A.; Millard, J. Changes in Food Consumption During the COVID-19 Pandemic: Analysis of Consumer Survey Data from the First Lockdown Period in Denmark, Germany, and Slovenia. Front. Nutr. 2021, 8, 635859. [Google Scholar] [CrossRef]
- Buckland, N.J.; Swinnerton, L.F.; Ng, K.; Price, M.; Wilkinson, L.L.; Myers, A.; Dalton, M. Susceptibility to Increased High Energy Dense Sweet and Savoury Food Intake in Response to the COVID-19 Lockdown: The Role of Craving Control and Acceptance Coping Strategies. Appetite 2021, 158, 105017. [Google Scholar] [CrossRef]
- Pilafidis, S.; Diamantopoulou, P.; Gkatzionis, K.; Sarris, D. Valorization of Agro-Industrial Wastes and Residues through the Production of Bioactive Compounds by Macrofungi in Liquid State Cultures: Growing Circular Economy. Appl. Sci. 2022, 12, 1426. [Google Scholar] [CrossRef]
- Hamelin, L.; Borzęcka, M.; Kozak, M.; Pudełko, R. A Spatial Approach to Bioeconomy: Quantifying the Residual Biomass Potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- European Commission. Innovating for Sustainable Growth—A Bioeconomy for Europe; European Commission: Singapore, 2012.
- European Union. European Commission’s Knowledge Centre for Bioeconomy; European Union: Singapore, 2023.
- FAOSTAT Database. Available online: https://www.fao.org/faostat/en/#data (accessed on 13 April 2023).
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022, 11, 362. [Google Scholar] [CrossRef]
- Zhao, H.; Kim, Y.; Avena-Bustillos, R.J.; Nitin, N.; Wang, S.C. Characterization of California Olive Pomace Fractions and Their in Vitro Antioxidant and Antimicrobial Activities. LWT 2023, 180, 114677. [Google Scholar] [CrossRef]
- Nunes, M.A.; Pimentel, F.B.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Olive By-Products for Functional and Food Applications: Challenging Opportunities to Face Environmental Constraints. Innov. Food Sci. Emerg. Technol. 2016, 35, 139–148. [Google Scholar] [CrossRef]
- Ruiz-Moreno, M.J.; Raposo, R.; Moreno-Rojas, J.M.; Zafrilla, P.; Cayuela, J.M.; Mulero, J.; Puertas, B.; Guerrero, R.F.; Piñeiro, Z.; Giron, F.; et al. Efficacy of Olive Oil Mill Extract in Replacing Sulfur Dioxide in Wine Model. LWT Food Sci. Technol. 2015, 61, 117–123. [Google Scholar] [CrossRef]
- Ruiz, E.; Romero-García, J.M.; Romero, I.; Manzanares, P.; Negro, M.J.; Castro, E. Olive-Derived Biomass as a Source of Energy and Chemicals. Biofuels Bioprod. Biorefining 2017, 11, 1077–1094. [Google Scholar] [CrossRef]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive Mill Wastes: Biochemical Characterizations and Valorization Strategies. Process. Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Luzi, F.; Fortunati, E.; Di Michele, A.; Pannucci, E.; Botticella, E.; Santi, L.; Kenny, J.M.; Torre, L.; Bernini, R. Nanostructured Starch Combined with Hydroxytyrosol in Poly(Vinyl Alcohol) Based Ternary Films as Active Packaging System. Carbohydr. Polym. 2018, 193, 239–248. [Google Scholar] [CrossRef]
- Valdés, A.; Garcia-Serna, E.; Martínez-Abad, A.; Vilaplana, F.; Jimenez, A.; Garrigós, M.C. Gelatin-Based Antimicrobial Films Incorporating Pomegranate (Punica Granatum L.) Seed Juice by-Product. Molecules 2020, 25, 166. [Google Scholar] [CrossRef] [Green Version]
- García, A.V.; Álvarez-Pérez, O.B.; Rojas, R.; Aguilar, C.N.; Garrigós, M.C. Impact of Olive Extract Addition on Corn Starch-Based Active Edible Films Properties for Food Packaging Applications. Foods 2020, 9, 1339. [Google Scholar] [CrossRef]
- Campos, L.; Seixas, L.; Henriques, M.H.F.; Peres, A.M.; Veloso, A.C.A. Pomegranate Peels and Seeds as a Source of Phenolic Compounds: Effect of Cultivar, By-Product, and Extraction Solvent. Int. J. Food Sci. 2022, 2022, 9189575. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant and Antimicrobial Activity of Pomegranate Peel Extract Improves the Shelf Life of Chicken Products. Int. J. Food Sci. Technol. 2010, 45, 216–222. [Google Scholar] [CrossRef]
