Revolutionizing Food Safety with Quantum Dot–Polymer Nanocomposites: From Monitoring to Sensing Applications
Abstract
:1. Introduction and Background
2. Methods for Synthesis of QD–Polymer Nanocomposites
3. Synthesis Approaches of Physical Mixing
4. Synthesis Approaches of In Situ Polymerisation
5. Chemical Grafting Method
6. Food Safety Applications of QD–Polymer Nanocomposites
7. Detection and Monitoring of Foodborne Pathogens Using QD–Polymer Nanocomposites
8. Food Spoilage Detection Using QD–Polymer Nanocomposites
9. Detection of Chemical Contaminants in Food Using QD–Polymer Nanocomposites
10. Food Packaging Applications of QD–Polymer Nanocomposites for Food Safety
11. Monitoring and Sensing Applications of QD–Polymer Nanocomposites
12. Sensing of Physical and Chemical Parameters in Food Using QD–Polymer Nanocomposites, such as Temperature, Humidity, pH, and Gases
13. Detection and Quantification of Food Quality Parameters Using QD–Polymer Nanocomposites, Such as Freshness, Ripeness, and Flavour
14. Challenges and Future Perspectives
15. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef]
- Ghosh, T.; Das, T.K.; Das, P.; Banerji, P.; Das, N.C. Current scenario and recent advancement of doped carbon dots: A short review scientocracy update (2013–2022). Carbon Lett. 2022, 32, 953–977. [Google Scholar] [CrossRef]
- Ghaffarkhah, A.; Hosseini, E.; Kamkar, M.; Sehat, A.A.; Dordanihaghighi, S.; Allahbakhsh, A.; van der Kuur, C.; Arjmand, M. Synthesis, applications, and prospects of graphene quantum dots: A comprehensive review. Small 2022, 18, 2102683. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Ahmed, S.R.; Sherazee, M.; Margel, S.; Gedanken, A.; Srinivasan, S.; Rajabzadeh, A.R. Carbon Dot Biopolymer-Based Flexible Functional Films for Antioxidant and Food Monitoring Applications. ACS Appl. Polym. Mater. 2022, 4, 9323–9340. [Google Scholar] [CrossRef]
- Chen, Y.; Munechika, K.; Jen-La Plante, I.; Munro, A.M.; Skrabalak, S.E.; Xia, Y.; Ginger, D.S. Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl. Phys. Lett. 2008, 93, 053106. [Google Scholar] [CrossRef]
- Robel, I.; Kuno, M.; Kamat, P.V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137. [Google Scholar] [CrossRef] [PubMed]
- Hyun, B.-R.; Zhong, Y.-W.; Bartnik, A.C.; Sun, L.; Abruna, H.D.; Wise, F.W.; Goodreau, J.D.; Matthews, J.R.; Leslie, T.M.; Borrelli, N.F. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2008, 2, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Kawawaki, T.; Tatsuma, T. Enhancement of PbS quantum dot-sensitized photocurrents using plasmonic gold nanoparticles. Phys. Chem. Chem. Phys. 2013, 15, 20247–20251. [Google Scholar] [CrossRef]
- Vikram, A.; Kumar, V.; Ramesh, U.; Balakrishnan, K.; Oh, N.; Deshpande, K.; Ewers, T.; Trefonas, P.; Shim, M.; Kenis, P.J. A millifluidic reactor system for multistep continuous synthesis of InP/ZnSeS nanoparticles. ChemNanoMat 2018, 4, 943–953. [Google Scholar] [CrossRef]
- Wang, L.; Lin, J.; Liu, X.; Cao, S.; Wang, Y.; Zhao, J.; Zou, B. Mg-Doped ZnO nanoparticle films as the interlayer between the ZnO electron transport layer and InP quantum dot layer for light-emitting diodes. J. Phys. Chem. C 2020, 124, 8758–8765. [Google Scholar] [CrossRef]
- Moon, H.; Lee, W.; Kim, J.; Lee, D.; Cha, S.; Shin, S.; Chae, H. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem. Commun. 2019, 55, 13299–13302. [Google Scholar] [CrossRef] [PubMed]
- Nozik, A.J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 2001, 52, 193–231. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; He, J.; Wu, S.-T. Recent advances on quantum-dot-enhanced liquid-crystal displays. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1900611. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Banerjee, S.; Das, N.C. Graphene based emergent nanolights: A short review on the synthesis, properties and application. Res. Chem. Intermed. 2019, 45, 3823–3853. [Google Scholar] [CrossRef]
- Kamal, A.; Ashmawy, M.; Algazzar, A.M.; Elsheikh, A.H. Fabrication techniques of polymeric nanocomposites: A comprehensive review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 4843–4861. [Google Scholar] [CrossRef]
- Linkov, P.; Samokhvalov, P.; Vokhmintsev, K.; Zvaigzne, M.; Krivenkov, V.A.; Nabiev, I. Optical properties of quantum dots with a core–multishell structure. JETP Lett. 2019, 109, 112–115. [Google Scholar] [CrossRef]
- Freeman, R.; Willner, I. Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev. 2012, 41, 4067–4085. [Google Scholar] [CrossRef]
- Weaver, J.; Zakeri, R.; Aouadi, S.; Kohli, P. Synthesis and characterization of quantum dot–polymer composites. J. Mater. Chem. 2009, 19, 3198–3206. [Google Scholar] [CrossRef]
- Das, T.K. Quantum Dot–Polymer Composites in Catalytic Applications. In Quantum Dots and Polymer Nanocomposites; CRC Press: Boca Raton, FL, USA, 2022; pp. 281–297. [Google Scholar]
- Ganguly, S.; Das, P.; Banerjee, S.; Das, N.C. Advancement in science and technology of carbon dot-polymer hybrid composites: A review. Funct. Compos. Struct. 2019, 1, 022001. [Google Scholar] [CrossRef]
- Devi, S.; Kumar, M.; Tiwari, A.; Tiwari, V.; Kaushik, D.; Verma, R.; Bhatt, S.; Sahoo, B.M.; Bhattacharya, T.; Alshehri, S. Quantum dots: An emerging approach for cancer therapy. Front. Mater. 2022, 8, 585. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.-H. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog. Polym. Sci. 2018, 80, 1–38. [Google Scholar] [CrossRef]
