Oxidative Stability and Genotoxic Activity of Vegetable Oils Subjected to Accelerated Oxidation and Cooking Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Accelerated Storage and Cooking Conditions
2.3. Peroxides and TBARs
2.4. Fatty Acid Profile
2.5. Volatile Compounds
2.6. Mutagenicity Test
2.7. Statistical Analysis
3. Results
3.1. Fatty Acid Profile
3.2. Oxidation Status
3.3. Volatile Compounds
3.4. Genotoxic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J. Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.S.; Scolaro, B.; Milne, G.L.; Castro, I.A. Oxidation Products from Omega-3 and Omega-6 Fatty Acids during a Simulated Shelf Life of Edible Oils. LWT 2019, 101, 113–122. [Google Scholar] [CrossRef]
- Barriuso, B.; Astiasarán, I.; Ansorena, D. A Review of Analytical Methods Measuring Lipid Oxidation Status in Foods: A Challenging Task. Eur. Food Res. Technol. 2013, 236, 1–15. [Google Scholar] [CrossRef]
- Goicoechea, E.; Guillén, M.D. Volatile Compounds Generated in Corn Oil Stored at Room Temperature. Presence of Toxic Compounds. Eur. J. Lipid Sci. Technol. 2014, 116, 395–406. [Google Scholar] [CrossRef]
- Long, E.K.; Picklo, M.J. Trans-4-Hydroxy-2-Hexenal, a Product of n-3 Fatty Acid Peroxidation: Make Some Room HNE. Free Radic. Biol. Med. 2010, 49, 1–8. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, J.; He, L.; Xing, R.; Yu, N.; Chen, Y. New Insight into the Evolution of Volatile Profiles in Four Vegetable Oils with Different Saturations during Thermal Processing by Integrated Volatolomics and Lipidomics Analysis. Food Chem. 2023, 403, 134342. [Google Scholar] [CrossRef]
- Chew, S.C. Cold-Pressed Rapeseed (Brassica Napus) Oil: Chemistry and Functionality. Food Res. Int. 2020, 131, 108997. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, K. Worldwide Rapeseed (Brassica Napus L.) Research: A Bibliometric Analysis. Oil Crop Sci. 2023, 7, 157–165. [Google Scholar] [CrossRef]
- Coughlan, R.; Kilcawley, K.; Skibinska, I.; Moane, S.; Larkin, T. Analysis of Volatile Organic Compounds in Irish Rapeseed Oils. Curr. Res. Food Sci. 2023, 6, 100417. [Google Scholar] [CrossRef]
- Priya, R.B.; Rashmitha, R.; Preetham, G.S.; Chandrasekar, V.; Mohan, R.J.; Sinija, V.R.; Pandiselvam, R. Detection of Adulteration in Coconut Oil and Virgin Coconut Oil Using Advanced Analytical Techniques: A Review. Food Anal. Methods 2022, 15, 2917–2930. [Google Scholar] [CrossRef]
- Rohman, A.; Irnawati Erwanto, Y.; Lukitaningsih, E.; Rafi, M.; Fadzilah, N.A.; Windarsih, A.; Sulaiman, A.; Zakaria, Z. Virgin Coconut Oil: Extraction, Physicochemical Properties, Biological Activities and Its Authentication Analysis. Food Rev. Int. 2021, 37, 46–66. [Google Scholar] [CrossRef]
- Kim, N.; Yu, K.S.; Kim, J.; Lim, T.; Hwang, K.T. Chemical Characteristics of Potato Chips Fried in Repeatedly Used Oils. J. Food Meas. Charact. 2018, 12, 1863–1871. [Google Scholar] [CrossRef]
- Li, X.; Shen, Y.; Zhu, J.; Xiao, J.; Cong, R.; Zhang, H.; Wu, G.; Qi, X. Virgin Grape Seed Oil Alleviates Insulin Resistance and Energy Metabolism Disorder in Mice Fed a High-Fat Diet. Eur. J. Lipid Sci. Technol. 2020, 122, 1900158. [Google Scholar] [CrossRef]
- Martin, M.E.; Grao-Cruces, E.; Millan-Linares, M.C.; Montserrat-De la Paz, S. Grape (Vitis Vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods 2020, 9, 1360. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef]
- Matthäus, B. Virgin Grape Seed Oil: Is It Really a Nutritional Highlight? Eur. J. Lipid Sci. Technol. 2008, 110, 645–650. [Google Scholar] [CrossRef]
- Multari, S.; Marsol-Vall, A.; Heponiemi, P.; Suomela, J.P.; Yang, B. Changes in the Volatile Profile, Fatty Acid Composition and Other Markers of Lipid Oxidation of Six Different Vegetable Oils during Short-Term Deep-Frying. Food Res. Int. 2019, 122, 318–329. [Google Scholar] [CrossRef]
- Brühl, L. Fatty Acid Alterations in Oils and Fats during Heating and Frying. Eur. J. Lipid Sci. Technol. 2014, 116, 707–715. [Google Scholar] [CrossRef]