- Sogut, E.; Ili Balqis, A.M.; Nur Hanani, Z.A.; Seydim, A.C. The Properties of κ-Carrageenan and Whey Protein Isolate Blended Films Containing Pomegranate Seed Oil. Polym. Test. 2019, 77, 105886. [Google Scholar] [CrossRef]
- Ali, A.; Chen, Y.; Liu, H.; Yu, L.; Baloch, Z.; Khalid, S.; Zhu, J.; Chen, L. Starch-Based Antimicrobial Films Functionalized by Pomegranate Peel. Int. J. Biol. Macromol. 2019, 129, 1120–1126. [Google Scholar] [CrossRef]
- Ferrara, L.; Joksimovic, M.; D’Angelo, S. Effects of Punica Granatum Fruit (a Super Food) Juice on Human Health. Curr. Nutr. Food Sci. 2022, 18, 618–628. [Google Scholar] [CrossRef]
- Resende, L.M.B.; de Souza, V.R.; Ferreira, G.M.D.; Nunes, C.A. Changes in Quality and Phytochemical Contents of Avocado Oil under Different Temperatures. J. Food Sci. Technol. 2019, 56, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Nyakang’i, C.O.; Ebere, R.; Marete, E.; Arimi, J.M. Avocado Production in Kenya in Relation to the World, Avocado by-Products (Seeds and Peels) Functionality and Utilization in Food Products. Appl. Food Res. 2023, 3, 100275. [Google Scholar] [CrossRef]
- Garcia, F.; Davidov-Pardo, G. Recent Advances in the Use of Edible Coatings for Preservation of Avocados: A Review. J. Food Sci. 2021, 86, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Jimenez, V.; Collazos-Escobar, G.A.; González-Mohino, A.; Gomez Alvarez-Arenas, T.E.; Benedito, J.; Garcia-Perez, J.V. Non-Invasive Monitoring of Potato Drying by Means of Air-Coupled Ultrasound. Food Control 2023, 148, 109653. [Google Scholar] [CrossRef]
- Domínguez-Hernández, E.; Gutiérrez-Uribe, J.A.; Domínguez-Hernández, M.E.; Loarca-Piña, G.F.; Gaytán-Martínez, M. In Search of Better Snacks: Ohmic-Heating Nixtamalized Flour and Amaranth Addition Increase the Nutraceutical and Nutritional Potential of Vegetable-Enriched Tortilla Chips. J. Sci. Food Agric. 2023, 103, 2773–2785. [Google Scholar] [CrossRef]
- Aydin, E. Evaluation of Phenolic Acid, Total Phenolic Content, Antioxidant Capacity and in-Vitro Simulated Bioaccessibility of Healthy Snack: Aromatized Pumpkin Chips. Emir. J. Food Agric. 2022, 34, 98–106. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Zhao, Y.; Li, X.; Fan, J.; Wang, L. Effect of Different Drying Methods on the Quality and Microstructure of Fresh Jujube Crisp Slices. J. Food. Process. Preserv. 2021, 45, 15162. [Google Scholar] [CrossRef]
- Kowalska, J.; Marzec, A.; Domian, E.; Galus, S.; Ciurzyńska, A.; Lenart, A.; Kowalska, H. The Use of Antioxidant Potential of Chokeberry Juice in Creating Pro-Healthy Dried Apples by Hybrid (Convection-Microwave-Vacuum) Method. Molecules 2020, 25, 5680. [Google Scholar] [CrossRef] [PubMed]
- Nikoo, M.; Ahmadi Gavlighi, H. Natural Antioxidants and Flavorings for Clean Label Foods; Springer International Publishing: Cham, Switzerland, 2022; ISBN 9783030966980. [Google Scholar]
- Pateiro, M.; Domínguez, R.; Munekata, P.E.S.; Nieto, G.; Bangar, S.P.; Dhama, K.; Lorenzo, J.M. Bioactive Compounds from Leaf Vegetables as Preservatives. Foods 2023, 12, 637. [Google Scholar] [CrossRef] [PubMed]
- Swain, T.; Hillis, W.E. The Phenolic Constituents of Prunus Domestica. I.—The Quantitative Analysis of Phenolic Constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Sutheimer, S.; Caster, J.M.; Smith, S.H. Green Soap: An Extraction and Saponification of Avocado Oil. J. Chem. Educ. 2015, 92, 1763–1765. [Google Scholar] [CrossRef]
- Hu, B.; Zhou, K.; Liu, Y.; Zhang, Q.; Han, G.; Liu, S.; Yang, Y.; Zhu, Y.; Zhu, D. Optimization of Microwave-Assisted Extraction of Oil from Tiger Nut (Cyperus Esculentus L.) and Its Quality Evaluation. Ind. Crops Prod. 2018, 115, 290–297. [Google Scholar] [CrossRef]
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva Switzerland, 2017.