- Yang, L.; Wei, F.; Liu, J.-M.; Wang, S. Functional hybrid micro/nanoentities promote agro-food safety inspection. J. Agric. Food Chem. 2021, 69, 12402–12417. [Google Scholar] [CrossRef] [PubMed]
- Akgöl, S.; Ulucan-Karnak, F.; Kuru, C.I.; Kuşat, K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol. Bioeng. 2021, 118, 2906–2922. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Ganguly, S.; Agarwal, T.; Maity, P.; Ghosh, S.; Choudhary, S.; Gangopadhyay, S.; Maiti, T.K.; Dhara, S.; Banerjee, S. Heteroatom doped blue luminescent carbon dots as a nano-probe for targeted cell labeling and anticancer drug delivery vehicle. Mater. Chem. Phys. 2019, 237, 121860. [Google Scholar] [CrossRef]
- Ganguly, S.; Das, P.; Das, S.; Ghorai, U.; Bose, M.; Ghosh, S.; Mondal, M.; Das, A.K.; Banerjee, S.; Das, N.C. Microwave assisted green synthesis of Zwitterionic photolumenescent N-doped carbon dots: An efficient ‘on-off’chemosensor for tracer Cr (+ 6) considering the inner filter effect and nano drug-delivery vector. Colloids Surf. A Physicochem. Eng. Asp. 2019, 579, 123604. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, H.; Ma, H.; Yu, J.; Liu, L.; Fan, Y. A MoS2QDs/chitin nanofiber composite for improved antibacterial and food packaging. Int. J. Biol. Macromol. 2022, 209, 737–746. [Google Scholar] [CrossRef]
- Sistani, S.; Shekarchizadeh, H. Applications of Quantum Dots in the Food Industry. In Quantum Dots-Recent Advances, New Perspectives and Contemporary Applications; IntechOpen: London, UK, 2022. [Google Scholar]
- Charitidis, C.A.; Georgiou, P.; Koklioti, M.A.; Trompeta, A.-F.; Markakis, V. Manufacturing nanomaterials: From research to industry. Manuf. Rev. 2014, 1, 11. [Google Scholar] [CrossRef]
- Winnik, F.M.; Maysinger, D. Quantum dot cytotoxicity and ways to reduce it. Acc. Chem. Res. 2013, 46, 672–680. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Margel, S.; Gedanken, A. Tailor made magnetic nanolights: Fabrication to cancer theranostics applications. Nanoscale Adv. 2021, 3, 6762–6796. [Google Scholar] [CrossRef]
- Saravanan, A.; Maruthapandi, M.; Das, P.; Ganguly, S.; Margel, S.; Luong, J.H.; Gedanken, A. Applications of N-doped carbon dots as antimicrobial agents, antibiotic carriers, and selective fluorescent probes for nitro explosives. ACS Appl. Bio Mater. 2020, 3, 8023–8031. [Google Scholar] [CrossRef]
- Torres, S.; Bogireddy, N.K.R.; Kaur, I.; Batra, V.; Agarwal, V. Heavy metal ion detection using green precursor derived carbon dots. iScience 2022, 25, 103816. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A. Epoxy and quantum dots-based nanocomposites: Achievements and applications. Mater. Res. Innov. 2020, 24, 235–243. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Patra, N.; Salerno, M. Micromorphological characterization of polymer-oxide nanocomposite thin films by atomic force microscopy and fractal geometry analysis. Prog. Org. Coat. 2015, 89, 50–56. [Google Scholar] [CrossRef]
- Larosa, C.; Patra, N.; Salerno, M.; Mikac, L.; Meri, R.M.; Ivanda, M. Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites. Beilstein J. Nanotechnol. 2017, 8, 2026–2031. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Lata, S.; Soni, U.; Rani, P.; Malik, R.S. Carbon quantum dots intercalated in polypyrrole (PPy) thin electrodes for accelerated energy storage. Electrochim. Acta 2020, 364, 137281. [Google Scholar] [CrossRef]
- Parameswaranpillai, J.; Das, P.; Ganguly, S. Quantum Dots and Polymer Nanocomposites: Synthesis, Chemistry, and Applications; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Parameswaranpillai, J.; Ganguly, S. Polymeric Nanocomposite Materials for Sensor Applications; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Das, P.; Ganguly, S.; Saha, A.; Noked, M.; Margel, S.; Gedanken, A. Carbon-dots-initiated photopolymerization: An in situ synthetic approach for MXene/poly (norepinephrine)/copper hybrid and its application for mitigating water pollution. ACS Appl. Mater. Interfaces 2021, 13, 31038–31050. [Google Scholar] [CrossRef]
- Xu, H.; Adolfsson, K.H.; Xie, L.; Hassanzadeh, S.; Pettersson, T.; Hakkarainen, M. Zero-dimensional and highly oxygenated graphene oxide for multifunctional poly (lactic acid) bionanocomposites. ACS Sustain. Chem. Eng. 2016, 4, 5618–5631. [Google Scholar] [CrossRef]
- Xu, H.; Xie, L.; Li, J.; Hakkarainen, M. Coffee grounds to multifunctional quantum dots: Extreme nanoenhancers of polymer biocomposites. ACS Appl. Mater. Interfaces 2017, 9, 27972–27983. [Google Scholar] [CrossRef]
- Wu, D.; Samanta, A.; Srivastava, R.K.; Hakkarainen, M. Starch-derived nanographene oxide paves the way for electrospinnable and bioactive starch scaffolds for bone tissue engineering. Biomacromolecules 2017, 18, 1582–1591. [Google Scholar] [CrossRef]
- Rozenberg, B.; Tenne, R. Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog. Polym. Sci. 2008, 33, 40–112. [Google Scholar] [CrossRef]
- Mombrú, D.; Romero, M.; Faccio, R.; Castiglioni, J.; Mombrú, A.W. In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications. J. Solid State Chem. 2017, 250, 60–67. [Google Scholar] [CrossRef]
- Heslop, K.; Kelarakis, A.; Krysmann, M.; Estevez, L. In situ generation of carbon dots within a polymer matrix. Polymer 2020, 188, 122159. [Google Scholar]