- Maszewska, M.; Florowska, A.; Dłuzewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Zbikowska, A. Oxidative Stability of Selected Edible Oils. Molecules 2018, 23, 1746. [Google Scholar] [CrossRef]
- Tura, M.; Ansorena, D.; Astiasarán, I.; Mandrioli, M.; Toschi, T.G. Evaluation of Hemp Seed Oils Stability under Accelerated Storage Test. Antioxidants 2022, 11, 490. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Jeleń, H.H.; Zawirska-Wojtasiak, R. The Use of Electronic and Human Nose for Monitoring Rapeseed Oil Autoxidation. Eur. J. Lipid Sci. Technol. 2008, 110, 61–72. [Google Scholar] [CrossRef]
- Jeleń, H.H.; Obuchowska, M.; Zawirska-Wojtasiak, R.; Wa̧sowicz, E. Headspace Solid-Phase Microextraction Use for the Characterization of Volatile Compounds in Vegetable Oils of Different Sensory Quality. J. Agric. Food Chem. 2000, 48, 2360–2367. [Google Scholar] [CrossRef] [PubMed]
- Pazzoti, G.; Souza, C.; Veronezi, C.; Luzia, D.; Jorge, N. Evaluation of Oxidative Stability of Compound Oils under Accelerated Storage Conditions. Braz. Arch. Biol. Technol. 2018, 61, 1–12. [Google Scholar] [CrossRef]
- Hosseini, H.; Ghorbani, M.; Meshginfar, N.; Mahoonak, A.S. A Review on Frying: Procedure, Fat, Deterioration Progress and Health Hazards. JAOCS J. Am. Oil Chem. Soc. 2016, 93, 445–466. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Capocasale, M.; Macrì, R.; Caracciolo, M.; Zappia, C.; Poiana, M. Volatile Profiles of Extra Virgin Olive Oil, Olive Pomace Oil, Soybean Oil and Palm Oil in Different Heating Conditions. LWT 2020, 117, 108631. [Google Scholar] [CrossRef]
- Katragadda, H.R.; Fullana, A.; Sidhu, S.; Carbonell-Barrachina, Á.A. Emissions of Volatile Aldehydes from Heated Cooking Oils. Food Chem. 2010, 120, 59–65. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, M.; George, J.; Bhui, K.; Murari Saxena, A.; Shukla, Y. Genotoxic and Carcinogenic Risks Associated with the Dietary Consumption of Repeatedly Heated Coconut Oil. Br. J. Nutr. 2010, 104, 1343–1352. [Google Scholar] [CrossRef]
- Randhawa, S.; Mukherjee, T. Effect of Containers on the Thermal Degradation of Vegetable Oils. Food Control 2023, 144, 109344. [Google Scholar] [CrossRef]
- Grootveld, M.; Percival, B.C.; Leenders, J.; Wilson, P.B. Potential Adverse Public Health Effects Afforded by the Ingestion of Dietary Lipid Oxidation Product Toxins: Significance of Fried Food Sources. Nutrients 2020, 12, 974. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Genotoxicity Testing Strategies Applicable to Food and Feed Safety Assessment. EFSA J. 2011, 9, 2379. [Google Scholar] [CrossRef]
- López de Cerain, A.; Azqueta, A.; Gil, A.G.; Vettorazzi, A. Toxicología; Ediciones: Madrid, Spain, 2020. [Google Scholar]
- OECD. OECD Guidelines for the Testing of Chemicals; Test Guideline N. 471. Bacterial Reverse Mutation Test; Organization for Economic Co-operation and Development: Paris, France, 2020. [Google Scholar]
- Asare, G.A.; Okyere, G.O.; Asante, M.; Brown, C.A.; Santa, S.; Asiedu, B. Mutagenicity of Edible Palm Oil on the Ghanaian Market before and after Repeated Heating. J. Food Sci. 2013, 78, 1948–1951. [Google Scholar] [CrossRef]
- de Mello Silva Oliveira, N.; Reis Resende, M.; Alexandre Morales, D.; de ragão Umbuzeiro, G.; Boriollo, M.F.G. In Vitro Mutagenicity Assay (Ames Test) and Phytochemical Characterization of Seeds Oil of Helianthus Annuus Linné (Sunflower). Toxicol. Rep. 2016, 3, 733–739. [Google Scholar] [CrossRef]
- Isidori, M.; Parrella, A. Genotoxicity of Aqueous Extract from Heated Cooking Oils and Its Suppression by Lactobacilli. Food Sci. Technol. Int. 2009, 15, 267–273. [Google Scholar] [CrossRef]
- Ansorena, D.; Echarte, A.; Ollé, R.; Astiasarán, I. 2012: No Trans Fatty Acids in Spanish Bakery Products. Food Chem. 2013, 138, 422–429. [Google Scholar] [CrossRef]
- Sigmaldrich FAME Application Guide. Available online: http://www.axialscientific.com/files/Supelco_Free_Fatty_FAME.pdf. (accessed on 15 May 2023).