- García, A.V.; Serrano, N.J.; Sanahuja, A.B.; Garrigós, M.C. Novel Antioxidant Packaging Films Based on Poly(ε-Caprolactone) and Almond Skin Extract: Development and Effect on the Oxidative Stability of Fried Almonds. Antioxidants 2020, 9, 629. [Google Scholar] [CrossRef]
- Valdés, A.; Beltrán, A.; Karabagias, I.; Badeka, A.; Kontominas, M.G.; Garrigós, M.C. Monitoring the Oxidative Stability and Volatiles in Blanched, Roasted and Fried Almonds under Normal and Accelerated Storage Conditions by DSC, Thermogravimetric Analysis and ATR-FTIR. Eur. J. Lipid Sci. Technol. 2015, 117, 1199–1213. [Google Scholar] [CrossRef]
- Hayes, J.E.; Allen, P.; Brunton, N.; O’Grady, M.N.; Kerry, J.P. Phenolic Composition and in Vitro Antioxidant Capacity of Four Commercial Phytochemical Products: Olive Leaf Extract (Olea Europaea L.), Lutein, Sesamol and Ellagic Acid. Food Chem. 2011, 126, 948–955. [Google Scholar] [CrossRef]
- Li, Y.; Guo, C.; Yang, J.; Wei, J.; Xu, J.; Cheng, S. Evaluation of Antioxidant Properties of Pomegranate Peel Extract in Comparison with Pomegranate Pulp Extract. Food Chem. 2006, 96, 254–260. [Google Scholar] [CrossRef]
- Valero-Mendoza, A.G.; Meléndez-Rentería, N.P.; Chávez-González, M.L.; Flores-Gallegos, A.C.; Wong-Paz, J.E.; Govea-Salas, M.; Zugasti-Cruz, A.; Ascacio-Valdés, J.A. The Whole Pomegranate (Punica Granatum L.), Biological Properties and Important Findings: A Review. Food Chem. Adv. 2023, 2, 100153. [Google Scholar] [CrossRef]
- Karimi, M.; Sadeghi, R.; Kokini, J. Pomegranate as a Promising Opportunity in Medicine and Nanotechnology. Trends Food Sci. Technol. 2017, 69, 59–73. [Google Scholar] [CrossRef]
- Li, B.; Hui, F.; Yuan, Z.; Shang, Q.; Shuai, G.; Bao, Y.; Chen, Y. Untargeted Fecal Metabolomics Revealed Biochemical Mechanisms of the Blood Lipid-Lowering Effect of Koumiss Treatment in Patients with Hyperlipidemia. J. Funct. Foods 2021, 78, 104355. [Google Scholar] [CrossRef]
- Aruna, P.; Venkataramanamma, D.; Singh, A.K.; Singh, R.P. Health Benefits of Punicic Acid: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Molva, C.; Baysal, A.H. Evaluation of Bioactivity of Pomegranate Fruit Extract against Alicyclobacillus Acidoterrestris DSM 3922 Vegetative Cells and Spores in Apple Juice. LWT 2015, 62, 989–995. [Google Scholar] [CrossRef] [Green Version]
- Karantonis, H.C.; Tsoupras, A.; Moran, D.; Zabetakis, I.; Nasopoulou, C. Olive, Apple, and Grape Pomaces with Antioxidant and Anti-Inflammatory Bioactivities for Functional Foods; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 9780128238110. [Google Scholar]
- González-Rámila, S.; Sarriá, B.; Seguido, M.A.; García-Cordero, J.; Mateos, R.; Bravo, L. Olive Pomace Oil Can Improve Blood Lipid Profile: A Randomized, Blind, Crossover, Controlled Clinical Trial in Healthy and at-Risk Volunteers. Eur. J. Nutr. 2023, 62, 589–603. [Google Scholar] [CrossRef]