- Hazarika, D.; Karak, N. Biodegradable tough waterborne hyperbranched polyester/carbon dot nanocomposite: Approach towards an eco-friendly material. Green Chem. 2016, 18, 5200–5211. [Google Scholar] [CrossRef]
- De, B.; Kumar, M.; Mandal, B.B.; Karak, N. An in situ prepared photo-luminescent transparent biocompatible hyperbranched epoxy/carbon dot nanocomposite. RSC Adv. 2015, 5, 74692–74704. [Google Scholar] [CrossRef]
- Gustavsson, L.H.; Adolfsson, K.H.; Hakkarainen, M. Thermoplastic “all-cellulose” composites with covalently attached carbonized cellulose. Biomacromolecules 2020, 21, 1752–1761. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Margel, S.; Gedanken, A. Immobilization of heteroatom-doped carbon dots onto nonpolar plastics for antifogging, antioxidant, and food monitoring applications. Langmuir 2021, 37, 3508–3520. [Google Scholar] [CrossRef]
- World Health Organization. Meeting Report: The Second Global Meeting of the FAO/WHO International Food Safety Authorities Network (INFOSAN). In Proceedings of the The Second Global Meeting of INFOSAN, Abu Dhabi, United Arab Emirates, 9–11 December 2019. [Google Scholar]
- Ghasemi, R.; Mirahmadi-zare, S.Z.; Allafchian, A.; Behmanesh, M. Fast fluorescent screening assay and dual electrochemical sensing of bacterial infection agent (Streptococcus agalactiae) based on a fluorescent-immune nanofibers. Sens. Actuators B Chem. 2022, 352, 130968. [Google Scholar] [CrossRef]
- McCarthy, M.; Brennan, M.; Kelly, A.; Ritson, C.; De Boer, M.; Thompson, N. Who is at risk and what do they know? Segmenting a population on their food safety knowledge. Food Qual. Prefer. 2007, 18, 205–217. [Google Scholar] [CrossRef]
- Fukuda, K. Food safety in a globalized world. Bull. World Health Organ. 2015, 93, 212. [Google Scholar] [CrossRef]
- Méndez, P.A.; Ramírez, K.; Lucero, A.; Rodríguez, J.; López, B. Fluorescent Nanocomposites Based on Cadmium Sulfide Quantum Dots and Cationic/Anionic Polymer Matrices: Characterization and Application as Sensor for Visual Detection of Glyphosate. In Anionic Polymer Matrices: Characterization and Application as Sensor for Visual Detection of Glyphosate; Social Science Research Network (SSRN): Rochester, NY, USA, 2023. [Google Scholar]
- Käferstein, F.; Abdussalam, M. Food safety in the 21st century. Bull. World Health Organ. 1999, 77, 347. [Google Scholar]
- Adegoke, O.; Daeid, N.N. Alloyed AuFeZnSe quantum dots@gold nanorod nanocomposite as an ultrasensitive and selective plasmon-amplified fluorescence OFF-ON aptasensor for arsenic (III). J. Photochem. Photobiol. A Chem. 2022, 426, 113755. [Google Scholar] [CrossRef]
- Salabat, A.; Mirhoseini, F. Polymer-based nanocomposites fabricated by microemulsion method. Polym. Compos. 2022, 43, 1282–1294. [Google Scholar] [CrossRef]
- Rahman, S.; Majumdar, G.; Chowdhury, D. 16 Biocompatibility of Polymer–Quantum Dot Composite. In Quantum Dots and Polymer Nanocomposites: Synthesis, Chemistry, and Applications; CRC Press: Boca Raton, FL, USA, 2022; pp. 335–358. [Google Scholar]
- Bozal-Palabiyik, B.; Kurbanoglu, S.; Erkmen, C.; Uslu, B. Future prospects and concluding remarks for electroanalytical applications of quantum dots. In Electroanalytical Applications of Quantum Dot-Based Biosensors; Elsevier: Amsterdam, The Netherlands, 2021; pp. 427–450. [Google Scholar]
- Chauhan, N.; Maekawa, T.; Kumar, D.N.S. Graphene based biosensors—Accelerating medical diagnostics to new-dimensions. J. Mater. Res. 2017, 32, 2860–2882. [Google Scholar] [CrossRef]
- Zia, R.; Iftikhar, M.; Rafiq, A.; Hakim, S.; Nawaz, M.S.; Imran, A.; Bajwa, S.Z. Nanosensors for microbial detection in soil. In Nanosensors for Smart Agriculture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 367–400. [Google Scholar]
- Williams, D.N.; Saar, J.S.; Bleicher, V.; Rau, S.; Lienkamp, K.; Rosenzweig, Z. Poly(oxanorbornene)-Coated CdTe Quantum Dots as Antibacterial Agents. ACS Appl. Bio Mater. 2020, 3, 1097–1104. [Google Scholar] [CrossRef]
- Patra, N.; Shukla, M. Quantum Dots Modified Thermoplastic and Thermosetting Plastic Composites. In Quantum Dots and Polymer Nanocomposites; CRC Press: Boca Raton, FL, USA, 2022; pp. 171–187. [Google Scholar]
- Zhou, C.; Liu, T.; Yang, X.; Zhang, C.; Zhang, S.; Zhang, P. QDs embedded copolymer nanospheres prepared with a simple self-stable precipitation polymerization method for Listeria monocytogenes detection. Opt. Mater. 2020, 99, 109582. [Google Scholar] [CrossRef]
- Katsumiti, A.; Gilliland, D.; Arostegui, I.; Cajaraville, M. Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis. Aquat. Toxicol. 2014, 153, 39–52. [Google Scholar] [CrossRef]
- Yong, K.-T.; Law, W.-C.; Hu, R.; Ye, L.; Liu, L.; Swihart, M.T.; Prasad, P.N. Nanotoxicity assessment of quantum dots: From cellular to primate studies. Chem. Soc. Rev. 2013, 42, 1236–1250. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Y.; Tang, M.; Kong, L.; Ying, J.; Wu, T.; Xue, Y.; Pu, Y. Liver toxicity of cadmium telluride quantum dots (CdTe QDs) due to oxidative stress in vitro and in vivo. Int. J. Mol. Sci. 2015, 16, 23279–23299. [Google Scholar] [CrossRef]
- Soni, G.K.; Wangoo, N.; Cokca, C.; Peneva, K.; Sharma, R.K. Ultrasensitive aptasensor for arsenic detection using quantum dots and guanylated Poly (methacrylamide). Anal. Chim. Acta 2022, 1209, 339854. [Google Scholar] [CrossRef]
