Two-Phase Extraction Processes, Physicochemical Characteristics, and Autoxidation Inhibition of the Essential Oil Nanoemulsion of Citrus reticulata Blanco (Tangerine) Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Specimen and Chemicals
2.2. Preparation of Tangerine Leaves
2.3. Two-Phase Pre-Extraction of CrBL Essential Oil (CrBL-EO)
2.4. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
2.5. Microstructure Observation Using Scanning Electron Microscopy (SEM)
2.6. Measurement of Anti-Free Radical Activities
2.6.1. DPPH• Scavenging Activity Assay
2.6.2. ABTS•+ Scavenging Activity (ABTS•+-SA) Assay
2.7. Preparation of the CrBL-EOEUS2 Nanoemulsion
2.8. Physicochemical Characterization of the Nanoemulsion Treatments
2.9. Creaming Index (CI%)
2.10. Confocal Laser Scanning Microscopy (CLSM)
2.11. Thermal Autoxidation Using Inhibition of the β-Carotene/Linoleate System
2.12. Statistical Analysis
3. Results
3.1. Two-Phase Extraction of CrBL-EO
3.2. Chemical Composition of the CrBL-EO Treatments
3.3. Microstructure Observation
3.4. Anti-Free Radical Activities
3.4.1. DPPH• Scavenging Activity (DPPH•-SA%)
3.4.2. ABTS•+ Scavenging Activity (ABTS•+-SA)
3.5. Physicochemical Characterization of the CrBL-EONE Treatments
3.6. Creaming Index (CI%)
3.7. Microscopy CLSM Observation
3.8. Thermal Autoxidation and Stability Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reis, D.R.; Ambrosi, A.; Di Luccio, M. Encapsulated essential oils: A perspective in food preservation. Futur. Foods 2022, 5, 100126. [Google Scholar] [CrossRef]
- Rashed, M.M.; Ghaleb, A.D.; Li, J.; Al-Hashedi, S.A.; Rehman, A. Functional-characteristics of Zanthoxylum schinifolium (Siebold & Zucc.) essential oil nanoparticles. Ind. Crop. Prod. 2020, 161, 113192. [Google Scholar] [CrossRef]
- Rashed, M.M.; Tong, Q.; Abdelhai, M.H.; Gasmalla, M.A.; Ndayishimiye, J.B.; Chen, L.; Ren, F. Effect of ultrasonic treatment on total phenolic extraction from Lavandula pubescens and its application in palm olein oil industry. Ultrason. Sonochem. 2016, 29, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.G.; Saldanha, A.A.; Azevedo, L.S.; Mendes, I.C.; Rodrigues, J.P.C.; Amado, P.A.; Farias, K.D.S.; Zanuncio, V.S.S.; Cassemiro, N.S.; da Silva, D.B.; et al. Antioxidant and anti-inflammatory effects of fractions from ripe fruits of Solanum lycocarpum St. Hil. (Solanaceae) and putative identification of bioactive compounds by GC–MS and LC-DAD-MS. Food Res. Int. 2022, 156, 111145. [Google Scholar] [CrossRef] [PubMed]
- Gonfa, T.; Fisseha, A.; Thangamani, A. Isolation, characterization and drug-likeness analysis of bioactive compounds from stem bark of Warburgia ugandensis Sprague. Chem. Data Collect. 2020, 29, 100535. [Google Scholar] [CrossRef]
- Al-Ali, R.M.; Al-Hilifi, S.A.; Rashed, M.M. Fabrication, characterization, and anti-free radical performance of edible packaging-chitosan film synthesized from shrimp shell incorporated with ginger essential oil. J. Food Meas. Charact. 2021, 15, 2951–2962. [Google Scholar] [CrossRef]
- Alasalvar, H.; Yildirim, Z. Ultrasound-assisted extraction of antioxidant phenolic compounds from Lavandula angustifolia flowers using natural deep eutectic solvents: An experimental design approach. Sustain. Chem. Pharm. 2021, 22, 100492. [Google Scholar] [CrossRef]