- González-Rámila, S.; Sarriá, B.; Seguido, M.Á.; García-Cordero, J.; Bravo-Clemente, L.; Mateos, R. Effect of Olive Pomace Oil on Cardiovascular Health and Associated Pathologies. Nutrients 2022, 14, 3927. [Google Scholar] [CrossRef]
- Ontario, M.L.; Siracusa, R.; Modafferi, S.; Scuto, M.; Sciuto, S.; Greco, V.; Bertuccio, M.P.; Trovato Salinaro, A.; Crea, R.; Calabrese, E.J.; et al. Potential Prevention and Treatment of Neurodegenerative Disorders by Olive Polyphenols and Hidrox. Mech. Ageing Dev. 2022, 203, 111637. [Google Scholar] [CrossRef]
- Khwaldia, K.; Attour, N.; Matthes, J.; Beck, L.; Schmid, M. Olive Byproducts and Their Bioactive Compounds as a Valuable Source for Food Packaging Applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1218–1253. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Martinez-Saez, N.; del Castillo, M.D.; Barba, F.J.; Mitropoulou, V.S. Patented and Commercialized Applications. In Food Waste Recovery: Processing Technologies and Industrial Techniques; Elsevier: Amsterdam, The Netherlands, 2015; pp. 337–360. [Google Scholar] [CrossRef]
- Mooz, E.; Gaino, N.; Shimano, M.; Amancio, R.; Spoto, M. Physical and Chemical Characterization of the Pulp of Different Varieties of Avocado Targeting Oil Extraction Potential. Ciência Tecnol. Aliment. 2012, 32, 274–280. [Google Scholar] [CrossRef] [Green Version]
- USDA Database. FAOSTAT Database. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/171705/nutrients (accessed on 13 April 2023).
- Castorena, J.H.; Rojas, M.; Delegado, R.; Robles de la Torre, R. Análisis de Pulpa y Aceite de Aguacate Con Espectroscopia Infrarroja. Concienc. Tecnológica 2011, 12, 5–10. [Google Scholar]
- Arpi, N.; Satriana; Mustapha, W.A.W.; Syamsuddin, Y.; Putra, T.W.; Supardan, M.D. Effect of Cooking Pre-Treatment on the Properties of Dried Avocado Flesh and Its Oil Extract. S. Afr. J. Chem. Eng. 2023, 43, 1–8. [Google Scholar] [CrossRef]
- King-Loeza, Y.; Ciprián-Macías, D.A.; Cardador-Martínez, A.; Martín-del-Campo, S.T.; Castañeda-Saucedo, M.C.; Ramírez-Anaya, J.D.P. Functional Composition of Avocado (Persea Americana Mill. Var Hass) Pulp, Extra Virgin Oil, and Residues Is Affected by Fruit Commercial Classification. J. Agric. Food Res. 2023, 12, 100573. [Google Scholar] [CrossRef]
- Alkaltham, M.S.; Uslu, N.; Özcan, M.M.; Salamatullah, A.M.; Mohamed Ahmed, I.A.; Hayat, K. Effect of Drying Process on Oil, Phenolic Composition and Antioxidant Activity of Avocado (Cv. Hass) Fruits Harvested at Two Different Maturity Stages. LWT 2021, 148, 111716. [Google Scholar] [CrossRef]
