Characterization of Odor-Active Compounds from Gryllus bimaculatus Using Gas Chromatography-Mass Spectrometry-Olfactometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. GC-MS Analysis of Volatile Compounds in Five GB Samples
2.3. GC-Olfactometry Analysis of Odor-Active Compounds in Five GB Samples
3. Results and Discussion
3.1. Identification of Volatile Compounds by GC-MS Analysis
3.2. Odor Description of Major Volatile Compounds Determined by GC-O Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected Species of Edible Insects as a Source of Nutrient Composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Kröncke, N.; Grebenteuch, S.; Keil, C.; Demtröder, S.; Kroh, L.; Thünemann, A.F.; Benning, R.; Haase, H. Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm (Tenebrio molitor L.). Insects 2019, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Lee, S.M.; Jung, C.; Meyer-Rochow, V.B. Nutritional Composition of Five Commercial Edible Insects in South Korea. J. Asia Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Mishyna, M.; Chen, J.; Benjamin, O. Sensory Attributes of Edible Insects and Insect-Based Foods–Future Outlooks for Enhancing Consumer Appeal. Trends Food Sci. Technol. 2020, 95, 141–148. [Google Scholar] [CrossRef]
- Choi, B.D.; Wong, N.A.K.; Auh, J.H. Defatting and Sonication Enhances Protein Extraction from Edible Insects. Korean J. Food Sci. Anim. Resour. 2017, 37, 955–961. [Google Scholar] [CrossRef]
- Yun, E.Y.; Hwang, J.S. Status and Prospect for Development of Insect Foods. Food Sci. Ind. 2016, 49, 31–39. Available online: https://edible-bug.com/wp-content/uploads/2017/06/Insect_Food.pdf (accessed on 20 January 2022).
- Ahn, M.Y.; Hwang, J.S.; Yoon, H.J.; Park, K.; Kim, S.; Kim, E.M. Fasting Conditions and Dietary Phenamena of Edible Cricket (Gryllus bimaculatus). J. Sericultural Entomol. Sci. 2015, 53, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Yu, J.; Pei, F.; Mariga, A.M.; Ma, N.; Fang, Y.; Hu, Q. Effect of Hot Air Drying on Volatile Compounds of Flammulina velutipes Detected by HS-SPME–GC–MS and Electronic Nose. Food Chem. 2016, 196, 860–866. [Google Scholar] [CrossRef]
- Deng, Y.; Luo, Y.; Wang, Y.; Zhao, Y. Effect of Different Drying Methods on the Myosin Structure, Amino Acid Composition, Protein Digestibility and Volatile Profile of Squid Fillets. Food Chem. 2015, 171, 168–176. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Lima, R.C.; Maia, M.R.G.; Almeida, A.A.; Fonseca, A.J.M.; Cabrita, A.R.J.; Cunha, L.M. Impact of Defatting Freeze-Dried Edible Crickets (Acheta domesticus and Gryllodes sigillatus) on the Nutritive Value, Overall Liking and Sensory Profile of Cereal Bars. LWT Food Sci. Technol. 2019, 113, 108335. [Google Scholar] [CrossRef]
- Cha, Y.J.; Kim, H.; Park, S.Y.; Cho, W.J.; Yoon, S.S.; You, Y.J. Identification of Irradiation-Induced Volatile Flavor Compounds in Chicken. J. Korean Soc. Food Sci. Nutr. 2000, 29, 1050–1056. [Google Scholar]
- Karlon, P. Terpenoids in Insects. Biochem. J. 1969, 113, 26. [Google Scholar] [CrossRef]
- Darragh, K.; Orteu, A.; Byers, K.J.R.P.; Szczerbowski, D.; Warren, I.A.; Rastas, P.; Pinharanda, A.L.; Davey, J.W.; Garza, S.F.; Almeida, D.A.; et al. A Novel Terpene Synthase Produces an Anti-Aphrodisiac Pheromone in the Butterfly Heliconius melpomene. BioRxiv 2019, 1, 779678. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, A.; Hayaloglu, A.A.; Atasoy, A.F. Evaluation of the Volatile Compounds of Fresh Ripened Capsicum annuum and Its Spice Pepper (Dried Red Pepper Flakes and Isot). LWT Food Sci. Technol. 2017, 84, 842–850. [Google Scholar] [CrossRef]