- Fatma Aygün, S.; Kabadayi, F. Determination of benzo [a] pyrene in charcoal grilled meat samples by HPLC with fluorescence detection. Int. J. Food Sci. Nutr. 2005, 56, 581–585. [Google Scholar] [CrossRef]
- Ziyaina, M.; Rasco, B.; Coffey, T.; Ünlü, G.; Sablani, S.S. Colorimetric detection of volatile organic compounds for shelf-life monitoring of milk. Food Control. 2019, 100, 220–226. [Google Scholar] [CrossRef]
- Luckas, B. Phycotoxins in seafood—Toxicological and chromatographic aspects. J. Chromatogr. A 1992, 624, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Neng, J.; Harpster, M.H.; Wilson, W.C.; Johnson, P.A. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles. Biosens. Bioelectron. 2013, 41, 316–321. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Shi, J.; Zhang, W.; Zhang, X.; Huang, X.; Zou, X.; Li, Z.; Wei, R. Facile synthesis of Au@ Ag core–shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chem. 2022, 370, 131276. [Google Scholar] [CrossRef] [PubMed]
- Cesarino, I.; Moraes, F.C.; Lanza, M.R.; Machado, S.A. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem. 2012, 135, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Manetta, A.C.; Di Giuseppe, L.; Giammarco, M.; Fusaro, I.; Simonella, A.; Gramenzi, A.; Formigoni, A. High-performance liquid chromatography with post-column derivatisation and fluorescence detection for sensitive determination of aflatoxin M1 in milk and cheese. J. Chromatogr. A 2005, 1083, 219–222. [Google Scholar] [CrossRef]
- Mousavizadeh, F.S.; Sarlak, N. A sensitive dual mode turn-on fluorescence and colorimetric nanosensor for ultrasensitive detection of trace amount of gluten proteins in bread products based on crystalline nano cellulose and gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 287, 122095. [Google Scholar] [CrossRef]
- Leong, Y.X.; Lee, Y.H.; Koh, C.S.L.; Phan-Quang, G.C.; Han, X.; Phang, I.Y.; Ling, X.Y. Surface-enhanced Raman scattering (SERS) taster: A machine-learning-driven multireceptor platform for multiplex profiling of wine flavors. Nano Lett. 2021, 21, 2642–2649. [Google Scholar] [CrossRef]
- Hamed, A.M.; Moreno-González, D.; García-Campaña, A.M.; Gámiz-Gracia, L. Determination of aflatoxins in yogurt by dispersive liquid–liquid microextraction and HPLC with photo-induced fluorescence detection. Food Anal. Methods 2017, 10, 516–521. [Google Scholar] [CrossRef]
- Liu, S.; Liu, S.G.; Jiang, W.; Zhao, Q.; Gao, W.; Shi, X. Detection of Organophosphorus Pesticides Using Silver-Coated Gold Nanoparticles. ACS Appl. Nano Mater. 2022, 5, 16402–16412. [Google Scholar] [CrossRef]
- Ahirwar, R.C.; Mehra, S.; Reddy, S.M.; Alshamsi, H.A.; Kadhem, A.A.; Karmankar, S.B.; Sharma, A.; Das, P. Progression of Quantum Dots Confined Polymeric Systems for Sensorics. Polymers 2023, 15, 405. [Google Scholar] [CrossRef]
- Das, P.; Ahmed, S.R.; Srinivasan, S.; Rajabzadeh, A.R. Optical Properties of Quantum Dots. In Quantum Dots and Polymer Nanocomposites; CRC Press: Boca Raton, FL, USA, 2022; pp. 69–85. [Google Scholar]
- Das, P.; Bose, M.; Ganguly, S.; Mondal, S.; Das, A.K.; Banerjee, S.; Das, N.C. Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli. Nanotechnology 2017, 28, 195501. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, E.; Pillay, K. Nanomaterials for latent fingerprint detection: A review. J. Mater. Res. Technol. 2021, 12, 1856–1885. [Google Scholar] [CrossRef]
- Farzin, M.A.; Abdoos, H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta 2021, 224, 121828. [Google Scholar] [CrossRef] [PubMed]
- Montaseri, H. Quantum Dot-Molecularly Imprinted Polymer Nanomaterials for the Fluorescence Sensing of Selected Pharmaceutical and Personal Care Products. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2018. [Google Scholar]
- Romero-Fierro, D.; Bustamante-Torres, M.; Bravo-Plascencia, F.; Magaña, H.; Bucio, E. Polymer-Magnetic Semiconductor Nanocomposites for Industrial Electronic Applications. Polymers 2022, 14, 2467. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Maruthapandi, M.; Saravanan, A.; Natan, M.; Jacobi, G.; Banin, E.; Gedanken, A. Carbon dots for heavy-metal sensing, pH-sensitive cargo delivery, and antibacterial applications. ACS Appl. Nano Mater. 2020, 3, 11777–11790. [Google Scholar] [CrossRef]
- Ganguly, S.; Das, P.; Itzhaki, E.; Hadad, E.; Gedanken, A.; Margel, S. Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels. ACS Appl. Mater. Interfaces 2020, 12, 51940–51951. [Google Scholar] [CrossRef]
- Lin, X.; Guo, X. Advances in biosensors, chemosensors and assays for the determination of fusarium mycotoxins. Toxins 2016, 8, 161. [Google Scholar] [CrossRef]
- Parameswaranpillai, J.; Das, P.; Ganguly, S. Introduction to Quantum Dots and Their Polymer Composites. In Quantum Dots and Polymer Nanocomposites; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–19. [Google Scholar]
- Mohammadi, R.; Naderi-Manesh, H.; Farzin, L.; Vaezi, Z.; Ayarri, N.; Samandari, L.; Shamsipur, M. Fluorescence sensing and imaging with carbon-based quantum dots for early diagnosis of cancer: A review. J. Pharm. Biomed. Anal. 2022, 212, 114628. [Google Scholar] [CrossRef]
- El-Shaheny, R.; Yoshida, S.; Fuchigami, T. Graphene quantum dots as a nanoprobe for analysis of o-and p-nitrophenols in environmental water adopting conventional fluorometry and smartphone image processing-assisted paper-based analytical device. In-depth study of sensing mechanisms. Microchem. J. 2020, 158, 105241. [Google Scholar] [CrossRef]