- Gutiérrez-luna, K.; Ansorena, D.; Astiasarán, I. Use of Hydrocolloids and Vegetable Oils for the Formulation of a Butter Replacer: Optimization and Oxidative Stability. LWT 2022, 153, 112538. [Google Scholar] [CrossRef]
- Maron, D.M.; Ames, B.N. Revised Methods for the Salmonella Mutagenicity Test. Mutat. Res./Environ. Mutagen. Relat. Subj. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Burke, D.A.; Wedd, D.J.; Burlinson, B. Use of the Miniscreen Assay to Screen Novel Compounds for Bacterial Mutagenicity in the Pharmaceutical Industry. Mutagenesis 1996, 11, 201–205. [Google Scholar] [CrossRef]
- Bail, S.; Stuebiger, G.; Krist, S.; Unterweger, H.; Buchbauer, G. Characterisation of Various Grape Seed Oils by Volatile Compounds, Triacylglycerol Composition, Total Phenols and Antioxidant Capacity. Food Chem. 2008, 108, 1122–1132. [Google Scholar] [CrossRef]
- Marventano, S.; Kolacz, P.; Castellano, S.; Galvano, F.; Buscemi, S.; Mistretta, A.; Grosso, G. A Review of Recent Evidence in Human Studies of N-3 and n-6 PUFA Intake on Cardiovascular Disease, Cancer, and Depressive Disorders: Does the Ratio Really Matter? Int. J. Food Sci. Nutr. 2015, 66, 611–622. [Google Scholar] [CrossRef]
- Chammem, N.; Saoudi, S.; Sifaoui, I.; Sifi, S.; de Person, M.; Abderraba, M.; Moussa, F.; Hamdi, M. Improvement of Vegetable Oils Quality in Frying Conditions by Adding Rosemary Extract. Ind. Crops Prod. 2015, 74, 592–599. [Google Scholar] [CrossRef]
- Perera, D.N.; Ranaweera, K.K.D.S.; Marapana, R.A.U.J.; Hewavitharana, G.G. Development of Spicy Flavored Virgin Coconut Oil by Incorporating a Mixture of Spices Oleoresins. OCL—Oilseeds Fats Crops Lipids 2020, 27, 55. [Google Scholar] [CrossRef]
- Kiralan, M.; Çalik, G.; Kiralan, S.; Özaydin, A.; Özkan, G.; Ramadan, M.F. Stability and Volatile Oxidation Compounds of Grape Seed, Flax Seed and Black Cumin Seed Cold-Pressed Oils as Affected by Thermal Oxidation. Grasas Aceites 2019, 70, e295. [Google Scholar] [CrossRef]
- Dedebas, T.; Ekici, L.; Sagdic, O. Chemical Characteristics and Storage Stabilities of Different Cold-Pressed Seed Oils. J. Food Process. Preserv. 2021, 45, e15107. [Google Scholar] [CrossRef]
- Poyato, C.; Ansorena, D.; Navarro-Blasco, I.; Astiasarán, I. A Novel Approach to Monitor the Oxidation Process of Different Types of Heated Oils by Using Chemometric Tools. Food Res. Int. 2014, 57, 152–161. [Google Scholar] [CrossRef]
- Papastergiadis, A.; Mubiru, E.; Van Langenhove, H.; De Meulenaer, B. Malondialdehyde Measurement in Oxidized Foods: Evaluation of the Spectrophotometric Thiobarbituric Acid Reactive Substances (TBARS) Test in Various Foods. J. Agric. Food Chem. 2012, 60, 9589–9594. [Google Scholar] [CrossRef]
- Berasategi, I.; Barriuso, B.; Ansorena, D.; Astiasarán, I. Stability of Avocado Oil during Heating: Comparative Study to Olive Oil. Food Chem. 2012, 132, 439–446. [Google Scholar] [CrossRef]
- Dimzon, I.K.D.; Tantengco, G.B.; Oquendo, N.A.; Dayrit, F.M. Profile of Volatile Organic Compounds (VOCs) from Cold-Processed and Heat-Treated Virgin Coconut Oil (VCO) Samples. Proceedings 2021, 70, 85. [Google Scholar]