- Tao, N.P.; Wu, R.; Zhou, P.G.; Gu, S.Q.; Wu, W. Characterization of Odor-active Compounds in Cooked Meat of Farmed Obscure Puffer (Takifugu obscurus) Using Gas Chromatography-Mass Spectrometry-Olfactometry. J. Food Drug Anal. 2014, 22, 431–438. [Google Scholar] [CrossRef]
- Zhao, L.M.; Wu, W.; Tao, N.P.; Li, Y.Q.; Wu, N.; Qin, X. Characterization of Important Odorants in Four Steamed Coilia ectenes from China by Gas Chromatography-Mass Spectrometry-Olfactometry. Fish. Sci. 2015, 81, 947–957. [Google Scholar] [CrossRef] [Green Version]
- Haber, M.; Mishyna, M.; Martinez, J.J.I.; Benjamin, O. Edible larvae and pupae of honey bee (Apis mellifera): Odor and Nutritional Characterization as a Function of Diet. Food Chem. 2019, 292, 197–203. [Google Scholar] [CrossRef]
- Mounchili, A.; Wichtel, J.J.; Bosset, J.O.; Dohoo, I.R.; Imhof, M.; Altieri, D.; Mallia, S.; Stryhn, H. HS-SPME Gas Chromatographic Characterization of Volatile Compounds in Milk Tainted with Off-Flavour. Int. Dairy J. 2005, 15, 1203–1215. [Google Scholar] [CrossRef]
- Yu, X.; Chen, L.; Sheng, L.; Tong, Q. Volatile Compounds Analysis and Off-Flavors Removing of Porcupine Liver. Food Sci. Technol. Res. 2016, 22, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Moon, T.W.; Noh, B.S.; Chang, P.S.; Baek, H.H.; Lee, K.G.; Kim, S.J.; Yoo, S.H.; Lee, K.W. Food Chemistry, 3rd ed.; Chapter 8; Soohaksa: Seoul, Republic of Korea, 2015. [Google Scholar]
- Ashland LLC. Product Stewardship Summary. 2018. Available online: https://www.ashland.com/file_source/Ashland/Documents/Sustainability/rc%20hexane.pdf (accessed on 18 November 2020).
- Kang, D.H.; Jeon, H.W.; Kim, H.S. HS-SPME/GC-MS Analysis of Volatile and Semi-Volatile Compounds in Pork Entrails Treated with Hot Water Extracts of Natural Plants. Korean Soc. Biotechnol. Bioeng. J. 2018, 33, 118–126. [Google Scholar] [CrossRef]
- Adlem, M. Cyclododecane: How Dangerous Is It? Subliming Surfaces: Volatile Binding Media in Heritage Conservation; University of Cambridge Museums: Cambridge, UK, 2018; pp. 69–72. [Google Scholar]
- Villberg, K.; Veijanen, A. Analysis of a GC/MS Thermal Desorption System with Simultaneous Sniffing for Determination of Off-Odor Compounds and volatile compounds in Fumes Formed during Extrusion Coating of Low-Density Polyethylene. Anal. Chem. 2001, 73, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Osorio, C.; Alarcon, M.; Moreno, C.; Bonilla, A.; Barrios, J.; Garzon, C.; Duque, C. Characterization of Odor-Active Volatiles in Champa (Campomanesia lineatifolia R. & P.). J. Agric. Food Chem. 2006, 54, 509–516. [Google Scholar]
- Guneser, O.; Demirkol, A.; Yuceer, Y.K.; Togay, S.O.; Hosoglu, M.I.; Elibol, M. Production of Flavor Compounds from Olive Mill Waste by Rhizopus oryzae and Candida tropicalis. Braz. J. Microbiol. 2017, 48, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Amoore, J.E.; Hautala, E. Odor as an Aid to Chemical Safety: Odor Thresholds Compared with Threshold Limit Values and Volatilities for 214 Industrial Chemicals in Air and Water Dilution. J. Appl. Toxicol. 1983, 3, 272–290. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.K. Standard Food Chemistry, 5th ed.; Chapter 13; Hyoil: Seoul, Republic of Korea, 2007. [Google Scholar]
- Lee, J.A.; Kim, A.J. Safety and Nutritional Evaluation of Gryllus bimaculatus according to Pre-Treatments. J. Korean Soc. Food Sci. Nutr. 2019, 48, 640–648. [Google Scholar] [CrossRef]
- The Good Scents Company (TGSC) Information System. Available online: http://www.thegoodscentscompany.com/data/rw1032712.html (accessed on 18 November 2020).
