Effectiveness of Polyphenols on Perinatal Brain Damage: A Systematic Review of Preclinical Studies
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Characteristics of Studies
2.5. Assessment of Risk of Bias
3. Results
3.1. Selection of Studies
3.2. Characteristics of the Studies
3.3. Main Findings
3.3.1. Primary Outcomes
Resveratrol
Resveratrol Combined with Other Polyphenols
Other Polyphenols
3.3.2. Secondary Outcomes
3.4. Analysis of Risk of Bias
4. Discussion
4.1. Neuroprotective Role of Polyphenols
4.1.1. Polyphenols Reduced Morphological Damage
4.1.2. Polyphenols Alleviate the Inflammatory State
4.1.3. Polyphenols Attenuated Caspase-3-Activity
4.1.4. Polyphenols Decreased Oxidative Stress Markers
4.1.5. Polyphenols and Modulation of Metabolic Pathways
4.1.6. Polyphenols and Epigenetics Modulation
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATP | Adenosine triphosphate |
CAT | catalase |
CNS | Central nervous system |
COX-2 | cyclo-oxygenase-2 |
DPPH | 2,2-diphenyl-1-picrylhydrazy |
FA | fractional anisotropy |
GPx | glutathione peroxidase |
HI | hypoxia-ischemia |
HO-1 | heme oxygenase 1 |
IL-1b | interleukin 1b |
IL-18 | interleukin 18 |
IL-6 | interleukin 6 |
iNOS | inducible nitric oxide synthase |
LPS | lipopolysaccharide |
MBP | myelin basic protein |
MDA | malondialdehyde |
mNSS | modified neurological severity score |
NF-jB | nuclear factor kappa B |
Nrf2 | nuclear factor erythroid 2 related factor 2 |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
ROS | oxygen reactive species |
S-100B | S-100 beta protein |
SOD | superoxide dismutase |
TNF-α | tumor necrosis factor alpha |
References
- Visco, D.B.; Toscano, A.E.; Juárez, P.A.R.; Gouveia, H.J.C.B.; Guzman-Quevedo, O.; Torner, L.; Manhães-de-Castro, R. A Systematic Review of Neurogenesis in Animal Models of Early Brain Damage: Implications for Cerebral Palsy. Exp. Neurol. 2021, 340, 113643. [Google Scholar] [CrossRef] [PubMed]
- Millar, L.J.; Shi, L.; Hoerder-Suabedissen, A.; Molnár, Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front. Cell. Neurosci. 2017, 11, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacerda, D.C.; Ferraz-Pereira, K.N.; Bezerra de morais, A.T.; Costa-de-santana, B.J.R.; Quevedo, O.G.; Manhães-de-Castro, R.; Toscano, A.E. Oro-Facial Functions in Experimental Models of Cerebral Palsy: A Systematic Review. J. Oral Rehabil. 2017, 44, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Cerisola, A.; Baltar, F.; Ferrán, C.; Turcatti, E. Mecanismos de Lesión Cerebral En Niños Prematuros. Medicina 2019, 79, 10–14. [Google Scholar] [PubMed]
- Robaina Castellanos, G.R.; Riesgo Rodríguez, S.D.L.C. La Encefalopatía de La Prematuridad, Una Entidad Nosológica En Expansión. Rev. Cubana Pediatr. 2015, 87, 224–240. [Google Scholar]
- Prasad, M.; Narayan, B.; Prasad, A.N.; Rupar, C.A.; Levin, S.; Kronick, J.; Ramsay, D.; Tay, K.Y.; Prasad, C. MELAS: A Multigenerational Impact of the MTTL1 A3243G MELAS Mutation. Can. J. Neurol. Sci. 2014, 41, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Aldag, M.; Kocaaslan, C.; Bademci, M.S.; Yildiz, Z.; Kahraman, A.; Oztekin, A.; Yilmaz, M.; Kehlibar, T.; Ketenci, B.; Aydin, E. Consequence of Ischemic Stroke after Coronary Surgery with Cardiopulmonary Bypass According to Stroke Subtypes. Braz. J. Cardiovasc. Surg. 2018, 33, 462–468. [Google Scholar] [CrossRef]
- Campos-Esparza, M.R.; Sánchez-Gómez, M.V.; Matute, C. Molecular Mechanisms of Neuroprotection by Two Natural Antioxidant Polyphenols. Cell Calcium 2009, 45, 358–368. [Google Scholar] [CrossRef]
- da Conceição Pereira, S.; Manhães-de-Castro, R.; Visco, D.B.; de Albuquerque, G.L.; da Silva Calado, C.M.S.; da Silva Souza, V.; Toscano, A.E. Locomotion Is Impacted Differently according to the Perinatal Brain Injury Model: Meta-Analysis of Preclinical Studies with Implications for Cerebral Palsy. J. Neurosci. Methods 2021, 360, 109250. [Google Scholar] [CrossRef]
- Lacerda, D.C.; Urquiza-Martínez, M.V.; Manhaes-de-Castro, R.; Visco, D.B.; Derosier, C.; Mercado-Camargo, R.; Torner, L.; Toscano, A.E.; Guzmán-Quevedo, O. Metabolic and Neurological Consequences of the Treatment with Polyphenols: A Systematic Review in Rodent Models of Noncommunicable Diseases. Nutr. Neurosci. 2022, 25, 1680–1696. [Google Scholar] [CrossRef]