- da Silva, B.D.; Rosário, D.K.A.D.; Weitz, D.A.; Conte-Junior, C.A. Essential oil nanoemulsions: Properties, development, and application in meat and meat products. Trends Food Sci. Technol. 2022, 121, 1–13. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Du, Y.-T.; Xue, W.-Y.; Wang, L.; Li, R.; Jiang, Z.-T.; Tang, S.-H.; Tan, J. Enhanced preservation effects of clove (Syzygium aromaticum) essential oil on the processing of Chinese bacon (preserved meat products) by beta cyclodextrin metal organic frameworks (β-CD-MOFs). Meat Sci. 2023, 195, 108998. [Google Scholar] [CrossRef]
- Das, S.; Gazdag, Z.; Szente, L.; Meggyes, M.; Horváth, G.; Lemli, B.; Kunsági-Máté, S.; Kuzma, M.; Kőszegi, T. Antioxidant and antimicrobial properties of randomly methylated β cyclodextrin–captured essential oils. Food Chem. 2019, 278, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Partheniadis, I.; Stathakis, G.; Tsalavouti, D.; Heinämäki, J.; Nikolakakis, I. Essential Oil—Loaded Nanofibers for Pharmaceutical and Biomedical Applications: A Systematic Mini-Review. Pharmaceutics 2022, 14, 1799. [Google Scholar] [CrossRef]
- Moreira, P.; Sousa, F.J.; Matos, P.; Brites, G.S.; Gonçalves, M.J.; Cavaleiro, C.; Figueirinha, A.; Salgueiro, L.; Batista, M.T.; Branco, P.C.; et al. Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Eucalyptus globulus Leaves. Pharmaceutics 2022, 14, 561. [Google Scholar] [CrossRef] [PubMed]
- Graf, M.; Stappen, I. Beyond the Bark: An Overview of the Chemistry and Biological Activities of Selected Bark Essential Oils. Molecules 2022, 27, 7295. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Wilfred, C.D.; Shaharun, M.S. Comparative assessment of various extraction approaches for the isolation of essential oil from polygonum minus using ionic liquids. J. King Saud Univ. Sci. 2019, 31, 230–239. [Google Scholar] [CrossRef]
- El Zerey-Belaskri, A.; Belyagoubi-Benhammou, N.; Benhassaini, H. From Traditional Knowledge to Modern Formulation: Potential and Prospects of Pistacia atlantica Desf. Essential and Fixed Oils Uses in Cosmetics. Cosmetics 2022, 9, 109. [Google Scholar] [CrossRef]
- Boiangiu, R.S.; Bagci, E.; Dumitru, G.; Hritcu, L.; Todirascu-Ciornea, E. Angelica purpurascens (Avé-Lall.) Gilli. Essential Oil Improved Brain Function via Cholinergic Modulation and Antioxidant Effects in the Scopolamine-Induced Zebrafish (Danio rerio) Model. Plants 2022, 11, 1096. [Google Scholar] [CrossRef] [PubMed]
- Yeom, J.; Shim, W.S.; Kang, N.G. Eco-Friendly Silica Microcapsules with Improved Fragrance Retention. Appl. Sci. 2022, 12, 6759. [Google Scholar] [CrossRef]
- Prommaban, A.; Chaiyana, W. Microemulsion of essential oils from citrus peels and leaves with anti-aging, whitening, and irritation reducing capacity. J. Drug Deliv. Sci. Technol. 2022, 69, 103188. [Google Scholar] [CrossRef]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential oils as additives in active food packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef]