Compounds | RI (1) | Contents (μg Pentadecane Equivalents/100 g) | I.D. (3) | ||||
---|---|---|---|---|---|---|---|
UGB (2) | AGB | FGB | SGB | DFGB | |||
Aldehydes | |||||||
Butanal | <800 | ND (4) | ND | ND | 0.46 ± 0.65 | ND | MS |
3-Methylbutanal | <800 | ND | ND | 0.00 ± 0.01 | ND | ND | MS |
2-Methyl butanal | <800 | ND | ND | ND | 0.01 ± 0.02 | ND | MS |
Pentanal | <800 | ND | ND | ND | 0.02 ± 0.03 | ND | MS |
Hexanal | 820 | ND | 5.15 ± 4.25 | 14.48 ± 4.15 | ND | 1.31 ± 0.04 | MS |
2-Heptenal | 974 | ND | ND | 0.16 ± 0.23 | ND | ND | MS |
Benzaldehyde | 978 | 43.05 ± 60.89 | 0.82 ± 0.69 | 0.04 ± 0.06 | ND | 0.81 ± 0.07 | MS/RI |
Nonanal | 1118 | 11.27 ± 15.94 | ND | 0.22 ± 0.11 | 0.63 ± 0.10 | 1.33 ± 0.02 | MS/RI |
Ethyl-benzaldehyde | 1193 | 2.03 ± 2.87 | ND | ND | ND | ND | MS |
Decanal | 1218 | 0.31 ± 0.16 | 0.43 ± 0.61 | 0.03 ± 0.05 | 0.31 ± 0.16 | 0.36 ± 0.04 | MS |
2-Butyloct-2-enal | 1386 | ND | ND | 0.09 ± 0.13 | ND | ND | MS |
Alcohols | |||||||
1-Octen-3-ol | 993 | ND | ND | 1.25 ± 0.72 | ND | ND | MS/RI |
2-Butyloctanol | 1035 | ND | ND | ND | 0.08 ± 0.11 | ND | MS |
3,5-Octadien-2-ol | 1060 | 0.09 ± 0.12 | 0.60 ± 0.85 | 0.13 ± 0.18 | ND | ND | MS |
Benzeneethanol | 1129 | 8.26 ± 11.67 | 0.81 ± 1.15 | 13.55 ± 7.72 | 5.95 ± 0.76 | 0.57 ± 0.47 | MS |
2-Hexyldecanol | 1141 | ND | 1.36 ± 1.05 | ND | 0.33 ± 0.02 | 0.27 ± 0.01 | MS |
2-Octyldecan-1-ol | 1178 | ND | 0.05 ± 0.07 | ND | ND | 0.25 ± 0.03 | MS |
2-Ethyl-1-hexanol | 1243 | ND | 0.22 ± 0.31 | ND | ND | ND | MS |
2-Isopropyl-5-methyl-1-hexanol | 1318 | ND | 0.19 ± 0.27 | ND | ND | ND | MS |
Levomenthol | 1188 | 6.42 ± 9.07 | ND | ND | ND | ND | MS |
Ketones | |||||||
2,3-Octanedione | 998 | ND | ND | 0.46 ± 0.18 | 0.59 ± 0.83 | ND | MS |
3,6-Dimethyl-4-octanone | 988 | ND | ND | 0.05 ± 0.07 | 0.37 ± 0.53 | ND | MS |
6-Methyl-5-hepten-2-one | 1001 | 1.91 ± 2.70 | ND | ND | ND | ND | MS |
1-Fluoro-2-indanone | 1017 | ND | ND | ND | ND | 0.29 ± 0.07 | MS |
3-Octen-2-one | 1023 | ND | ND | 0.13 ± 0.19 | ND | ND | MS |
3-Octen-2-one | 1055 | ND | 2.93 ± 1.88 | ND | 2.23 ± 0.13 | 1.61 ± 0.38 | MS |
Acetophenone | 1082 | 6.67 ± 9.02 | 1.39 ± 1.97 | 0.09 ± 0.13 | ND | ND | MS |
2-Undecanone | 1304 | 0.09 ± 0.12 | ND | ND | ND | ND | MS |