- Agregán, R.; Lorenzo, J.M.; Munekata, P.E.S.; Dominguez, R.; Carballo, J.; Franco, D. Assessment of the Antioxidant Activity of Bifurcaria Bifurcata Aqueous Extract on Canola Oil. Effect of Extract Concentration on the Oxidation Stability and Volatile Compound Generation during Oil Storage. Food Res. Int. 2017, 99, 1095–1102. [Google Scholar] [CrossRef]
- Grebenteuch, S.; Kroh, L.W.; Drusch, S.; Rohn, S. Formation of Secondary and Tertiary Volatile Compounds Resulting from the Lipid Oxidation of Rapeseed Oil. Foods 2021, 10, 2417. [Google Scholar] [CrossRef]
- Yin, W.T.; Maradza, W.; Xu, Y.F.; Ma, X.T.; Shi, R.; Zhao, R.Y.; Wang, X.D. Comparison of Key Aroma-Active Composition and Aroma Perception of Cold-Pressed and Roasted Peanut Oils. Int. J. Food Sci. Technol. 2022, 57, 2968–2979. [Google Scholar] [CrossRef]
- Neugebauer, A.; Granvogl, M.; Schieberle, P. Characterization of the Key Odorants in High-Quality Extra Virgin Olive Oils and Certified Off-Flavor Oils to Elucidate Aroma Compounds Causing a Rancid Off-Flavor. J. Agric. Food Chem. 2020, 68, 5927–5937. [Google Scholar] [CrossRef]
- Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E. Solid-Phase Microextraction in the Analysis of Virgin Olive Oil Volatile Fraction: Modifications Induced by Oxidation and Suitable Markers of Oxidative Status. J. Agric. Food Chem. 2003, 51, 6564–6571. [Google Scholar] [CrossRef]
FATTY ACIDS | T0 | T2 | T3 |
---|---|---|---|
Coconut oil | |||
SFA | 89.88 ± 0.07 a | 89.43 ± 0.12 a | 90.42 ± 0.12 b |
MUFA | 8.07 ± 0.05 b | 8.31 ± 0.09 b | 7.90 ± 0.11 a |
PUFA | 2.03 ± 0.02 c | 2.10 ± 0.02 b | 1.49 ± 0.01 a |
ω-3 | ND | ND | ND |
ω-6 | 2.03 ± 0.02 b | 2.10 ± 0.02 b | 1.49 ± 0.01 a |
ω-6/ω-3 | - | - | - |
PUFA/SFA | 0.02 ± 0.00 c | 0.02 ± 0.00 b | 0.01 ± 0.00 a |
PUFA + MUFA/SFA | 0.11 ± 0.00 b | 0.11 ± 0.00 b | 0.10 ± 0.00 a |
Trans | 0.01 ± 0.00 a | 0.05 ± 0.01 b | 0.09 ± 0.01 c |
Rapeseed oil | |||
SFA | 6.59 ± 1.23 | 6.75 ± 0.02 | 6.86 ± 0.07 |
MUFA | 65.33 ± 0.99 a | 66.03 ± 0.12 ab | 66.66 ± 0.70 b |
PUFA | 27.84 ± 0.32 c | 26.87 ± 0.09 b | 26.23 ± 0.36 a |
ω-3 | 9.14 ± 0.13 c | 8.69 ± 0.07 b | 8.28 ± 0.32 a |
ω-6 | 18.59 ± 0.22 b | 18.13 ± 0.04 a | 18.22 ± 0.23 a |
ω-6/ω-3 | 2.03 ± 0.03 a | 2.08 ± 0.01 a | 2.27 ± 0.06 b |
PUFA/SFA | 4.22 ± 0.62 | 3.97 ± 0.01 | 3.82 ± 0.03 |
PUFA + MUFA/SFA | 14.13 ± 2.09 | 13.75 ± 0.04 | 13.53 ± 0.06 |
Trans | 0.18 ± 0.01 a | 0.27 ± 0.01 b | 0.26 ± 0.06 b |
Grape seed oil | |||
SFA | 11.49 ± 0.12 a | 11.87 ± 0.10 b | 11.97 ± 0.09 b |
MUFA | 24.07 ± 0.14 a | 24.65 ± 0.00 b | 24.74 ± 0.07 b |
PUFA | 63.77 ± 0.33 b | 62.59 ± 0.15 a | 62.39 ± 0.20 a |
ω-3 | 0.05 ± 0.07 | 0.16 ± 0.02 | 0.15 ± 0.06 |
ω-6 | 63.62 ± 0.36 b | 62.37 ± 0.19 a | 62.16 ± 0.25 a |
ω-6/ω-3 | 1204.98 ± 458.22 | 378.27 ± 30.81 | 411.44 ± 550.61 |
PUFA/SFA | 5.54 ± 0.08 b | 5.27 ± 0.06 a | 5.20 ± 0.06 a |
PUFA + MUFA/SFA | 7.64 ± 0.10 b | 7.34 ± 0.07 a | 7.27 ± 0.07 b |
Trans | 0.43 ± 0.15 | 0.49 ± 0.04 | 0.60 ± 0.07 |
Oil | T0 | T1 | T2 | T3 | |
---|---|---|---|---|---|
Coconut | 0 ± 0 aA | 0 ± 0 aA | 0 ± 0 aA | 20.35 ± 2.16 aA | |