- Mandel, S.; Youdim, M.B.H. Catechin Polyphenols: Neurodegeneration and Neuroprotection in Neurodegenerative Diseases. Free Radic. Biol. Med. 2004, 37, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Dumont, U.; Sanchez, S.; Olivier, B.; Chateil, J.F.; Deffieux, D.; Quideau, S.; Pellerin, L.; Beauvieux, M.C.; Bouzier-Sore, A.K.; Roumes, H. Maternal Alcoholism and Neonatal Hypoxia-Ischemia: Neuroprotection by Stilbenoid Polyphenols. Brain Res. 2020, 1738, 146798. [Google Scholar] [CrossRef] [PubMed]
- Horwood, J.M.; Dufour, F.; Laroche, S.; Davis, S. Signalling Mechanisms Mediated by the Phosphoinositide 3-kinase/Akt Cascade in Synaptic Plasticity and Memory in the Rat. Eur. J. Neurosci. 2006, 23, 3375–3384. [Google Scholar] [CrossRef]
- Ten, V.; Galkin, A. Mechanism of Mitochondrial Complex I Damage in Brain Ischemia/reperfusion Injury. A Hypothesis. Mol. Cell. Neurosci. 2019, 100, 103408. [Google Scholar] [CrossRef]
- Parikh, S.; Goldstein, A.; Koenig, M.K.; Scaglia, F.; Enns, G.M.; Saneto, R.; Anselm, I.; Cohen, B.H.; Falk, M.J.; Greene, C.; et al. Diagnosis and Management of Mitochondrial Disease: A Consensus Statement from the Mitochondrial Medicine Society. Genet. Med. 2015, 17, 689–701. [Google Scholar] [CrossRef] [Green Version]
- Visco, D.B.; Manhães de Castro, R.; da Silva, M.M.; Costa de Santana, B.J.R.; Bezerra Gouveia, H.J.C.; de Moura Ferraz, M.L.R.; de Albuquerque, G.L.; Lacerda, D.C.; de Vasconcelos, D.A.A.; Guzman Quevedo, O.; et al. Neonatal Kaempferol Exposure Attenuates Gait and Strength Deficits and Prevents Altered Muscle Phenotype in a Rat Model of Cerebral Palsy. Int. J. Dev. Neurosci. 2023, 83, 80–97. [Google Scholar] [CrossRef]
- Isac, S.; Panaitescu, A.M.; Spataru, A.; Iesanu, M.; Totan, A.; Udriste, A.; Cucu, N.; Peltecu, G.; Zagrean, L.; Zagrean, A.M. Trans-Resveratrol Enriched Maternal Diet Protects the Immature Hippocampus from Perinatal Asphyxia in Rats. Neurosci. Lett. 2017, 653, 308–313. [Google Scholar] [CrossRef] [PubMed]
- D’Aiuto, N.; Hochmann, J.; Millán, M.; Di Paolo, A.; Bologna-Molina, R.; Sotelo Silveira, J.; Arocena, M. Hypoxia, Acidification and Oxidative Stress in Cells Cultured at Large Distances from an Oxygen Source. Sci. Rep. 2022, 12, 21699. [Google Scholar] [CrossRef]
- Naoi, M.; Wu, Y.; Shamoto-Nagai, M.; Maruyama, W. Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int. J. Mol. Sci. 2019, 20, 2451. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, S.; Molath, A.; Choksi, H.; Kumar, S.; Mehra, R. Classifications of Polyphenols and Their Potential Application in Human Health and Diseases. Int. J. Physiol. Nutr. Phys. Educ. 2021, 6, 293–301. [Google Scholar] [CrossRef]
- Silva, R.F.M.; Pogačnik, L. Polyphenols from Food and Natural Products: Neuroprotection and Safety. Antioxidants 2020, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Bian, H.; Shan, H.; Chen, T. Resveratrol Ameliorates Hypoxia/ischemia-Induced Brain Injury in the Neonatal Rat via the miR-96/Bax Axis. Child’s Nerv. Syst. 2017, 33, 1937–1945. [Google Scholar] [CrossRef]
- Montané, X.; Kowalczyk, O.; Reig-Vano, B.; Bajek, A.; Roszkowski, K.; Tomczyk, R.; Pawliszak, W.; Giamberini, M.; Mocek-Płóciniak, A.; Tylkowski, B. Current Perspectives of the Applications of Polyphenols and Flavonoids in Cancer Therapy. Molecules 2020, 25, 3342. [Google Scholar] [CrossRef] [PubMed]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
- DelBo, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is There Su Ffi Cient Evidence to Define a. Nutrients 2019, 11, 1355. [Google Scholar]
- Zhao, D.; Simon, J.E.; Wu, Q. A Critical Review on Grape Polyphenols for Neuroprotection: Strategies to Enhance Bioefficacy. Crit. Rev. Food Sci. Nutr. 2020, 60, 597–625. [Google Scholar] [CrossRef]
- Martínez-Huélamo, M.; Rodríguez-Morató, J.; Boronat, A.; de la Torre, R. Modulation of Nrf2 by Olive Oil and Wine Polyphenols and Neuroprotection. Antioxidants 2017, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Kung, H.; Lin, K.; Kung, C.; Lin, T. Of Polyphenols with Respect to Resveratrol in Parkinson ’ S Disease. Biomedicines 2021, 9, 918. [Google Scholar] [CrossRef]