- Juárez, M.D.; Osawa, C.C.; Acuña, M.E.; Sammán, N.; Gonçalves, L.A.G. Degradation in Soybean Oil, Sunflower Oil and Partially Hydrogenated Fats after Food Frying, Monitored by Conventional and Unconventional Methods. Food Control 2011, 22, 1920–1927. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Rodríguez-Jasso, R.M.; Fernandes, B.D.; Vicente, A.A.; Teixeira, J.A. Hydrothermal Processing, as an Alternative for Upgrading Agriculture Residues and Marine Biomass According to the Biorefinery Concept: A Review. Renew. Sustain. Energy Rev. 2013, 21, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Desai, M.; Parikh, J. Extraction of Natural Products Using Microwaves as a Heat Source. Sep. Purif. Rev. 2010, 39, 1–32. [Google Scholar] [CrossRef]
- Pedreschi, R.; Hollak, S.; Harkema, H.; Otma, E.; Robledo, P.; Westra, E.; Somhorst, D.; Ferreyra, R.; Defilippi, B.G. Impact of Postharvest Ripening Strategies on ‘Hass’ Avocado Fatty Acid Profiles. S. Afr. J. Bot. 2016, 103, 32–35. [Google Scholar] [CrossRef]
- García-Rojas, M.; Morgan, A.; Gudenschwager, O.; Zamudio, S.; Campos-Vargas, R.; González-Agüero, M.; Defilippi, B.G. Biosynthesis of Fatty Acids-Derived Volatiles in ‘Hass’ Avocado Is Modulated by Ethylene and Storage Conditions during Ripening. Sci. Hortic. 2016, 202, 91–98. [Google Scholar] [CrossRef]
- Sanahuja, A.B.; Moya, M.S.P.; Pérez, S.E.M.; Teruel, N.G.; Carratalá, M.L.M. Classification of Four Almond Cultivars Using Oil Degradation Parameters Based on FTIR and GC Data. J. Am. Oil Chem. Soc. 2009, 86, 51–58. [Google Scholar] [CrossRef]
- Gertz, C.; Aladedunye, F.; Popp, M.; Matthäus, B. The Impact of Fat Deterioration on Formation of Acrylamide in Fried Foods. Eur. J. Lipid Sci. Technol. 2023, 125, 144. [Google Scholar] [CrossRef]
- Manzoor, S.; Masoodi, F.A.; Rashid, R.; Ganaie, T.A. Quality Changes of Edible Oils during Vacuum and Atmospheric Frying of Potato Chips. Innov. Food Sci. Emerg. Technol. 2022, 82, 103185. [Google Scholar] [CrossRef]
- Piscopo, A.; Romeo, F.V.; Petrovicova, B.; Poiana, M. Effect of the Harvest Time on Kernel Quality of Several Almond Varieties (Prunus Dulcis (Mill.) D.A. Webb). Sci. Hortic. 2010, 125, 41–46. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Nie, S.; Yang, X.; Wang, Y.; Yang, M.; Li, C.; Xie, M. The Analysis of Trans Fatty Acid Profiles in Deep Frying Palm Oil and Chicken Fillets with an Improved Gas Chromatography Method. Food Control 2014, 44, 191–197. [Google Scholar] [CrossRef]
- Salas, J.J.; Sánchez, J.; Ramli, U.S.; Manaf, A.M.; Williams, M.; Harwood, J.L. Biochemistry of Lipid Metabolism in Olive and Other Oil Fruits. Prog. Lipid Res. 2000, 39, 151–180. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Velázquez, D.A.; Castellanos-Dohnal, G.; Caballero-Mata, P.; Hernández-Brenes, C. Biochemical Changes during the Storage of High Hydrostatic Pressure Processed Avocado Puree in the Presence of Natural Antioxidants | Cambios Bioquímicos Durante El Almacenamiento de Puré de Aguacate Adicionado Con Antioxidantes Naturales y Procesado Con. CYTA J. Food 2013, 11, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Obenland, D.; Collin, S.; Sievert, J.; Negm, F.; Arpaia, M.L. Influence of Maturity and Ripening on Aroma Volatiles and Flavor in “Hass” Avocado. Postharvest Biol. Technol. 2012, 71, 41–50. [Google Scholar] [CrossRef]