- Peng, B.; Guo, Y.; Ma, Y.; Zhou, M.; Zhao, Y.; Wang, J.; Fang, Y. Smartphone-assisted multiple-mode assay of ascorbic acid using cobalt oxyhydroxide nanoflakes and carbon quantum dots. Microchem. J. 2022, 175, 107185. [Google Scholar] [CrossRef]
- Khumsap, T.; Nguyen, L.T. Molecularly imprinted polymer composites for detecting toxic contaminants in agricultural products. In Molecularly Imprinted Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 309–344. [Google Scholar]
- Mohammadi, Z.; Jafari, S.M. Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Adv. Colloid Interface Sci. 2020, 286, 102297. [Google Scholar] [CrossRef] [PubMed]
- Arshad, H.; Majid, A.; Khan, M.A.U. Carbon Quantum Dots. In Quantum Dots for Plant Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 75–102. [Google Scholar]
- Farooq, M.; Sagbas, S.; Yildiz, M.; Meral, K.; Siddiq, M.; Aktas, N.; Sahiner, N. Gum arabic microgels as template for in situ metal-sulfide based quantum dots preparation and their thermal, spectroscopic, optical, and magnetic characterization. J. Electron. Mater. 2017, 46, 4373–4383. [Google Scholar] [CrossRef]
- He, J.; Yap, R.C.C.; Wong, S.Y.; Li, X. Polymer composites for intelligent food packaging. J. Mol. Eng. Mater. 2015, 3, 1540005. [Google Scholar] [CrossRef]
- Jang, E.-P.; Song, W.-S.; Lee, K.-H.; Yang, H. Preparation of a photo-degradation-resistant quantum dot–polymer composite plate for use in the fabrication of a high-stability white-light-emitting diode. Nanotechnology 2013, 24, 045607. [Google Scholar] [CrossRef]
- Farea, M.A.; Mohammed, H.Y.; Shirsat, S.M.; Sayyad, P.W.; Ingle, N.N.; Al-Gahouari, T.; Mahadik, M.M.; Bodkhe, G.A.; Shirsat, M.D. Hazardous gases sensors based on conducting polymer composites. Chem. Phys. Lett. 2021, 776, 138703. [Google Scholar] [CrossRef]
- Nemati, F.; Hosseini, M.; Zare-Dorabei, R.; Salehnia, F.; Ganjali, M.R. Fluorescent turn on sensing of Caffeine in food sample based on sulfur-doped carbon quantum dots and optimization of process parameters through response surface methodology. Sens. Actuators B Chem. 2018, 273, 25–34. [Google Scholar] [CrossRef]
- Tang, S.; Chen, D.; Li, X.; Wang, C.; Li, T.; Ma, J.; Guo, G.; Guo, Q. Promising energy transfer system between fuorine and nitrogen Co-doped graphene quantum dots and Rhodamine B for ratiometric and visual detection of doxycycline in food. Food Chem. 2022, 388, 132936. [Google Scholar] [CrossRef]
- Jia, P.; He, X.; Yang, J.; Sun, X.; Bu, T.; Zhuang, Y.; Wang, L. Dual–emission MOF–based ratiometric platform and sensory hydrogel for visible detection of biogenic amines in food spoilage. Sens. Actuators B Chem. 2023, 374, 132803. [Google Scholar] [CrossRef]
- Khachatryan, G.; Khachatryan, K. Starch based nanocomposites as sensors for heavy metals-detection of Cu2+ and Pb2+ ions. Int. Agrophysics 2019, 33, 121–126. [Google Scholar] [CrossRef]
- Ganguly, S.; Margel, S. Bioimaging probes based on magneto-fluorescent nanoparticles. Pharmaceutics 2023, 15, 686. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Jiang, W.; Zhao, Y.; Liu, H.; Sun, B. Single, dual and multi-emission carbon dots based optosensing for food safety. Trends Food Sci. Technol. 2021, 111, 388–404. [Google Scholar] [CrossRef]
- Shi, X.; Wei, W.; Fu, Z.; Gao, W.; Zhang, C.; Zhao, Q.; Deng, F.; Lu, X. Review on carbon dots in food safety applications. Talanta 2019, 194, 809–821. [Google Scholar] [CrossRef]
- Pan, M.; Yin, Z.; Liu, K.; Du, X.; Liu, H.; Wang, S. Carbon-based nanomaterials in sensors for food safety. Nanomaterials 2019, 9, 1330. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Q.; Li, H.; Li, F. pH-response quantum dots with orange–red emission for monitoring the residue, distribution, and variation of an organophosphorus pesticide in an agricultural crop. J. Agric. Food Chem. 2021, 69, 2689–2696. [Google Scholar] [CrossRef] [PubMed]
- Riahi, Z.; Rhim, J.-W.; Bagheri, R.; Pircheraghi, G.; Lotfali, E. Carboxymethyl cellulose-based functional film integrated with chitosan-based carbon quantum dots for active food packaging applications. Prog. Org. Coat. 2022, 166, 106794. [Google Scholar] [CrossRef]
- Paek, K.; Yang, H.; Lee, J.; Park, J.; Kim, B.J. Efficient Colorimetric pH Sensor Based on Responsive Polymer–Quantum Dot Integrated Graphene Oxide. ACS Nano 2014, 8, 2848–2856. [Google Scholar] [CrossRef]
- Bhagya, R.S.; Sunil, D.; Shetty, P.; Kagatikar, S.; Wagle, S.; Melroy Lewis, P.; Kulkarni, S.D.; Kekuda, D. Water-based flexographic ink using chalcones exhibiting aggregation-induced enhanced emission for anti-counterfeit applications. J. Mol. Liq. 2021, 344, 117974. [Google Scholar] [CrossRef]
- He, X.; Jia, K.; Bai, Y.; Chen, Z.; Liu, Y.; Huang, Y.; Liu, X. Quantum dots encoded white-emitting polymeric superparticles for simultaneous detection of multiple heavy metal ions. J. Hazard. Mater. 2021, 405, 124263. [Google Scholar] [CrossRef]
- Platel, R.; Palleau, E.; Vaure, L.; Raffy, S.; Guérin, F.; Nayral, C.; Delpech, F.; Ressier, L. Micropatterning of Adhesive Epoxy with Embedded Colloidal Quantum Dots for Authentication and Tracing. ACS Appl. Nano Mater. 2021, 4, 3537–3544. [Google Scholar] [CrossRef]
- Zhou, Y.; Qu, Z.-b.; Zeng, Y.; Zhou, T.; Shi, G. A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol. Biosens. Bioelectron. 2014, 52, 317–323. [Google Scholar] [CrossRef]