- Xi, J.S.; Wang, Y.F.; Long, X.X.; Ma, Y. Mangiferin Potentiates Neuroprotection by Isoflurane in Neonatal Hypoxic Brain Injury by Reducing Oxidative Stress and Activation of Phosphatidylinositol-3-Kinase/akt/mammalian Target of Rapamycin (PI3K/akt/mTOR) Signaling. Med. Sci. Monit. 2018, 24, 7459–7468. [Google Scholar] [CrossRef]
- Kovacsova, M.; Barta, A.; Parohova, J.; Vrankova, S.; Pechanova, O. Neuroprotective Mechanisms of Natural Polyphenolic Compounds. Act. Nerv. Super. Rediviva 2010, 52, 181–186. [Google Scholar]
- Revuelta, M.; Arteaga, O.; Montalvo, H.; Alvarez, A.; Hilario, E.; Martinez-Ibargüen, A. Antioxidant Treatments Recover the Alteration of Auditory-Evoked Potentials and Reduce Morphological Damage in the Inferior Colliculus after Perinatal Asphyxia in Rat. Brain Pathol. 2016, 26, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Dumont, U.; Sanchez, S.; Olivier, B.; Chateil, J.F.; Pellerin, L.; Beauvieux, M.C.; Bouzier-Sore, A.K.; Roumes, H. Maternal Consumption of Piceatannol: A Nutritional Neuroprotective Strategy against Hypoxia-Ischemia in Rat Neonates. Brain Res. 2019, 1717, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Karalis, F.; Soubasi, V.; Georgiou, T.; Nakas, C.T.; Simeonidou, C.; Guiba-Tziampiri, O.; Spandou, E. Resveratrol Ameliorates Hypoxia/ischemia-Induced Behavioral Deficits and Brain Injury in the Neonatal Rat Brain. Brain Res. 2011, 1425, 98–110. [Google Scholar] [CrossRef]
- Le, K.; Chibaatar Daliv, E.; Wu, S.; Qian, F.; Ali, A.I.; Yu, D.; Guo, Y. SIRT1-Regulated HMGB1 Release Is Partially Involved in TLR4 Signal Transduction: A Possible Anti-Neuroinflammatory Mechanism of Resveratrol in Neonatal Hypoxic-Ischemic Brain Injury. Int. Immunopharmacol. 2019, 75, 105779. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Li, S.; Hu, Y.; Zhang, H.; Liu, Y.; Jiang, H.; Fang, M.; Li, Z.; Xu, K.; Zhang, H.; et al. Resveratrol Post-Treatment Protects against Neonatal Brain Injury after Hypoxia-Ischemia. Oncotarget 2016, 7, 79247–79261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arteaga, O.; Revuelta, M.; Urigüen, L.; Álvarez, A.; Montalvo, H.; Hilario, E. Pretreatment with Resveratrol Prevents Neuronal Injury and Cognitive Deficits Induced by Perinatal Hypoxia-Ischemia in Rats. PLoS ONE 2015, 10, e0142424. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, X.; Liu, Z.; Wu, S.; Guo, J.; Shi, R.; Sun, Y.; Wang, Y.; Yin, H. Resveratrol Reserved Hypoxia-Ischemia Induced Childhood Hippocampal Dysfunction and Neurogenesis via Improving Mitochondrial Dynamics. Neurosci. Res. 2020, 161, 51–58. [Google Scholar] [CrossRef]
- Dumont, U.; Sanchez, S.; Repond, C.; Beauvieux, M.C.; Chateil, J.F.; Pellerin, L.; Bouzier-Sore, A.K.; Roumes, H. Neuroprotective Effect of Maternal Resveratrol Supplementation in a Rat Model of Neonatal Hypoxia-Ischemia. Front. Neurosci. 2021, 14, 616824. [Google Scholar] [CrossRef]
- Roumes, H.; Sanchez, S.; Benkhaled, I.; Fernandez, V.; Goudeneche, P.; Perrin, F.; Pellerin, L.; Guillard, J.; Bouzier-Sore, A.K. Neuroprotective Effect of Eco-Sustainably Extracted Grape Polyphenols in Neonatal Hypoxia-Ischemia. Nutrients 2022, 14, 773. [Google Scholar] [CrossRef]
- Etus, V.; Altug, T.; Belce, A.; Ceylan, S. Green Tea Polyphenol (-)-Epigallocatechin Gallate Prevents Oxidative Damage on Periventricular White Matter of Infantile Rats with Hydrocephalus. Tohoku J. Exp. Med. 2003, 200, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.H.; Bae, Y.C.; Kim-Han, J.S.; Lee, J.H.; Choi, I.Y.; Son, K.H.; Kang, S.S.; Kim, W.K.; Han, B.H. Polyphenol Amentoflavone Affords Neuroprotection against Neonatal Hypoxic-Ischemic Brain Damage via Multiple Mechanisms. J. Neurochem. 2006, 96, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Fu, R.; Wang, J.; Yang, X.; Wen, L.; Feng, J. Resveratrol Mitigates the Oxidative Stress Mediated by Hypoxic-Ischemic Brain Injury in Neonatal Rats via nrf2/ho-1 Pathway. Pharm. Biol. 2018, 56, 440–449. [Google Scholar] [CrossRef]