- Galvao, M.S.; Nunes, M.L.; Constant, P.B.L.; Narain, N. Identification of Volatile Compounds in Cultivars Barker, Collinson, Fortuna and Geada of Avocado (Persea Americana, Mill.) Fruit. Food Sci. Technol. 2016, 36, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Gerónimo, R.I.; López, M.G.; Dorantes-Alvarez, L. Microwave Processing of Avocado: Volatile Flavor Profiling and Olfactometry. Innov. Food Sci. Emerg. Technol. 2008, 9, 501–506. [Google Scholar] [CrossRef]
- Alañón, M.E.; Cádiz-Gurrea, M.L.; Oliver-Simancas, R.; Leyva-Jiménez, F.J.; Arráez-Román, D.; Segura-Carretero, A. Quality Assurance of Commercial Guacamoles Preserved by High Pressure Processing versus Conventional Thermal Processing. Food Control 2022, 135, 108791. [Google Scholar] [CrossRef]
- Hausch, B.J.; Arpaia, M.L.; Kawagoe, Z.; Walse, S.; Obenland, D. Chemical Characterization of Two California-Grown Avocado Varieties (Persea Americana Mill.) over the Harvest Season with an Emphasis on Sensory-Directed Flavor Analysis. J. Agric. Food Chem. 2020, 68, 15301–15310. [Google Scholar] [CrossRef] [PubMed]
Property | PS | OE |
---|---|---|
IC50 (µg Trolox g−1 extract) | 0.66 ± 0.03 a | 0.59 ± 0.05 b |
FRAP (mg Trolox g−1 extract) | 58 ± 1 a | 71 ± 8 b |
ABTS (mg Trolox g−1 extract) | 67 ± 9 a | 56 ± 6 a |
TPC (mg Trolox g−1 extract) | 36 ± 1 a | 53 ± 1 b |
Wavenumber (cm−1) | Functional Group | Fraction [59,60] |
---|---|---|
3299 | Symmetric and asymmetric stretching -O-H, stretching N-H | Hydroperoxides, amylose, amylopectin, and amide A |
3009 | Stretching C=C | Lipids |
2923 | Stretching asymmetric CH2 | Lipids |
2853 | Stretching symmetric CH2 | Lipids |
1744 | Stretching C=O | Triglycerides, phospholipids, and aldehydes |
1559 | Bending N-H | Amide II |
1328 | Bending N-H | Amide III |
1034 | Stretching C-O | Triglycerides |
Parameter | 0 Days | 6 Days | 14 Days | ||||||
---|---|---|---|---|---|---|---|---|---|
Control | 1.5 wt.% | 3 wt.% | Control | 1.5 wt.% | 3 wt.% | Control | 1.5 wt.% | 3 wt.% | |
Wv at 1559 cm−1 | 1584 ± 3 a | 1563 ± 4 b | 1556 ± 3 c | 1553 ± 15 bc | 1557 ± 3 c | 1553 ± 2 c | 1568 ± 9 b | 1554 ± 1 c | 1542 ± 5 d |
Wv at 2853 cm−1 | 2855 ± 1 ab | 2856 ± 1 b | 2855 ± 1 ab | 2854 ± 1 ac | 2853 ± 1 c | 2853 ± 1 c | 2854 ± 1 ac | 2853 ± 1 c | 2851 ± 1 d |
Abs at 2923 cm−1 | 0.20 ± 0.01 a | 0.16 ± 0.02 b | 0.21 ± 0.01 a | 0.20 ± 0.02 a | 0.16 ± 0.02 b | 0.21 ± 0.01 a | 0.19 ± 0.01 a | 0.16 ± 0.01 b | 0.21 ± 0.01 a |