- Duncan, T.V.; Bajaj, A.; Gray, P.J. Surface defects and particle size determine transport of CdSe quantum dots out of plastics and into the environment. J. Hazard. Mater. 2022, 439, 129687. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Feng, S.-S. Targeting and imaging cancer cells by Folate-decorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers. Biomaterials 2009, 30, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.A.; Konstantatos, G.; Zhang, S.; Cyr, P.W.; Klem, E.J.; Levina, L.; Sargent, E.H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142. [Google Scholar] [CrossRef]
- Gupta, V.; Chaudhary, N.; Srivastava, R.; Sharma, G.D.; Bhardwaj, R.; Chand, S. Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices. J. Am. Chem. Soc. 2011, 133, 9960–9963. [Google Scholar] [CrossRef] [PubMed]
- Sukul, P.K.; Mukherjee, M.; Kar, C. Quantum Dot–Polymer Composites as Sensors. In Quantum Dots and Polymer Nanocomposites; CRC Press: Boca Raton, FL, USA, 2022; pp. 227–258. [Google Scholar]
- Sharma, K.; Kumar, P.; Verma, G.; Kumar, A. Optical properties of transition metal doped ZnS nanoparticles in PVK based nanocomposite films. Optik 2020, 206, 164357. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Upadhyaya, K.; Ayachit, N.; Iyer, N. Quantum Dot–Polymer Composites in Light-Emitting Diode Applications. In Quantum Dots and Polymer Nanocomposites; CRC Press: Boca Raton, FL, USA, 2022; pp. 259–279. [Google Scholar]
- Wang, H.; Chen, Q.; Zhou, S. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018, 47, 4198–4232. [Google Scholar] [CrossRef]
- Genovese, D.; Rampazzo, E.; Bonacchi, S.; Montalti, M.; Zaccheroni, N.; Prodi, L. Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. Nanoscale 2014, 6, 3022–3036. [Google Scholar] [CrossRef]
- Mu, Q.; Jiang, G.; Chen, L.; Zhou, H.; Fourches, D.; Tropsha, A.; Yan, B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem. Rev. 2014, 114, 7740–7781. [Google Scholar] [CrossRef]
- Mohammed Waseem, A. Design and Characterization of Targeted Drug Delivery of Carbon Quantum Dots from a Natural Precursor for Cancer Treatment. Master’s Thesis, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore, India, 2020. [Google Scholar]
- Roy, S.; Ezati, P.; Rhim, J.-W. Gelatin/carrageenan-based functional films with carbon dots from enoki mushroom for active food packaging applications. ACS Appl. Polym. Mater. 2021, 3, 6437–6445. [Google Scholar] [CrossRef]
- Wang, L.-F.; Rhim, J.-W. Functionalization of halloysite nanotubes for the preparation of carboxymethyl cellulose-based nanocomposite films. Appl. Clay Sci. 2017, 150, 138–146. [Google Scholar] [CrossRef]
- Hess, S.C.; Permatasari, F.A.; Fukazawa, H.; Schneider, E.M.; Balgis, R.; Ogi, T.; Okuyama, K.; Stark, W.J. Direct synthesis of carbon quantum dots in aqueous polymer solution: One-pot reaction and preparation of transparent UV-blocking films. J. Mater. Chem. A 2017, 5, 5187–5194. [Google Scholar] [CrossRef]
- Uthirakumar, P.; Devendiran, M.; Kim, T.H.; Lee, I.-H. A convenient method for isolating carbon quantum dots in high yield as an alternative to the dialysis process and the fabrication of a full-band UV blocking polymer film. New J. Chem. 2018, 42, 18312–18317. [Google Scholar] [CrossRef]
- Cuevas, A.; Campos, B.; Romero, R.; Algarra, M.; Vázquez, M.I.; Benavente, J. Eco-friendly modification of a regenerated cellulose based film by silicon, carbon and N-doped carbon quantum dots. Carbohydr. Polym. 2019, 206, 238–244. [Google Scholar] [CrossRef]
- Pinto, T.d.S.; Rodrigues, P.N.; Marinho, L.E.; Verly, R.M.; Roa, J.P.B.; de Oliveira, L.C.; Pereira, F.V.; de Magalhães, M.T.; de Mesquita, J.P. Self-assembled hybrid nanocomposite films of carbon dots and hydrolyzed collagen. Mater. Chem. Phys. 2019, 230, 44–53. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Pan, H.; Xu, N.; Mei, C.; Mao, H.; Zhang, W.; Cai, J.; Xu, C. Preparation and performance of radiata-pine-derived polyvinyl alcohol/carbon quantum dots fluorescent films. Materials 2019, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Zhang, M.; Fan, D.; Jiang, F. Effect of carbon dots with chitosan coating on microorganisms and storage quality of modified-atmosphere-packaged fresh-cut cucumber. J. Sci. Food Agric. 2019, 99, 6032–6041. [Google Scholar] [CrossRef]
- Patil, A.S.; Waghmare, R.D.; Pawar, S.P.; Salunkhe, S.T.; Kolekar, G.B.; Sohn, D.; Gore, A.H. Photophysical insights of highly transparent, flexible and re-emissive PVA@ WTR-CDs composite thin films: A next generation food packaging material for UV blocking applications. J. Photochem. Photobiol. A Chem. 2020, 400, 112647. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, M.; Wang, H.; Devahastin, S. Effect of carbon dots in combination with aqueous chitosan solution on shelf life and stability of soy milk. Int. J. Food Microbiol. 2020, 326, 108650. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Gao, S.; Niu, Y.; Liu, H.; Mei, C.; Cai, J.; Xu, C. Preparation and properties of cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite. Polymers 2020, 12, 1143. [Google Scholar] [CrossRef]
- Maruthapandi, M.; Sharma, K.; Luong, J.H.; Gedanken, A. Antibacterial activities of microwave-assisted synthesized polypyrrole/chitosan and poly (pyrrole-N-(1-naphthyl) ethylenediamine) stimulated by C-dots. Carbohydr. Polym. 2020, 243, 116474. [Google Scholar] [CrossRef] [PubMed]