- Loren, D.J.; Seeram, N.P.; Schulman, R.N.; Holtzman, D.M. Maternal Dietary Supplementation with Pomegranate Juice Is Neuroprotective in an Animal Model of Neonatal Hypoxic-Ischemic Brain Injury. Pediatr. Res. 2005, 57, 858–864. [Google Scholar] [CrossRef] [Green Version]
- West, T.; Atzeva, M.; Holtzman, D.M. Pomegranate Polyphenols and Resveratrol Protect the Neonatal Brain against Hypoxic-Ischemic Injury. Dev. Neurosci. 2007, 29, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Hamzei Taj, S.; Kho, W.; Riou, A.; Wiedermann, D.; Hoehn, M. MiRNA-124 Induces Neuroprotection and Functional Improvement after Focal Cerebral Ischemia. Biomaterials 2016, 91, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Li, J.D.; Chen, Y.X.; Peng, C.Y.; Hong, X.F.; Liu, H.H.; Fang, J.Y.; Zhuang, R.Q.; Pan, W.M.; Zhang, D.L.; Guo, Z.D.; et al. Micro-SPECT Imaging of Acute Ischemic Stroke with Radioiodinated Riboflavin in Rat MCAO Models via Riboflavin Transporter Targeting. ACS Chem. Neurosci. 2022, 13, 1966–1973. [Google Scholar] [CrossRef] [PubMed]
- Scapagnini, G.; Sonya, V.; Nader, A.G.; Calogero, C.; Zella, D.; Fabio, G. Modulation of Nrf2/ARE Pathway by Food Polyphenols: A Nutritional Neuroprotective Strategy for Cognitive and Neurodegenerative Disorders. Mol. Neurobiol. 2011, 44, 192–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menard, C.; Bastianetto, S.; Quirion, R. Neuroprotective Effects of Resveratrol and Epigallocatechin Gallate Polyphenols Are Mediated by the Activation of Protein Kinase C Gamma. Front. Cell. Neurosci. 2013, 7, 281. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Wang, T.; Ma, C. EPO Activates PI3K-IKKα-CDK1 Signaling Pathway to Promote the Proliferation of Glial Cells under Hypoxia Environment. Genet. Mol. Biol. 2022, 45, e20210249. [Google Scholar] [CrossRef]
- Gottlieb, M.; Leal-Campanario, R.; Campos-Esparza, M.R.; Sánchez-Gómez, M.V.; Alberdi, E.; Arranz, A.; Delgado-García, J.M.; Gruart, A.; Matute, C. Neuroprotection by Two Polyphenols Following Excitotoxicity and Experimental Ischemia. Neurobiol. Dis. 2006, 23, 374–386. [Google Scholar] [CrossRef]
- Dias, G.P.; Cavegn, N.; Nix, A.; Do Nascimento Bevilaqua, M.C.; Stangl, D.; Zainuddin, M.S.A.; Nardi, A.E.; Gardino, P.F.; Thuret, S. The Role of Dietary Polyphenols on Adult Hippocampal Neurogenesis: Molecular Mechanisms and Behavioural Effects on Depression and Anxiety. Oxid. Med. Cell. Longev. 2012, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Search Strategy Component | Terms/Booleans Operators | Primary Endpoints | Secondary Endpoints |
---|---|---|---|
Rodent models subjected to perinatal brain injury | (Models, Theoretical) OR (Rodentia) OR (Rats) OR (Mice) AND (Brain Injuries) OR (Hypoxia, Brain) OR (Hypoxia-Ischemia, Brain), (Brain Ischemia) | Biochemical analysis | Body weight measurement |
Supplementation with different sources of polyphenols | (Polyphenols) | Antioxidant parameters | Reflex and motor coordination |
Perinatal brain damage parameters | (Brain) OR (Brain Diseases) OR (Neuronal Plasticity) | Anti-inflammatory parameters | Sensory evaluation |
Antioxidant and anti-inflammatory properties | (Antioxidants) OR (Antioxidant Response Elements) AND (Anti-Inflammatory Agents) | Perinatal brain damage evaluation | Cognitive function |
Behavioral assessment | (Behavior) OR (Motor Skills) OR (Motor Skills Disorders) (Cognition Disorders) | Molecular mechanisms investigation | Anxiety behavior |
Inclusion Criteria | Exclusion Criteria |
---|---|
Participants:
| Participants:
|
Exposure:
| Exposure:
|
Control:
| Control:
|
Outcomes:
| Outcomes:
|
Study type:
| Study type:
|
Reference | Experimental Groups (n) | Perinatal Brain Damage Model | Source of Polyphenol (s) | Main Active Polyphenol (s) | Route and Dose of Administration | Duration of Treatment |
---|---|---|---|---|---|---|
Karalis et al., 2011 [33] | Group 1: hypoxic-ischemic rats + resveratrol; Group 2: hypoxic-ischemic rats + sham; Group 3: control group. | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Trans-resveratrol (Sigma Aldrich, St. Louis, MO, USA). | Resveratrol. | Intraperitoneally (90 mg/kg). | A single application (immediately after hypoxia). |