Terpenes and terpenoids | |||||||
α-Pinene | 952 | 4.81 ± 6.81 | 0.18 ± 0.26 | ND | 12.38 ± 1.18 | 0.09 ± 0.13 | MS/RI |
Camphene | 966 | ND | 0.30 ± 0.43 | ND | 21.50 ± 2.70 | 0.15 ± 0.21 | MS/RI |
Sabinene | 989 | ND | ND | ND | 0.59 ± 0.83 | ND | MS/RI |
2-β-Pinene | 989 | ND | ND | ND | 2.26 ± 2.05 | ND | MS |
β-Myrcene | 1005 | 0.30 ± 0.43 | ND | ND | 13.91 ± 1.13 | ND | MS |
α-Thujene | 1020 | 0.12 ± 0.17 | ND | ND | 6.44 ± 0.91 | 0.72 ± 0.06 | MS |
γ-Terpinene | 1023 | ND | ND | ND | 0.87 ± 0.11 | ND | MS/RI |
3-Carene | 1027 | ND | ND | ND | 0.48 ± 0.68 | ND | MS/RI |
α-Terpinene | 1033 | ND | ND | ND | 0.99 ± 0.27 | ND | MS/RI |
β-Terpinene | 1039 | 1.43 ± 2.02 | 3.34 ± 4.67 | ND | 1.24 ± 0.11 | 6.80 ± 0.21 | MS |
p-Cymene | 1042 | ND | ND | ND | 1.48 ± 0.30 | ND | MS/RI |
β-Phellandrene | 1046 | 0.76 ± 1.08 | 1.80 ± 2.55 | 2.03 ± 0.42 | 79.04 ± 5.13 | ND | MS/RI |
Phytane | 1051 | 78.16 ± 110.40 | 7.79 ± 8.40 | 0.10 ± 0.15 | ND | 2.96 ± 0.71 | MS |
Squalane | 1078 | 4.12 ± 5.83 | ND | 0.12 ± 0.11 | ND | 0.54 ± 0.01 | MS |
α-Terpinolene | 1102 | 0.14 ± 0.20 | ND | ND | 1.73 ± 0.11 | 1.43 ± 0.02 | MS |
α-Cubebene | 1393 | 10.33 ± 14.62 | ND | ND | ND | ND | MS |
Caryophyllene | 1440 | 4.99 ± 7.05 | ND | ND | ND | ND | MS |
β-copaene | 1448 | 2.71 ± 3.84 | ND | ND | ND | ND | MS |
α-Calacorene | 1560 | 6.72 ± 9.51 | ND | ND | ND | ND | MS |
Hydrocarbon | |||||||
Hexane | <800 | ND | 0.16 ± 0.23 | 0.32 ± 0.46 | ND | 450.84 ± 139.35 | MS |
2,4-Hexadiyne | <800 | 0.42 ± 0.60 | ND | ND | ND | ND | MS |
Heptane | <800 | ND | ND | 0.06 ± 0.09 | ND | ND | MS/RI |
Octane | 821 | 1.16 ± 1.64 | ND | ND | ND | ND | MS |
Nonane | 916 | ND | ND | ND | 0.27 ± 0.39 | ND | MS |
1,3,5,7-Cyclooctatetraene | 918 | 0.72 ± 1.02 | ND | ND | ND | ND | MS |
2-Methyl-3-ethylheptane | 958 | ND | ND | ND | 0.32 ± 0.45 | ND | MS |
3-Methylnonane | 986 | ND | ND | ND | 0.81 ± 0.07 | ND | MS |
2,2,3,4-Tetramethylpentane | 1025 | ND | 0.05 ± 0.07 | ND | ND | ND | MS |
2,2,3-Trimethyldecane | 1026 | ND | ND | ND | ND | 1.02 ± 1.08 | MS |
2,2,4,6,6-Pentamethylheptane | 1026 | 0.02 ± 0.03 | ND | ND | ND | ND | MS |
2,2,9-Trimethyldecane | 1039 | ND | 0.50 ± 0.71 | 0.06 ± 0.08 | ND | 0.77 ± 1.08 | MS |
2,6,8-Trimethyl-decane | 1055 | ND | ND | 1.76 ± 2.50 | ND | ND | MS |