- Kousheh, S.A.; Moradi, M.; Tajik, H.; Molaei, R. Preparation of antimicrobial/ultraviolet protective bacterial nanocellulose film with carbon dots synthesized from lactic acid bacteria. Int. J. Biol. Macromol. 2020, 155, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, F.; de Albuquerque, M.B.S.; Alberton, M.D.; Riegel-Vidotti, I.C.; Zimmermann, L.M. Zein films with ZnO and ZnO: Mg quantum dots as functional nanofillers: New nanocomposites for food package with UV-blocker and antimicrobial properties. Polym. Test. 2020, 91, 106709. [Google Scholar] [CrossRef]
- Ezati, P.; Roy, S.; Rhim, J.-W. Pectin/gelatin-based bioactive composite films reinforced with sulfur functionalized carbon dots. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128123. [Google Scholar] [CrossRef]
- Feng, Z.; Adolfsson, K.H.; Xu, Y.; Fang, H.; Hakkarainen, M.; Wu, M. Carbon dot/polymer nanocomposites: From green synthesis to energy, environmental and biomedical applications. Sustain. Mater. Technol. 2021, 29, e00304. [Google Scholar] [CrossRef]
- Ezati, P.; Priyadarshi, R.; Rhim, J.-W. Prospects of sustainable and renewable source-based carbon quantum dots for food packaging applications. Sustain. Mater. Technol. 2022, 33, e00494. [Google Scholar] [CrossRef]
- Dilag, J. Quantum Dot and Carbon Dot Polymer Nanocomposites for Latent Fingermark Detection; Flinders University of South Australia, School of Chemical and Physical: Coimbatore, India, 2014. [Google Scholar]
- Ganguly, S. Reinforcement Mechanisms of Quantum Dot–Polymer Composites. In Quantum Dots and Polymer Nanocomposites; CRC Press: Boca Raton, FL, USA, 2022; pp. 151–169. [Google Scholar]
- Adam, G.O.; Sharker, S.M.; Ryu, J.H. Emerging Biomedical Applications of Carbon Dot and Polymer Composite Materials. Appl. Sci. 2022, 12, 10565. [Google Scholar] [CrossRef]
- Moradi, M.; Molaei, R.; Kousheh, S.A.T.; Guimarães, J.; McClements, D.J. Carbon dots synthesized from microorganisms and food by-products: Active and smart food packaging applications. Crit. Rev. Food Sci. Nutr. 2021, 63, 1943–1959. [Google Scholar] [CrossRef]
- Abdullah, R.M.; Aziz, S.B.; Mamand, S.M.; Hassan, A.Q.; Hussein, S.A.; Kadir, M.F.Z. Reducing the crystallite size of spherulites in PEO-based polymer nanocomposites mediated by carbon nanodots and Ag nanoparticles. Nanomaterials 2019, 9, 874. [Google Scholar] [CrossRef]
- Sharma, B.; Malik, P.; Jain, P. Biopolymer reinforced nanocomposites: A comprehensive review. Mater. Today Commun. 2018, 16, 353–363. [Google Scholar] [CrossRef]
- Murru, C.; Mohammadifar, M.A.; Wagner, J.B.; Badía Laiño, R.; Díaz García, M.E. High Methoxyl Pectin and Sodium Caseinate Film Matrix Reinforced with Green Carbon Quantum Dots: Rheological and Mechanical Studies. Membranes 2022, 12, 695. [Google Scholar] [CrossRef] [PubMed]
- Samrot, A.V.; Saigeetha, S.; Shobana, N.; Chandrasekaran, K. Green-synthesized nanoparticle-based polymer nanocomposites: Synthesis, characterizations, and applications. In Biodegradable and Biocompatible Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2023; pp. 241–270. [Google Scholar]
- Gray, P.J.; Hornick, J.E.; Sharma, A.; Weiner, R.G.; Koontz, J.L.; Duncan, T.V. Influence of different acids on the transport of CdSe quantum dots from polymer nanocomposites to food simulants. Environ. Sci. Technol. 2018, 52, 9468–9477. [Google Scholar] [CrossRef] [PubMed]
- Azeem, I.; Ashfaq, B.; Sohail, M.; Yameen, B. Polymer Surface Engineering in the Food Packaging Industry. In Nanoscale Engineering of Biomaterials: Properties and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 457–485. [Google Scholar]
- Das, P.; Ganguly, S.; Maity, P.P.; Srivastava, H.K.; Bose, M.; Dhara, S.; Bandyopadhyay, S.; Das, A.K.; Banerjee, S.; Das, N.C. Converting waste Allium sativum peel to nitrogen and sulphur co-doped photoluminescence carbon dots for solar conversion, cell labeling, and photobleaching diligences: A path from discarded waste to value-added products. J. Photochem. Photobiol. B Biol. 2019, 197, 111545. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.; Kumar, K.D.; Mandal, S.; Kumar, R. Functionalized carbon dot nanoparticles reinforced soy protein isolate biopolymeric film. J. Polym. Res. 2020, 27, 312. [Google Scholar] [CrossRef]
- Ali, H.; Mukhopadhyay, S.; Jana, N.R. Selective electrochemical detection of bisphenol A using a molecularly imprinted polymer nanocomposite. New J. Chem. 2019, 43, 1536–1543. [Google Scholar] [CrossRef]
- Kausar, A. Polyaniline and quantum dot-based nanostructures: Developments and perspectives. J. Plast. Film. Sheeting 2020, 36, 430–447. [Google Scholar] [CrossRef]
- Ke, L.; Shang, H.; Tang, M.; Li, X.; Jiang, L.; Lu, S.; Tang, D.; Huang, D.; Zhu, J.; Liu, C. High-heat and UV-barrier poly (lactic acid) by microwave-assisted functionalization of waste natural fibers. Int. J. Biol. Macromol. 2022, 220, 827–836. [Google Scholar] [CrossRef]
- Kumar, S.; Abdellah, M.H.; Alammar, A.; Szekely, G. Biorenewable Nanocomposite Materials in Membrane Separations. In Biorenewable Nanocomposite Materials, Vol. 2: Desalination and Wastewater Remediation; ACS Publications: Washington, DC, USA, 2022; pp. 189–235. [Google Scholar]
- Dave, K.; Gomes, V.G. Carbon quantum dot-based composites for energy storage and electrocatalysis: Mechanism, applications and future prospects. Nano Energy 2019, 66, 104093. [Google Scholar]