PV | Rapeseed | 14.57 ± 1.02 bC | 16.30 ± 4.69 bC | 18.14 ± 6.32 cC | 3.12 ± 0.32 aC |
Grape seed | 12.23 ± 2.19 bB | 22.51 ± 3.52 cB | 21.86 ± 5.51 dB | 2.47 ± 0.31 aB | |
Coconut | 0 ± 0 aA | 0 ± 0 aA | 0 ± 0 aA | 2.19 ± 0.10 bA | |
TBARs | Rapeseed | 6.37 ± 0.87 bC | 5.51 ± 0.72 bC | 1.96 ± 0.10 aB | 7.57 ± 0.85 cC |
Grape seed | 1.11 ± 0.22 aB | 3.69 ± 0.67 bB | 1.09 ± 0.11 aC | 3.92 ± 0.23 bB |
Volatile | KI | T0 | T1 | T2 | T3 |
---|---|---|---|---|---|
Hydrocarbons | |||||
2-E-Octene | 809 | ND | 6691 ± 4688 | ND | ND |
2-Z-Octene | 816 | ND | 4685 ± 3378 | ND | ND |
Total hydrocarbons (Σ) | ND | 11,376 ± 8066 | ND | ND | |
Aldehydes | |||||
(E)-2-Pentenal | 748 | ND | 3983 ± 2086 b | ND | 1850 ± 530 a |
Hexanal | 803 | 2200 ± 749 a | 15,749 ± 2794 b | 21,685 ± 1020 c | 94,823 ± 7218 d |
(E)-2-Hexenal | 851 | ND | 1797 ± 803 a | ND | 14,301 ± 901 b |
Heptanal | 901 | ND | 1800 ± 387 a | 2726 ± 894 a | 28,217 ± 3317 b |
(E)-2-Heptenal | 954 | ND | 5055 ± 3036 a | 8054 ± 934 a | 150,112 ± 5215 b |
(E,E)-2,4-Heptadienal | 995 | ND | ND | ND | 18,217 ± 1604 |
Octanal | 1002 | ND | 5462 ± 3111 a | 5527 ± 2027 a | 207,762 ± 23,477 b |
2,4-Heptadienal | 1009 | ND | 2225 ± 267 a | 2796 ± 278 a | 4968 ± 1704 b |
Nonanal | 1103 | ND | 1122 ± 395 a | 1176 ± 424 a | 106,442 ± 15,688 b |
Total aldehydes (Σ) | 2200 ± 749 a | 37,196 ± 12,884 a | 41,965 ± 5580 a | 626,692 ± 59,654 b | |
Ketones | |||||
2-Hexanone | 792 | ND | ND | ND | 13,732 ± 1592 |
2-Heptanone | 890 | ND | 1833 ± 627 a | 2108 ± 146 a | 30,275 ± 3422 b |
4-Octanone | 972 | ND | ND | ND | 1957 ± 443 |
1-Octen-3-one | 977 | ND | ND | ND | 2063 ± 391 |
3-Octanone | 986 | ND | ND | ND | 3547 ± 851 |
3-Octen-2-one | 1038 | ND | 468 ± 205 | ND | ND |
2-Nonanone | 1090 | ND | ND | ND | 30,845 ± 9023 |
3,5-Octadien-2-one | 1092 | ND | 1322 ± 214 | ND | ND |
Total ketones (Σ) | ND | 3623 ± 1046 a | 2108 ± 146 a | 82,419 ± 15,722 b | |
Acids | |||||
Butanoic | 793 | ND | ND | ND | 11,464 ± 1457 |
Pentanoic | 904 | ND | ND | ND | 11,422 ± 2097 |
Hexanoic | 992 | 2987 ± 1083 a | 8430 ± 1157 b | 9074 ± 948 b | 16,186 ± 2787 c |
Heptanoic | 1082 | ND | ND | ND | 5977 ± 2253 |
Octanoic | 1176 | ND | 11,783 ± 3971 a | 9746 ± 2340 a | 37,241 ± 12,031 b |
Nonanoic | 1276 | ND | ND | ND | 8294 ± 5203 |
Total acids (Σ) | 2987 ± 1083 a | 18,053 ± 6590 b | 18,820 ± 3289 b | 90,584 ± 25,828 c | |
Alcohols | |||||
1-Pentanol | 762 | ND | 2255 ± 607 a | 2527 ± 199 a | 23,617 ± 2435 b |
1-Hexanol | 870 | ND | 1748 ± 2052 ab | 454 ± 88 a | 2870 ± 702 b |
1-Heptanol | 970 | ND | 914 ± 633 a | ND | 8945 ± 2214 b |
1-octen-3-ol | 979 | ND | 1112 ± 404 a | ND | 16,833 ± 857 b |
1-Octanol | 1072 | ND | ND | ND | 14,544 ± 5097 |
Total alcohols (Σ) | ND | 6029 ± 2217 a | 2981 ± 266 a | 66,809 ± 10,615 b | |
Other | |||||
1,2,3-Propanotriol, triacetate | 1362 | 15,242 ± 8033 a | 17,477 ± 4521 a | 7572 ± 3551 a | 62,884 ± 32,025 b |
Furans | |||||
Furan-2-Pentyl | 991 | ND | 13,307 ± 8451 a | 7694 ± 2791 a | 103,251 ± 6151 b |
Total furans (Σ) | ND | 13,307 ± 8451 a | 7694 ± 2791 a | 103,251 ± 6151 b | |