2,6-Dimethyloctane | 1069 | 11.91 ± 16.85 | ND | ND | ND | 2.70 ± 0.09 | MS |
4,6-Dimethylundecane | 1071 | ND | 0.82 ± 1.15 | 0.42 ± 0.59 | ND | 0.63 ± 0.02 | MS |
2-Methyl-decane | 1073 | 0.59 ± 0.02 | 0.14 ± 0.20 | 0.13 ± 0.18 | ND | 0.59 ± 0.02 | MS |
3,7-Dimethylnonane | 1084 | ND | ND | ND | 0.79 ± 0.06 | ND | MS |
3-Ethyl-3-methylheptadecane | 1087 | ND | ND | ND | ND | 0.19 ± 0.00 | MS |
5-Methyl-octadecane | 1087 | ND | 0.54 ± 0.59 | ND | ND | ND | MS |
2,8-Dimethylundecane | 1090 | 8.29 ± 11.72 | 6.76 ± 7.50 | 0.16 ± 0.22 | ND | 2.88 ± 0.16 | MS |
3-Ethyl-3-methylheptane | 1097 | ND | 1.10 ± 1.27 | ND | ND | 0.33 ± 0.00 | MS |
4-Methylundecane | 1107 | ND | 0.16 ± 0.22 | 0.03 ± 0.04 | ND | 0.55 ± 0.02 | MS |
1-Phenyl-1-butene | 1109 | 8.95 ± 12.49 | ND | ND | ND | ND | MS |
Undecane | 1112 | 10.41 ± 14.72 | 2.78 ± 3.93 | ND | 1.42 ± 0.06 | 1.42 ± 0.05 | MS |
2,8-Dimethylundecane | 1147 | ND | 0.37 ± 0.53 | ND | 0.06 ± 0.09 | ND | MS |
2-Methyl-1-tetradecene | 1180 | ND | ND | ND | ND | 0.09 ± 0.01 | MS |
2-Ethyl-decane | 1182 | ND | ND | ND | 0.05 ± 0.07 | 0.15 ± 0.06 | MS |
2,4-Dimethyl-1-heptene | 1196 | ND | ND | ND | ND | 0.14 ± 0.01 | MS |
Cyclododecane | 1202 | 6.15 ± 8.69 | ND | ND | ND | ND | MS |
Trans-2-nonadecene | 1208 | 0.13 ± 0.19 | ND | ND | ND | 0.06 ± 0.01 | MS |
Dodecane | 1211 | 10.78 ± 15.24 | 0.78 ± 1.10 | 0.08 ± 0.05 | 0.37 ± 0.37 | 0.29 ± 0.10 | MS |
5-Dodecene | 1255 | ND | ND | ND | ND | 0.11 ± 0.01 | MS |
Tridecane | 1310 | 6.82 ± 8.99 | 0.25 ± 0.35 | 0.02 ± 0.03 | 0.14 ± 0.03 | 0.25 ± 0.13 | MS |
11-Decyltetracosane | 1317 | ND | ND | ND | ND | 0.07 ± 0.10 | MS |
3-Tetradecene | 1356 | 1.85 ± 2.62 | ND | ND | ND | ND | MS |
Tetradecane | 1408 | 8.44 ± 11.89 | ND | 0.42 ± 0.29 | ND | 0.08 ± 0.11 | MS |
3-Eicosene | 1453 | 3.11 ± 4.39 | ND | ND | ND | ND | MS |
trans-7-pentadecene | 1491 | 0.04 ± 0.05 | ND | ND | ND | ND | MS |
3-Ethyl-tetracosane | 1504 | 0.02 ± 0.03 | ND | ND | ND | ND | MS |
Hexadecane | 1605 | 8.50 ± 12.02 | ND | 0.28 ± 0.38 | ND | ND | MS |
Heptadecane | >1700 | 14.80 ± 20.93 | ND | ND | ND | ND | MS |
Octadecane | >1700 | 9.97 ± 14.10 | ND | ND | ND | ND | MS |
Nonadecane | >1700 | 12.88 ± 18.22 | ND | ND | ND | ND | MS |
Nitrogen-containing compounds | |||||||