- Permatasari, F.A.; Irham, M.A.; Bisri, S.Z.; Iskandar, F. Carbon-based quantum dots for supercapacitors: Recent advances and future challenges. Nanomaterials 2021, 11, 91. [Google Scholar] [CrossRef]
- Kim, I.; Viswanathan, K.; Kasi, G.; Thanakkasaranee, S.; Sadeghi, K.; Seo, J. ZnO nanostructures in active antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev. Int. 2022, 38, 537–565. [Google Scholar] [CrossRef]
- Wareing, T.C.; Gentile, P.; Phan, A.N. Biomass-based carbon dots: Current development and future perspectives. ACS Nano 2021, 15, 15471–15501. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Kim, K.-H. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens. Bioelectron. 2020, 153, 112046. [Google Scholar] [CrossRef] [PubMed]
Food Application | Detection Method | Advantages | Limitations | Ref. |
---|---|---|---|---|
Meat | Fluorescence | High sensitivity, selectivity, and stability; rapid detection time | Expensive synthesis, toxicity concerns | [70] |
Milk | Colorimetric | Low cost, simple detection | Limited selectivity | [71] |
Seafood | Fluorescence | High sensitivity, selectivity, and stability; rapid detection time | Expensive synthesis, toxicity concerns | [72] |
Fruits | Surface-enhanced Raman scattering (SERS) | High sensitivity and selectivity; non-destructive detection | Limited stability | [73] |
Fruit juice | SERS | High sensitivity and selectivity; non-destructive detection | Expensive synthesis | [74] |
Vegetables | Electrochemical | High sensitivity and selectivity; rapid detection time | Limited specificity, requirement for trained personnel | [75] |
Cheese | Fluorescence | High sensitivity and selectivity; rapid detection time | Limited stability, interference from cheese matrix | [76] |
Bread | Colorimetric | Low cost, simple detection; real-time monitoring | Limited sensitivity | [77] |
Wine | SERS | High sensitivity and selectivity; non-destructive detection | Expensive synthesis, limited stability | [78] |
Yogurt | Fluorescence | High sensitivity, selectivity, and stability; rapid detection time | Interference from yogurt matrix | [79] |
Food Packaging | |||
---|---|---|---|
Constraints | Significant Features | Materials Used | Ref. |
Active packaging |
| Carboxymethyl cellulose (CMC) and CQDs | [111] |
Sensor integration |
| Poly(acrylic acid), poly(2-vinylpyridine), GQDs | [112] |
Tamper-evident packaging |
| Pyrene-based chalcone | [113] |
Environmental monitoring |
| Polyarylene ether nitrile, ZnCdSe/ZnS QD | [114] |
Traceability and Authentication |
| Epoxy InP@ZnS QDs | [115] |
Environmental Monitoring |
| Molecularly imprinted polymer, GQDs | [116] |
Gas Barrier Properties |
| PMMA, ZnS/ZnS QDs | [100] |
Nanoparticle Migration |
| Polyethylene, CdSe QDs | [117] |
Biodegradability |
| Poly(lactide), Organic Quantum Dots (Qdot®655 ITK™; catalogue number 2172-1) | [118] |
Regulatory Considerations |
| Poly [2-methoxy-5-(2′-ethylhexyloxy-p-phenylenevinylene)], PbS QDs | [119] |
Cost Considerations |
| Poly(2-methoxy-5-(2-ethylhexyloxy)-1,4phenylenevinylene), GQDs | [120] |
Matrix Phase | QDs | Composite Special Feature | Application Area | Ref. |
---|---|---|---|---|
Nanocellulose | 4,7,10-trioxa-1,13-tridecanediamine | UV resistance, thermal stability | UV-protective packaging | [129] |
PVA | Citric acid and imine | UV barrier | UV-protective packaging | [130] |
PMMA | Carbon black | UV barrier | UV-protective packaging | [131] |
Regenerated cellulose | Lactose | High fluorescence | - | [132] |
Collagen | Cotton | UV resistance | Biodegradable UV-protective packaging | [133] |
PVA | Residue of Radiata pine | Anti-counterfeiting | Anti-fake packaging | [134] |
Chitosan | Kelp | Bactericidal | Cucumber storage and packaging | [135] |
PVA | Tea residue | UV protection | Grape packaging | [136] |
Chitosan | Banana | Bactericidal | Soy milk packaging for high shelf life | [137] |
PVA | Cyanobacteria | IV/IR barrier, anti-counterfeiting | Anti-fake packaging | [138] |
Polypyrrole/chitosan blend | Citric acid and amino acid | Bactericidal | Antibacterial food packaging | [139] |
BC | Postbiotics of L. acidophilus | Bactericidal | Antimicrobial packaging | [140] |
Zein | Zinc acetate | Antibacterial | Antimicrobial packaging | [141] |
Gelatine/carrageenan | Enoki mushroom | Antioxidant, UV barrier, high mechanical, antibacterial | Antioxidant and antibacterial packaging | [128] |
Pectin/gelatine | Turmeric | Antibacterial | Antibacterial packaging | [142] |
TPS/carrageenan | Clove | Antioxidant, bactericidal | Antibacterial and antioxidant packaging | [4] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, T.K.; Ganguly, S. Revolutionizing Food Safety with Quantum Dot–Polymer Nanocomposites: From Monitoring to Sensing Applications. Foods 2023, 12, 2195. https://doi.org/10.3390/foods12112195
Das TK, Ganguly S. Revolutionizing Food Safety with Quantum Dot–Polymer Nanocomposites: From Monitoring to Sensing Applications. Foods. 2023; 12(11):2195. https://doi.org/10.3390/foods12112195
Chicago/Turabian StyleDas, Tushar Kanti, and Sayan Ganguly. 2023. "Revolutionizing Food Safety with Quantum Dot–Polymer Nanocomposites: From Monitoring to Sensing Applications" Foods 12, no. 11: 2195. https://doi.org/10.3390/foods12112195
APA StyleDas, T. K., & Ganguly, S. (2023). Revolutionizing Food Safety with Quantum Dot–Polymer Nanocomposites: From Monitoring to Sensing Applications. Foods, 12(11), 2195. https://doi.org/10.3390/foods12112195