Terpenes | |||||
Alpha-pinene | 929 | 2953 ± 228 ab | 3883 ± 1772 b | 2083 ± 696 a | ND |
Delta-3-carene | 1006 | ND | 6640 ± 1319 b | 5411 ± 413 a | ND |
Limonene | 1025 | 5889 ± 1338 b | 6032 ± 1385 b | 5249 ± 1006 b | 2857 ± 592 a |
Total terpenes (Σ) | 8842 ± 1566 | 16,555 ± 4476 | 12,743 ± 2115 | 2857 ± 592 | |
Total Σ | 29,271 ± 11,431 a | 123,616 ± 40,215 b | 93,833 ± 16,285 b | 1,035,496 ± 151,277 c |
Volatile | KI | T0 | T1 | T2 | T3 |
---|---|---|---|---|---|
Hydrocarbons | |||||
2-E-octene | 809 | ND | ND | 1545 ± 145 | 1888 ± 536 |
2-Z-octene | 816 | ND | ND | 1228 ± 147 | ND |
Total hydrocarbons (Σ) | ND | ND | 2773 ± 292 | 1888 ± 536 | |
Aldehydes | |||||
(E)-2-Pentenal | 748 | 3975 ± 250 d | 34,862 ± 1209 c | 33,744 ± 799 b | 22,541 ± 723 a |
Hexanal | 803 | 32,637 ± 2008 a | 46,946 ± 868 b | 54,638 ± 2225 c | 90,102 ± 3954 d |
(E)-2-Hexenal | 851 | ND | 4812 ± 161 a | 7289 ± 406 b | 11,901 ± 409 c |
Heptanal | 901 | 1328 ± 123 a | 4654 ± 403 b | 5570 ± 469 c | 16,596 ± 677 d |
(E,E)-2,4-Hexadienal | 908 | ND | 17,550 ± 4010 a | 25,314 ± 1190 b | 14,631 ± 1445 a |
(E)-2-Heptenal | 954 | 2166 ± 318 a | 59,008 ± 738 b | 56,474 ± 2760 b | 109,829 ± 6641 c |
(E,E)-2,4-Heptadienal | 995 | 28,023 ± 1536 a | 281,746 ± 9605 c | 253,474 ± 4111 b | 338,112 ± 13,035 d |
Octanal | 1002 | 7425 ± 965 a | 38,155 ± 3868 b | 48,629 ± 4496 c | 108,931 ± 8382 d |
2,4-Heptadienal | 1009 | 2024 ± 208 a | 123,654 ± 4945 b | 142,568 ± 4930 c | 406,889 ± 12,144 d |
(E)-2-Octenal | 1056 | ND | 20,883 ± 713 a | 24,107 ± 1092 b | 42,758 ± 1391 c |
Nonanal | 1103 | 1783 ± 198 a | 25,040 ± 905 b | 29,285 ± 1501 b | 203,362 ± 9729 c |
Nonenal | 1158 | ND | ND | 11,815 ± 1128 a | 25,786 ± 988 b |
(E,E)-2,4-Decadienal | 1291 | ND | 8795 ± 900 a | 15,114 ± 1670 a | 199,682 ± 39,899 b |
Total aldehydes (Σ) | 79,361 ± 5606 a | 666,105 ± 28,325 b | 708,021 ± 26,777 c | 1,591,120 ± 98,967 d | |
Ketones | |||||
3-Hexen-2-one | 840 | ND | 808 ± 108 a | ND | 5386 ± 229 b |
2-Heptanone | 890 | ND | 3011 ± 326 a | 3759 ± 406 b | 4362 ± 423 c |
Ethanone,1-(1-cyclohexen-1-l) | 935 | ND | 148,467 ± 38,941 | 155,965 ± 2756 | 170,795 ± 9153 |
1-Octen-3-one | 977 | ND | 1015 ± 103 a | 890 ± 122 a | 1513 ± 220 b |
3-Octanone | 986 | ND | ND | ND | 5658 ± 705 |
6-Methyl-5-hepten-2-one | 988 | ND | 10,466 ± 357 a | 12,181 ± 198 b | ND |
3-Octen-2-one | 1038 | 1845 ± 72 a | 9629 ± 353 c | 12,298 ± 426 b | 3318 ± 230 d |
(E,E)-3,5-Octadien-2-one | 1070 | ND | 54,005 ± 968 c | 49,940 ± 1116 b | 5106 ± 644 a |
3,5-Octadien-2-one | 1092 | ND | 45,824 ± 1023 a | 51,604 ± 1782 b | ND |
Total ketones (Σ) | 1845 ± 72 a | 273,225 ± 42,179 c | 286,637 ± 6806 b | 196,138 ± 7310 d | |
Acids | |||||
Hexanoic | 992 | 2977 ± 149 a | 20,149 ± 971 c | 27,373 ± 1747 d | 5657 ± 421 b |
Octanoic | 1176 | ND | ND | ND | 4000 ± 1309 |
Nonanoic | 1276 | ND | ND | ND | 8768 ± 2728 |
Total acids (Σ) | 2977 ± 149 a | 20,149 ± 971 b | 27,373 ± 1747 b | 18,425 ± 4458 b | |
Alcohols | |||||
1-Pentanol | 762 | 2554 ± 123 a | ND | ND | 26,434 ± 703 b |