Isac et al., 2017 [17] | Group 1: control group; Group 2: perinatal asphyxia group; Group 3: perinatal asphyxia + trans-resveratrol. | Pups were exposed to a 90-min asphyxia (9% O2, 20% CO2 and 71% N2) on P6. | Trans-resveratrol. | Trans-resveratrol. | Orally, drinking fluid (50 mg/kg). | The diet offered to mothers starting at P30 (after weaning), during gestation, until postnatal day 7. |
Dumont et al., 2019 [32] | Group 1: sham group; Group 2: control group (hypoxic-ischemic); Group 3: hypoxic-ischemic + resveratrol (lactation); Group 4: hypoxic-ischemic + resveratrol (gestation + lactation). | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Piceatannol (3,3′,4,5′-trans-tetrahydroxystilbene). | Piceatannol. | Orally, drinking fluid (0.15 mg/kg). | Once daily, during the first week of lactation or during the last week of gestation plus the first week of lactation. |
Dumont et al., 2020 [12] | Group 1: control group; Group 2: hypoxic-ischemic + ethanol (4 mg/kg); Group 3: hypoxic-ischemic + ethanol (0.5 g/kg); Group 4: hypoxic-ischemic + trans-resveratrol; Group 5: hypoxic-ischemic + trans-piceatannol. | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Stilbenoid polyphenols, trans-resveratrol and trans-piceatannol (Sigma-Aldrich, St. Quentin Fallavier, Itère, France). | Trans-piceatannol; Resveratrol. | Orally, drinking fluid (0.15 mg/kg). | Supplementation starts from the last week of gestation to P9. |
Dumont et al., 2021 [38] | Group 1: control group; Group 2: resveratrol group; Group 3: hypoxic-ischemic group; Group 4: hypoxic-ischemic + resveratrol (gestation + lactation); Group 5: hypoxic-ischemic + resveratrol (first week of lactation); Group 6: hypoxic-ischemic + resveratrol (gestation); Group 7: hypoxic-ischemic + resveratrol (second week of lactation). | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Resveratrol (Sigma-Aldrich, St. Quentin Fallavier, Itère France). | Resveratrol. | Orally, drinking fluid (0.15 mg/kg). | Last week of gestation + first and second week of breastfeeding. |
Roumes et al., 2022 [39] | Group 1: control group; Group 2: hypoxic-ischemic group; Group 3: hypoxic-ischemic + resveratrol group (2 weeks before insult); Group 4: hypoxic-ischemic + cocktail group (2 weeks before insult); Group 5: hypoxic-ischemic + cocktail group (2 weeks after insult). | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Resveratrol, Pterostilbene, Viniferin (Exinnov, Saint Jean d’Illac, France). | Pterostilbene; Trans-ε-viniferin; Resveratrol. | Orally, drinking fluid (0.15 mg/kg for resveratrol and Pterostilbene, and 0.30 mg/kg for Viniferin). | For 2 weeks (last week of gestation + first week of breastfeeding. |
Etus et al., 2003 [40] | Group 1: control group Group 2: hypoxic-ischemic group Group 3: hypoxic-ischemic + EGCG (between 1 and up to 15 days after insult) | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Epigalocathecin galate (EGCG) (Sigma-Aldrich, France). | EGCG | Intraperitoneal (50 mg/kg) | For 15 days, daily, after hipoxic ischemic brain injury. |
Shin et al., 2006 [41] | Group 1: control group; Group 2: Hypoxic-ischemic + apigenin (6 h after insult) Group 3: hypoxic-ischemic + luteolin (6 h after insult) Group 4: Hypoxic-ischemic + amentoflavone (6 h after insult) | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Amentoflavone (Sigma-Aldrich, France). | Amentoflavone | Intraperitoneal (30 mg/kg) | A single application (6 h after hypoxia) |
Revuelta et al., 2016 [31] | Group 1: control group; Group 2: hypoxic-ischemic group; Group 3: hypoxic-ischemic + nicotine hydrogen tartrate group (2 h before insult); Group 4: hypoxic-ischemic + melatonin group (10 min after insult); Group 5: hypoxic-ischemic + resveratrol group (10 min after insult); Group 6: hypoxic-ischemic + docosahexaenoic acid (10 min before insult). | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Resveratrol (Sigma-Aldrich, France). | Resveratrol | Intraperitoneal (20 mg/kg) | A single application (10 min after hypoxia) |
Reference | Experimental Groups (n) | Perinatal Brain Damage Model | Source of Polyphenol (s) | Main Active Polyphenol (s) | Route and Dose of Administration | Duration of Treatment |