Trimethylamine | <800 | ND | ND | ND | 0.05 ± 0.07 | ND | MS |
2-Butanone oxime | 809 | ND | 0.17 ± 0.24 | ND | ND | ND | MS |
Ethyl methyl ketone oxime | 813 | ND | ND | ND | 2.15 ± 1.05 | ND | MS/RI |
Penicillamine | 836 | ND | ND | ND | ND | 0.17 ± 0.01 | MS |
Methoxy-phenyl-oxime | 921 | 0.40 ± 0.56 | 1.12 ± 1.59 | 0.34 ± 0.19 | 0.57 ± 0.80 | ND | MS |
1,2-Benzenediamine | 933 | ND | ND | ND | 0.04 ± 0.05 | ND | MS |
Subtotal content | 0.4 | 1.29 | 0.34 | 2.81 | 0.17 | ||
Acids | |||||||
Pentanoic acid | 867 | ND | 0.15 ± 0.21 | ND | ND | ND | MS/RI |
2-Methylbutanoic acid | 875 | ND | 0.58 ± 0.83 | ND | ND | ND | MS |
Sobutylacetic acid | 967 | ND | 0.14 ± 0.20 | ND | ND | ND | MS |
Nonahexacontanoic acid | >1700 | 4.87 ± 6.89 | ND | ND | ND | ND | MS |
Docosanoic acid | >1700 | 14.89 ± 21.06 | ND | ND | ND | ND | MS |
Esters | |||||||
Oxalic acid, isobutyl nonyl ester | 1134 | ND | 0.96 ± 1.36 | ND | ND | ND | MS |
Caprylyl acetate | 1165 | 2.72 ± 3.85 | ND | ND | ND | ND | MS |
Acetic acid, phenethyl ester | 1271 | ND | ND | 0.06 ± 0.09 | ND | ND | MS |
Ethyl salicylate | 1285 | ND | ND | ND | ND | ND | MS |
Pentafluoropropionic acid, tetradecyl ester | 1293 | ND | ND | ND | ND | 0.08 ± 0.01 | MS |
Diisopropyl adipate | 1465 | 0.03 ± 0.04 | ND | 0.10 ± 0.14 | ND | ND | MS |
Triacontyl trifluoroacetate | >1700 | 11.17 ± 15.79 | ND | ND | ND | ND | MS |
Heterocyclic or aromatic compounds | |||||||
Benzene | <800 | 1.24 ± 1.76 | ND | ND | ND | 3.09 ± 0.34 | MS |
2-Methylpiperazine | <800 | ND | ND | 0.06 ± 0.04 | ND | ND | MS |
Toluene | <800 | 324.77 ± 422.17 | 20.12 ± 7.67 | 7.44 ± 0.44 | 7.59 ± 0.03 | 1.25 ± 0.07 | MS |
5-Methyl-2-phenylindole | 839 | ND | ND | ND | ND | 0.42 ± 0.59 | MS |
Ethylbenzene | 881 | 97.55 ± 134.67 | 3.30 ± 0.98 | 2.30 ± 0.62 | 11.80 ± 3.55 | 2.13 ± 0.03 | MS |
p-Xylene | 888 | 5.85 ± 6.79 | 2.84 ± 1.75 | 1.73 ± 0.15 | 0.41 ± 0.57 | 9.66 ± 1.44 | MS |
m-Xylol | 889 | 0.55 ± 0.78 | 1.13 ± 1.60 | 0.66 ± 0.31 | 3.22 ± 4.55 | ND | MS |
Ethenylbenzene | 909 | 117.76 ± 151.04 | 8.48 ± 3.71 | 6.31 ± 2.52 | 10.48 ± 3.46 | 11.85 ± 0.70 | MS |
1,3-Dimethylbezene | 983 | ND | ND | ND | 0.14 ± 0.20 | ND | MS |
Phenol | 996 | 12.81 ± 18.11 | ND | ND | ND | ND | MS |