1-Hexanol | 870 | 6599 ± 255 d | 1628 ± 77 b | 1239 ± 111 a | 2223 ± 295 c |
1-Heptanol | 970 | ND | ND | ND | 11,367 ± 923 |
1-Octen-3-ol | 979 | 638 ± 78 a | 14,992 ± 436 c | 13,249 ± 622 b | 18,115 ± 1042 d |
1-Octanol | 1072 | ND | ND | ND | 17,633 ± 631 |
Total alcohols (Σ) | 9791 ± 456 a | 16,620 ± 513 b | 14,488 ± 733 b | 75,772 ± 3594 c | |
Furans | |||||
Furan, 2-Pentyl | 991 | 7891 ± 1559 a | 58,918 ± 2481 c | 82,661 ± 4614 d | 50,624 ± 2529 b |
Total furans (Σ) | 7891 ± 1559 a | 58,918 ± 2481 c | 82,661 ± 4614 d | 50,624 ± 2529 b | |
Terpenes | |||||
Alpha-pinene | 929 | 368 ± 25 | ND | ND | ND |
Limonene | 1025 | 1897 ± 207 | 1871 ± 147 | 1835 ± 572 | ND |
Total terpenes (Σ) | 2265 ± 232 | 1871 ± 147 | 1835 ± 572 | ND | |
Total Σ | 104,130 ± 8074 a | 1,036,888 ± 74,616 b | 1,123,788 ± 41,541 b | 1,933,967 ± 22,096 c |
Volatile | KI | T0 | T1 | T2 | T3 |
---|---|---|---|---|---|
Hydrocarbons | |||||
1-Octene | 793 | 1328 ± 133 a | ND | ND | 2043 ± 346 b |
2-E-octene | 809 | 5904 ± 500 bc | 4222 ± 432 a | 6663 ± 531 c | 5456 ± 1070 b |
2-Z-octene | 816 | 2495 ± 264 bc | 1701 ± 129 a | 2827 ± 338 c | 2178 ± 514 b |
Total hydrocarbons (Σ) | 9727 ± 897 | 5923 ± 561 | 9490 ± 869 | 9677 ± 1930 | |
Aldehydes | |||||
(E)-2-Pentenal | 748 | ND | 2579 ± 153 | 3011 ± 622 | ND |
Hexanal | 803 | 35,088 ± 5643 a | 66,528 ± 4110 b | 66,147 ± 3541 b | 137,213 ± 12,039 c |
(E)-2-Hexenal | 851 | 747 ± 103 a | 23,070 ± 1323 b | 21,868 ± 1717 b | 30,594 ± 3326 c |
Heptanal | 901 | 1432 ± 176 a | 5832 ± 1322 b | 5033 ± 504 b | 11,212 ± 1614 c |
(E)-2-Heptenal | 954 | 8510 ± 596 a | 208,336 ± 8588 b | 199,345 ± 11,880 b | 270,474 ± 35,611 c |
(E,E)-2,4-Heptadienal | 995 | 1644 ± 193 a | 24,758 ± 1671 b | 28,718 ± 3293 b | 46,073 ± 5513 c |
Octanal | 1002 | 2698 ± 321 a | 31,674 ± 2623 b | 38,800 ± 3559 b | 79,232 ± 12,472 c |
2,4-Heptadienal | 1009 | ND | 6097 ± 487 a | 7755 ± 524 b | 17,729 ± 1459 c |
(E)-2-Octenal | 1056 | 1484 ± 142 a | 57,966 ± 9692 b | 79,807 ± 8360 c | 86,214 ± 12,884 c |
Nonanal | 1103 | 693 ± 65 a | 3789 ± 553 a | 2914 ± 229 a | 56,156 ± 6510 b |
(E,E)-2,4-Octadienal | 1107 | ND | 860 ± 68 a | ND | 2246 ± 300 b |
Nonenal | 1158 | ND | 7134 ± 365 a | 13,697 ± 691 b | 16,610 ± 1021 c |
2,4-Nonadienal | 1212 | ND | 4120 ± 244 a | 4784 ± 367 a | 13,199 ± 2519 b |
(E,E)-2,4-Decadienal | 1291 | ND | 13,561 ± 964 a | 20,207 ± 1463 a | 672,012 ± 168,979 b |
2,4-Decadienal | 1317 | ND | 33,428 ± 2592 a | 56,523 ± 4908 a | 727,265 ± 142,179 b |
Total aldehydes (Σ) | 52,296 ± 7239 a | 489,732 ± 34,255 b | 548,612 ± 22,893 b | 2,166,229 ± 236,907 c | |
Ketones | |||||
2-Heptanone | 890 | ND | 7908 ± 804 b | 9069 ± 896 a | 5442 ± 1112 c |
1-Octen-3-one | 977 | ND | 2898 ± 92 a | 2337 ± 293 b | 2312 ± 566 a |
3-Octanone | 986 | ND | 2245 ± 123 c | 2936 ± 258 b | 1522 ± 290 a |
3-Octen-2-one | 1038 | ND | 26,868 ± 1438 b | 32,210 ± 6306 c | 5951 ± 951 a |
(E,E)-3,5-Octadien-2-one | 1070 | ND | 1332 ± 137 | ND | ND |
3,5-Octadien-2-one | 1092 | ND | 1521 ± 243 | ND | ND |
Total ketones (Σ) | ND | 42,772 ± 2837 b | 46,552 ± 2077 b | 15,227 ± 2919 a | |