---|---|---|---|---|---|---|
Arteaga et al., 2015 [36] | Group 1: control group; Group 2: hypoxic-ischemic group; Group 3: hypoxic-ischemic group + resveratrol before insult; Group 4: hypoxic-ischemic group + resveratrol after insult. | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Resveratrol (Sigma-Aldrich Co., Ltd., Gillingham, UK). | Resveratrol. | Intraperitoneal (20 mg/kg). | A single application (10 min before or immediately after the hypoxic event). |
Pan et al., 2016 [35] | Group 1: control group; Group 2: hypoxic-ischemic group; Group 3: hypoxic-ischemic group + resveratrol. | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Resveratrol (Sigma Chemical Co., UK). | Resveratrol. | Intraperitoneal (100 mg/kg). | Three applications (0 h, 8 h and 24 h after hypoxic-ischemic injury). |
Bian et al., 2017 [22] | Group 1: control group; Group 2: hypoxic-ischemic group; Group 3: hypoxic-ischemic group + ethanol; Group 4: hypoxic-ischemic group + resveratrol. | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Resveratrol 3,5,4′- trihydroxy stilbene (Sigma Chemical Co., UK). | Resveratrol. | Intraperitoneal (100 mg/kg). | Three applications (0 h, 8 h and 18 h after hypoxic-ischemic injury). |
Xi et al., 2018 [29] | Group 1: control group; Group 2: hypoxic-ischemic group; Group 3–5: hypoxic-ischemic group + mangiferin (50, 100, or 200 mg/kg); Group 6: hypoxic-ischemic group + isoflurane; Group 7–9: hypoxic-ischemic group + mangiferin (50, 100, or 200 mg/kg) + isoflurane. | Hypoxic- ischemic brain damage induced by unilateral carotid ligation at P10. | mangiferin (Sigma-Aldrich, St. Louis, MO, USA). | mangiferin. | Intragastrically (50, 100, or 200 mg/kg). | P3 to P12 and 1 h prior to insult on the day of ischemic induction. |
Gao et al., 2018 [42] | Group 1: control group; Group 2: hypoxic-ischemic group; Group 3: hypoxic-ischemic group + resveratrol (20 mg/kg); Group 4: hypoxic-ischemic group + resveratrol (40 mg/kg). | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Resveratrol (Sigma-Aldrich, St. Louis, MO, USA). | Resveratrol. | Intraperitoneal (20 or 40 mg/kg). | Seven consecutive days before hypoxia-ischemia induction. |
Reference | Experimental Groups (n) | Perinatal Brain Damage Model | Source of Polyphenol (s) | Main Active Polyphenol (s) | Route and Dose of Administration | Duration of Treatment |
---|---|---|---|---|---|---|
Loren et al., 2005 [43] | Group 1: HI mice + plain water control group Group 2: HI mice + high dose of Pomegranate juice; Group 3: HI mice + middle dose of Pomegranate juice; Group 4: HI mice + low dose of Pomegranate juice; Group 5: HI mice + sugar water Group 6: HI mice + vitamin C. | HI brain damage induced by unilateral carotid ligation at P7. | Pomegranate juice concentrate (Wonderful variety of pomegranates) (POM Wonderful, Los Angeles, CA, USA). | Resveratrol. | Orally, drinking fluid (high dose: 32 µmol per day; middle dose: 16 µmol per day; low dose: 8 µmol per day). | Fifteen days (seven days in utero, eight days during neonatal period). |
West et al., 2007 [44] | Group 1: HI mice group + resveratrol 24 h before insult; Group 2: HI mice group + vehicle 24 h before insult; Group 3: HI mice group + resveratrol 10 min before insult; Group 4: HI mice group + vehicle 10 min before insult; Group 5: HI mice group + resveratrol 3 h after insult; Group 6: HI mice group + vehicle 3 h after the insult. | Hypoxic-ischemic brain damage induced by unilateral carotid ligation at P7. | Polyphenol-rich pomegranate juice and resveratrol. | Resveratrol. | Intraperitoneal (high dose: 20 mg/kg; middle dose: 200 μg/kg; low dose: 2 μg/kg). | A single application (24 h pre-injury, 10 min pre-injury or 3 h post-injury). |
Li et al., 2020 [37] | Group 1: hypoxic-ischemic group; Group 2: hypoxic-ischemic + resveratrol (10 mg/kg); Group 3: hypoxic-ischemic + resveratrol (40 mg/kg). | Hypoxic- ischemic brain damage induced by unilateral electrocoagulation at 8 watts of the right carotid artery at P7. | Resveratrol (Sigma-Aldrich, Los Angeles, CA, USA). | Resveratrol. | Oral gavage (10 or 40 mg/kg). | Once, daily, for 14 days, starting at P14. |