Wv at 2923 cm−1 | 2924 ± 1 a | 2827 ± 1 b | 2924 ± 1 a | 2923 ± 1 a | 2925 ± 2 a | 2922 ± 1 c | 2924 ± 1 a | 2920 ± 2 c | 2920 ± 5 abc |
Abs at 3009 cm−1 | 0.06 ± 0.01 a | 0.08 ± 0.02 a | 0.07 ± 0.02 a | 0.04 ± 0.02 a | 0.08 ± 0.03 b | 0.07 ± 0.03 b | 0.05 ± 0.01 a | 0.09 ± 0.01 b | 0.10 ± 0.02 b |
Abs at 3299 cm−1 | 0.08 ± 0.03 ab | 0.09 ± 0.02 a | 0.05 ± 0.06 b | 0.06 ± 0.03 b | 0.10 ± 0.02 a | 0.06 ± 0.02 b | 0.13 ± 0.02 c | 0.15 ± 0.02 c | 0.14 ± 0.01 c |
Wv at 3299 cm−1 | 3304 ± 1 a | 3303 ± 1 a | 3303 ± 3 a | 3302 ± 2 a | 3302 ± 2 a | 3296 ± 1 c | 3297 ± 1 c | 3294 ± 1 d | 3286 ± 1 e |
Formulation | Parameter | Time (Days) | ||
---|---|---|---|---|
0 | 6 | 14 | ||
Control | Oleic | 55.31 ± 1.29 ab | 56.50 ± 0.34 a | 54.21 ± 0.54 b |
1.5 wt.% | 56.68 ± 0.34 a | 55.18 ± 0.87 a | 53.93 ± 0.47 b | |
3.0 wt.% | 56.41 ± 0.54 a | 53.35 ± 0.48 b | 52.62 ± 0.60 b | |
Control | Palmitic | 27.18 ± 1.30 a | 27.39 ± 0.63 a | 30.94 ± 0.46 b |
1.5 wt.% | 28.90 ± 1.30 a | 31.91 ± 0.26 b | 31.51 ± 1.31 ab | |
3.0 wt.% | 27.57 ± 0.74 a | 34.14 ± 0.90 b | 32.88 ± 0.63 b | |
Control | Linoleic | 16.64 ± 0.75 a | 14.91 ± 0.76 a | 13.84 ± 0.12 b |
1.5 wt.% | 13.80 ± 0.58 a | 13.58 ± 0.83 a | 11.67 ± 0.84 b | |
3.0 wt.% | 14.78 ± 1.29 a | 14.52 ± 0.74 a | 11.50 ± 0.45 b | |
Control | Linolenic | 1.20 ± 0.27 a | 1.20 ± 0.05 a | 1.02 ± 0.03 a |
1.5 wt.% | 1.19 ± 0.13 a | 1.68 ± 0.08 a | 1.65 ± 0.12 a | |
3.0 wt.% | 1.24 ± 0.05 a | 1.68 ± 0.17 a | 0.97 ± 0.04 b | |
Control | C18:2/C16:0 | 0.614 ± 0.052 a | 0.544 ± 0.017 a | 0.447 ± 0.006 a |
1.5 wt.% | 0.479 ± 0.034 a | 0.426 ± 0.025 a | 0.371 ± 0.033 b | |
3.0 wt.% | 0.537 ± 0.060 a | 0.426 ± 0.032 b | 0.350 ± 0.009 c | |
Control | Hexanal | 525 ± 62 a | 521 ± 93 a | 494 ± 59 a |
1.5 wt.% | 446 ± 73 a | 588 ± 33 a | 499 ± 72 a | |
3.0 wt.% | 458 ± 84 a | 405 ± 62 a | 465 ± 78 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, C.; Jiménez, A.; Garrigós, M.C.; Valdés, A. Oxidative Stability of Avocado Snacks Formulated with Olive Extract as an Active Ingredient for Novel Food Production. Foods 2023, 12, 2382. https://doi.org/10.3390/foods12122382
Martínez C, Jiménez A, Garrigós MC, Valdés A. Oxidative Stability of Avocado Snacks Formulated with Olive Extract as an Active Ingredient for Novel Food Production. Foods. 2023; 12(12):2382. https://doi.org/10.3390/foods12122382
Chicago/Turabian StyleMartínez, Carmen, Alfonso Jiménez, Maria Carmen Garrigós, and Arantzazu Valdés. 2023. "Oxidative Stability of Avocado Snacks Formulated with Olive Extract as an Active Ingredient for Novel Food Production" Foods 12, no. 12: 2382. https://doi.org/10.3390/foods12122382
APA StyleMartínez, C., Jiménez, A., Garrigós, M. C., & Valdés, A. (2023). Oxidative Stability of Avocado Snacks Formulated with Olive Extract as an Active Ingredient for Novel Food Production. Foods, 12(12), 2382. https://doi.org/10.3390/foods12122382