Benzenol | 997 | 0.08 ± 0.12 | ND | ND | ND | ND | MS |
1,2,3-Trimethylbenzene | 1029 | 1.15 ± 1.62 | ND | ND | ND | ND | MS |
Naphthalene | 1198 | 11.96 ± 16.79 | ND | ND | ND | 0.36 ± 0.04 | MS |
7-Butyldocosane | 1258 | ND | ND | ND | 0.07 ± 0.01 | ND | MS |
o-Methylbiphenyl-diphenylmethane | 1415 | 9.51 ± 13.44 | ND | ND | ND | ND | MS |
Butylated Hydroxytoluene | 1527 | ND | ND | ND | ND | 0.03 ± 0.05 | MS |
Furans | |||||||
2-Pentyl furan | 1005 | ND | ND | 1.35 ± 0.79 | ND | ND | MS |
Pyrazines | |||||||
2,5-Dimethyl pyrazine | 930 | ND | ND | ND | 1.12 ± 0.33 | ND | MS |
2-Ethyl-3,6-dimethylpyrazine | 1093 | ND | ND | ND | 0.88 ± 0.12 | ND | MS |
Tetramethylpyrazine | 1098 | ND | 1.24 ± 1.76 | ND | 1.07 ± 0.09 | ND | MS |
Sulfur-containing compounds | |||||||
Methylthiomethane | <800 | ND | ND | 3.90 ± 5.52 | ND | ND | MS |
Dimethyl sulfide | <800 | ND | ND | 2.30 ± 0.18 | ND | ND | MS |
Methyl sulfone | 941 | ND | 0.43 ± 0.27 | ND | ND | 6.19 ± 8.73 | MS/RI |
1-Octadecanesulphonyl chloride | 1467 | 4.89 ± 6.91 | ND | ND | ND | ND | MS |
Lactones | |||||||
Butyrolactone | 940 | 7.67 ± 10.84 | ND | ND | ND | ND | MS |
Ethers | |||||||
Diisodecyl ether | 1067 | ND | ND | ND | 0.19 ± 0.07 | ND | MS |
n-Octyl ether | 1069 | ND | ND | ND | 0.07 ± 0.10 | ND | MS |
Etc. | |||||||
1,1-Dichloro-1-fluoroethane | <800 | ND | 7.86 ± 11.11 | ND | ND | ND | MS |
1,1-Difluorodecane | 820 | 0.01 ± 0.01 | ND | ND | ND | ND | MS |
Tetrachloroethylene | 837 | 1.26 ± 1.79 | ND | ND | ND | ND | MS |
Pentalin | 991 | 8.49 ± 12.01 | ND | 1.25 ± 0.72 | ND | ND | MS |
1-Bromopentadecane | 1121 | ND | ND | 0.11 ± 0.15 | ND | ND | MS |
3-Heptafluorobutyroxytridecane | 1299 | ND | ND | ND | ND | 0.03 ± 0.01 | MS |
1,22-Dibromodocosane | 1380 | ND | ND | ND | ND | 0.05 ± 0.01 | MS |
Total content | 960.28 | 90.29 | 64.58 | 197.97 | 517.96 |
No. | Major Compounds | RI (1) | Odor Description | Odor Intensity (2) | I.D. (4) | ||||
---|---|---|---|---|---|---|---|---|---|
UGB (3) | AGB | FGB | SGB | DFGB | |||||
1 | Toluene | <800 | roasty, aromatic | 1 | ND (5) | ND | ND | ND | MS/RI |
2 | Hexanal | 820 | grass | ND | ND | 1 | ND | ND | MS/RI |
3 | Pentanoic acid | 867 | salt smell | ND | 3 | ND | ND | ND | MS/RI |
4 | Methoxy-phenyl-oxime | 921 | cricket | ND | 2 | 2 | 1 | ND | MS |