Le et al., 2019 [34] | Group 1: control group; Group 2: hypoxic-ischemic group; Group 3: hypoxic-ischemic + resveratrol group; Group 4: hypoxic-ischemic + resveratrol + EX527. | Hypoxic- ischemic brain damage induced by unilateral carotid ligation at P7. | Resveratrol (MedChemExpress, Monmouth Junction, NJ, USA). | Resveratrol. | Intraperitoneal (100 mg/mL). | A single application (first 2 h after hypoxic-ischemic brain damage). |
Study | Primary Outcomes | Secondary Outcomes |
---|---|---|
Etus et al., 2003 [40] | ↓ % Area loss of brain tissue loss in hippocampus, cortex, and striatum; ↓ Caspase-3 activity; | The authors did not evaluate secondary endpoints. |
Loren et al., 2005 [43] | ↓ MDA levels. | No difference in body weight. |
Shin et al., 2006 [41] | ↓ The concentration of DPPH radical; ↓ % Area loss of brain tissue loss in hippocampus, cortex, and striatum; ↓ Caspase-3 activity; ↓ LPS-induced inflammatory activation of microglia; ↓ In the induction of the inflammatory mediators (iNOS, COX-2, IL-1β, TNF-α-α). | The authors did not evaluate secondary endpoints. |
West et al., 2007 [44] | ↓ % Area loss of brain tissue loss in hippocampus, cortex, and striatum; ↓ Caspase-3 activity; ↓ Caspase-3 and calpain cleavage. | The authors did not evaluate secondary endpoints. |
Karalis et al., 2011 [33] | ↓ Degree of damage of the cerebral cortex and the hippocampus; ↑ Diameter of the corpus callosum; ↓ Myelin loss on the corpus callosum. | No difference on righting reflex, improved negative geotaxis and gait reflex; ↑ Motor coordination (evaluated by beam walking test, rope suspension test, rota-rod test; ↑ Cognitive performance (evaluated by Morris water maze test and working memory test). |
Revuelta et al., 2016 [31] | ↑ Brain weight; ↓ Reactive astrogliosis; ↓ Degree of cerebral MBP loss; Recovered membrane integrity (evaluated by % of positive cells to this cardiolipin binding marker). | ↓ Body weight loss. |
Arteaga et al., 2015 [36] | ↓ % Area loss of brain tissue loss; ↓ Cell loss in the hippocampus and parietal cortex; ↓ Values of neuropathology in the CA 1, CA 2–3, dentate gyrus and parietal cortex; ↓ Reactive astrogliosis; ↓ Degree of cerebral MBP loss in external capsule and striatum; Protected mitochondrial inner membrane integrity, and restored mitochondrial transmembrane potential; ↓ Production of ROS. | ↓ Anxiety and neophobia (evaluated by hole-board test); ↑ Spatial working memory (evaluated by spatial alternation task), and ↑ non-spatial working memory (evaluated by novel object recognition test). |
Pan et al., 2016 [35] | ↓ Brain atrophy; ↓ Tissue loss in the hippocampus and cortex; ↓ Number of dying cells in the cortex; ↓ Expression levels of TNF-α-α, IL-18, IL-1β, IL-6, COX-2; ↓ microglia activation; Anti-apoptotic effect by ↓ a number of TUNEL-positive cells; Anti-apoptotic effect by changes in expression of related genes (↓ Bax, ↑ Bcl-2) in the hippocampus and cortex; ↓ Cleaved caspase-3-positive cells. | The authors did not evaluate secondary endpoints. |
Isac et al., 2017 [17] | ↓ Expression levels of TNF-α-α, IL-1β, S-100B in the hippocampus; ↑ Hippocampal expression of miR124 and miR134, and ↓ expression of miR132 and miR15a. | The authors did not evaluate secondary endpoints. |
Bian et al., 2017 [22] | ↑ miR-96 and ↓ Bax expression levels in the hippocampus and cerebral cortex; prevented OGD/R-induced PC12 cell apoptosis via miR-96. | The authors did not evaluate secondary endpoints. |
Xi et al., 2018 [29] | ↓ Cerebral infarct area; ↓ Neuronal apoptosis as determined by TUNEL assay; Antioxidant activity by ↓ ROS, MDA levels; ↓ Cleaved caspase-3-positive cells; ↑ PI3K/Akt signaling pathway. | The authors did not evaluate secondary endpoints. |
Gao et al., 2018 [42] | Cerebral edema, infarct area; Lipid peroxidation products; Inflammatory markers (TNF-α-α, IL-1β, IL-6, NF-jB); Restored antioxidative status by ↑ the activity of GPx, CAT, SOD; Upregulation of HO-1 and Nrf2. | The authors did not evaluate secondary endpoints. |