Acids | |||||
Hexanoic | 992 | 3202 ± 589 a | 72,354 ± 10,221 b | 89,608 ± 8801 c | 8441 ± 2634 a |
Total acids (Σ) | 3202 ± 589 a | 72,354 ± 10,221 b | 89,608 ± 8801 c | 8441 ± 2634 a | |
Alcohols | |||||
1-Pentanol | 762 | 1243 ± 194 a | 3902 ± 541 a | 3868 ± 405 a | 61,807 ± 5740 b |
1-Hexanol | 870 | ND | 1796 ± 109 a | 2188 ± 239 b | 1809 ± 309 a |
1-Heptanol | 970 | ND | ND | ND | 5429 ± 892 |
1-Octen-3-ol | 979 | 997 ± 232 a | 53,096 ± 2482 b | 48,707 ± 2419 b | 51,296 ± 5752 b |
2-Octen-1-ol | 1068 | ND | ND | ND | 5203 ± 505 |
1-Octanol | 1072 | ND | ND | ND | 8359 ± 901 |
Total alcohols (Σ) | 2240 ± 426 a | 58,794 ± 3132 b | 54,763 ± 3063 b | 133,903 ± 14,099 c | |
Furans | |||||
Furan, 2-Pentyl | 991 | 7101 ± 506 a | 100,415 ± 13,052 c | 163,693 ± 17,544 d | 57,458 ± 9410 b |
Total furans (Σ) | 7101 ± 506 a | 100,415 ± 13,052 c | 163,693 ± 17,544 d | 57,458 ± 9410 b | |
Terpenes | |||||
Alpha-pinene | 929 | 274 ± 202 | ND | ND | ND |
Para-cymene | 1022 | 3002 ± 251 | ND | ND | ND |
Limonene | 1025 | 3955 ± 3676 a | 13,349 ± 166 b | ND | 907 ± 423 a |
Total terpenes (Σ) | 7231 ± 4129 b | 13,349 ± 166 c | ND | 907 ± 423 a | |
Total Σ | 81,797 ± 13,786 a | 783,339 ± 64,224 b | 912,722 ± 51,226 b | 2,391,856 ± 217,406 c |
TA97a | TA98 | |||
---|---|---|---|---|
0%S9 | 10%S9 | 0%S9 | 10%S9 | |
C− | 36 ± 12 | 54 ± 5 | 8 ± 1 | 12 ± 1 |
C+ | 315 ± 32 | 421 ± 94 | 317 ± 43 | 877 ± 82 |
Coconut oil | ||||
T0 | 36 ± 5 | 73 ± 15 | 10.2 | 13 ± 5 |
T1 | 41 ± 11 | 57 ± 6 | 7 ± 1 | 8 ± 1 |
T2 | 33 ± 2 | 56 ± 3 | 10 ± 2 | 11 ± 2 |
T3 | 45 ± 3 | 73 ± 4 | 10 ± 2 | 10 ± 3 |
Rapeseed oil | ||||
T0 | 35 ± 3 | 73 ± 2 | 12 ± 2 | 13 ± 4 |
T1 | 61 ± 9 | 76 ± 9 | 10 ± 4 | 8 ± 3 |
T2 | 42 ± 1 | 70 ± 6 | 7 ± 5 | 15 ± 7 |
T3 | 52 ± 10 | 73 ± 3 | 10 ± 1 | 11 ± 2 |
Grape seed oil | ||||
T0 | 45 ± 4 | 73 ± 5 | 15 ± 3 | 12 ± 1 |
T1 | 47 ± 6 | 75 ± 11 | 13 ± 2 | 11 ± 2 |
T2 | 48 ± 7 | 72 ± 11 | 11 ± 3 | 10 ± 3 |
T3 | 39 ± 7 | 67 ± 9 | 11 ± 4 | 16 ± 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansorena, D.; Ramírez, R.; Lopez de Cerain, A.; Azqueta, A.; Astiasaran, I. Oxidative Stability and Genotoxic Activity of Vegetable Oils Subjected to Accelerated Oxidation and Cooking Conditions. Foods 2023, 12, 2186. https://doi.org/10.3390/foods12112186
Ansorena D, Ramírez R, Lopez de Cerain A, Azqueta A, Astiasaran I. Oxidative Stability and Genotoxic Activity of Vegetable Oils Subjected to Accelerated Oxidation and Cooking Conditions. Foods. 2023; 12(11):2186. https://doi.org/10.3390/foods12112186
Chicago/Turabian StyleAnsorena, Diana, Rubén Ramírez, Adela Lopez de Cerain, Amaya Azqueta, and Iciar Astiasaran. 2023. "Oxidative Stability and Genotoxic Activity of Vegetable Oils Subjected to Accelerated Oxidation and Cooking Conditions" Foods 12, no. 11: 2186. https://doi.org/10.3390/foods12112186
APA StyleAnsorena, D., Ramírez, R., Lopez de Cerain, A., Azqueta, A., & Astiasaran, I. (2023). Oxidative Stability and Genotoxic Activity of Vegetable Oils Subjected to Accelerated Oxidation and Cooking Conditions. Foods, 12(11), 2186. https://doi.org/10.3390/foods12112186