5 | 2,5-Dimethyl pyrazine | 930 | roasty | ND | ND | ND | 1 | ND | MS/RI |
6 | Butyrolactone | 940 | cricket | 1 | ND | ND | ND | ND | MS |
7 | Methyl sulfone | 941 | hot dried cricket, de-fatted cricket, roasty | ND | 1 | ND | ND | 1 | MS |
8 | α-Pinene | 952 | grass | ND | ND | ND | 1 | ND | MS/RI |
9 | 1-Octen-3-ol | 993 | bitter smell | ND | ND | 1 | ND | ND | MS |
10 | p-Cymene | 1042 | cricket | ND | ND | ND | 1 | ND | MS/RI |
11 | 3-Octen-2-one | 1055 | cricket | ND | ND | ND | 1 | ND | MS |
12 | Diisodecyl ether | 1067 | cricket | ND | ND | ND | 1 | ND | MS |
13 | n-Octyl ether | 1069 | autoclaved cricket, roasty | ND | ND | ND | 2 | ND | MS |
14 | Tetramethylpyrazine | 1098 | roasty, Barley | ND | 1 | ND | 1 | ND | MS |
15 | Benzeneethanol | 1129 | cricket | 2 | 2 | 2 | 1 | 1 | MS |
16 | Oxalic acid, isobutyl nonyl ester | 1134 | cricket | ND | 2 | ND | ND | ND | MS |
17 | 2-Hexyldecanol | 1141 | defatted cricket, roasty | ND | ND | ND | ND | 1 | MS |
18 | 2-Octyldecan-1-ol | 1178 | cricket | ND | ND | ND | ND | 1 | MS |
19 | Cyclododecane | 1202 | cricket | 3 | ND | ND | ND | ND | MS |
20 | Acetic acid, phenethyl ester | 1271 | freeze-dried cricket | ND | ND | 1 | ND | ND | MS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, H.-Y.; Shin, E.-C.; Lee, Y.; Kim, M. Characterization of Odor-Active Compounds from Gryllus bimaculatus Using Gas Chromatography-Mass Spectrometry-Olfactometry. Foods 2023, 12, 2328. https://doi.org/10.3390/foods12122328
Seong H-Y, Shin E-C, Lee Y, Kim M. Characterization of Odor-Active Compounds from Gryllus bimaculatus Using Gas Chromatography-Mass Spectrometry-Olfactometry. Foods. 2023; 12(12):2328. https://doi.org/10.3390/foods12122328
Chicago/Turabian StyleSeong, Hui-Yeong, Eui-Cheol Shin, Youngseung Lee, and Misook Kim. 2023. "Characterization of Odor-Active Compounds from Gryllus bimaculatus Using Gas Chromatography-Mass Spectrometry-Olfactometry" Foods 12, no. 12: 2328. https://doi.org/10.3390/foods12122328
APA StyleSeong, H.-Y., Shin, E.-C., Lee, Y., & Kim, M. (2023). Characterization of Odor-Active Compounds from Gryllus bimaculatus Using Gas Chromatography-Mass Spectrometry-Olfactometry. Foods, 12(12), 2328. https://doi.org/10.3390/foods12122328