Dumont et al., 2019 [32] | ↓ Volume of damaged in cortex, hippocampus, and striatum; ↓ Neuronal death in cortical region and striatum; Improved white matter reorganization by ↑ FA. | Improved in righting reflex test, locomotion test; ↓ Sensorimotor deficits using the mNSS; ↑ The discrimination index by novel object recognition test. |
Le et al., 2019 [34] | ↓ Brain damage area; ↓ mRNA expression of IL-1β, IL-6, and TNF-α-α; ↓ microglia activation; ↓ TLR4/MyD88/NF-κB signaling; ↓ HMGB1 cytoplasmic localization in microglia; inhibition of HMGB1 nucleoplasmic transfer and extracellular release. | Improved motor function (evaluated by cylinder test, forelimb suspension test, and open field test). |
Li et al., 2020 [37] | ↓ Brain lesion volume in cortex, hippocampus, and striatum; ↑ Proliferation and neural differentiation of the neural stem/progenitor cells of the hippocampus; ↓ Mitochondrial dynamics injury in the hippocampus. | Improved cognitive function (evaluated by Morris maze test and novel object recognition test); Antidepressant behavior and anxiolytic effects (evaluated by tail suspension test, forced swim test, elevated plus maze, and open field test). |
Dumont et al., 2020 [12] | Brain lesion volume in cortex, hippocampus, and striatum. | Improved in righting reflex test and negative geotaxis; ↓ Sensorimotor deficits using the mNSS; ↑ The discrimination index by novel object recognition test. |
Dumont et al., 2021 [38] | Brain lesion volume in the cortex, hippocampus, and striatum; ↑ mRNA relative expression of brain sirt 1, bcl 2, SOD 2. | Improved in the righting reflex test; ↓ Sensorimotor deficits using the mNSS; ↑ The discrimination index by novel object recognition test. |
Roumes et al., 2022 [39] | ↓ Brain edema and lesion volumes in the cortex, hippocampus, and striatum. | Improved in the righting reflex test; ↑ The discrimination index by novel object recognition test. |
Reference | Random Sequence Generation | Baseline Characteristics | Allocation Concealment | Blinding of Participants and Personnel | Blinding of Outcome Assessment | Random Outcome Assessment | Incomplete Outcome Data | Selective Reporting | Other Bias |
---|---|---|---|---|---|---|---|---|---|
Etus et al. (2003) [40] | |||||||||
Loren et al. (2005) [43] | |||||||||
Shin et al. (2006) [41] | |||||||||
West et al. (2007) [44] | |||||||||
Karalis et al. (2011) [33] | |||||||||
Revuelta et al. (2015) [31] | |||||||||
Arteaga et al. (2015) [36] | |||||||||
Pan et al. (2016) [35] | |||||||||
Isac et al. (2017) [17] | |||||||||
Bian et al. (2017) [22] | |||||||||
Xi et al. (2018) [29] | |||||||||
Gao et al. (2018) [42] | |||||||||
Dumont et al. (2019) [32] | |||||||||
Le et al. (2019) [34] | |||||||||
Li et al. (2020) [37] | |||||||||
Dumont et al. (2020) [12] | |||||||||
Dumont et al. (2021) [38] | |||||||||
Roumes et al. (2022) [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontes, P.B.; Toscano, A.E.; Lacerda, D.C.; da Silva Araújo, E.R.; Costa, P.C.T.d.; Alves, S.M.; Brito Alves, J.L.d.; Manhães-de-Castro, R. Effectiveness of Polyphenols on Perinatal Brain Damage: A Systematic Review of Preclinical Studies. Foods 2023, 12, 2278. https://doi.org/10.3390/foods12122278
Pontes PB, Toscano AE, Lacerda DC, da Silva Araújo ER, Costa PCTd, Alves SM, Brito Alves JLd, Manhães-de-Castro R. Effectiveness of Polyphenols on Perinatal Brain Damage: A Systematic Review of Preclinical Studies. Foods. 2023; 12(12):2278. https://doi.org/10.3390/foods12122278
Chicago/Turabian StylePontes, Paula Brielle, Ana Elisa Toscano, Diego Cabral Lacerda, Eulália Rebeca da Silva Araújo, Paulo César Trindade da Costa, Swane Miranda Alves, José Luiz de Brito Alves, and Raul Manhães-de-Castro. 2023. "Effectiveness of Polyphenols on Perinatal Brain Damage: A Systematic Review of Preclinical Studies" Foods 12, no. 12: 2278. https://doi.org/10.3390/foods12122278
APA StylePontes, P. B., Toscano, A. E., Lacerda, D. C., da Silva Araújo, E. R., Costa, P. C. T. d., Alves, S. M., Brito Alves, J. L. d., & Manhães-de-Castro, R. (2023). Effectiveness of Polyphenols on Perinatal Brain Damage: A Systematic Review of Preclinical Studies. Foods, 12(12), 2278. https://doi.org/10.3390/foods12122278