- Shorbagi, M.; Fayek, N.M.; Shao, P.; Farag, M.A. Citrus reticulata Blanco (the common mandarin) fruit: An updated review of its bioactive, extraction types, food quality, therapeutic merits, and bio-waste valorization practices to maximize its economic value. Food Biosci. 2022, 47, 101699. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Yadav, M.P. Insights into the chemical composition and bioactivities of citrus peel essential oils. Food Res. Int. 2021, 143, 110231. [Google Scholar] [CrossRef]
- Rashed, M.M.; Tong, Q.; Nagi, A.; Li, J.; Khan, N.U.; Chen, L.; Rotail, A.; Bakry, A.M. Isolation of essential oil from Lavandula angustifolia by using ultrasonic-microwave assisted method preceded by enzymolysis treatment, and assessment of its biological activities. Ind. Crop. Prod. 2017, 100, 236–245. [Google Scholar] [CrossRef]
- Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem. 2020, 60, 104604. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Kang, Y.; Hou, W.; Niu, Y.; Kou, X. Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. Int. J. Biol. Macromol. 2019, 137, 132–138. [Google Scholar] [CrossRef]
- Sharma, S.; Loach, N.; Gupta, S.; Mohan, L. Evaluation of larval toxicity, mode of action and chemical composition of citrus essential oils against Anopheles stephensi and Culex quinquefasciatus. Biocatal. Agric. Biotechnol. 2022, 39, 102284. [Google Scholar] [CrossRef]
- Rashed, M.M.; Mahdi, A.A.; Ghaleb, A.D.; Zhang, F.R.; YongHua, D.; Qin, W.; WanHai, Z. Synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier, and sonocavitation treatment in fabricating of Lavandula angustifolia essential oil nanoparticles. Int. J. Biol. Macromol. 2020, 151, 702–712. [Google Scholar] [CrossRef] [PubMed]
- British Pharmacopoeia Commission; Great Britain. Medicines Commission. In British Pharmacopoeia 2000; Bernan Press (PA): Blue Ridge Summit, PA, USA, 2000; Volume 1. [Google Scholar]
- Rashed, M.M.A.; Ghaleb, A.D.S.; Li, J.; Nagi, A.; Hua-Wei, Y.; Wen-You, Z.; Tong, Q. Enhancement of Mass Transfer Intensification for Essential Oil Release from Lavandula pubescence Using Integrated Ultrasonic-Microwave Technique and Enzymatic Pretreatment. ACS Sustain. Chem. Eng. 2018, 6, 1639–1649. [Google Scholar] [CrossRef]
- Rashed, M.M.; Zhang, C.; Ghaleb, A.D.; Li, J.; Nagi, A.; Majeed, H.; Bakry, A.M.; Haider, J.; Xu, Z.; Tong, Q. Techno-functional properties and sustainable application of nanoparticles-based Lavandula angustifolia essential oil fabricated using unsaturated lipid-carrier and biodegradable wall material. Ind. Crop. Prod. 2019, 136, 66–76. [Google Scholar] [CrossRef]
- Liu, M.; Pan, Y.; Feng, M.; Guo, W.; Fan, X.; Feng, L.; Huang, J.; Cao, Y. Garlic essential oil in water nanoemulsion prepared by high-power ultrasound: Properties, stability and its antibacterial mechanism against MRSA isolated from pork. Ultrason. Sonochem. 2022, 90, 106201. [Google Scholar] [CrossRef]
- Mkaddem, M.G.; Zrig, A.; Ben Abdallah, M.; Romdhane, M.; Okla, M.K.; Al-Hashimi, A.; Alwase, Y.A.; Hegab, M.Y.; Madany, M.M.Y.; Hassan, A.H.A.; et al. Variation of the Chemical Composition of Essential Oils and Total Phenols Content in Natural Populations of Marrubium vulgare L. Plants 2022, 11, 612. [Google Scholar] [CrossRef]
- Pakdel, H.; Pantea, D.M.; Roy, C. Production of dl-limonene by vacuum pyrolysis of used tires. J. Anal. Appl. Pyrolysis 2001, 57, 91–107. [Google Scholar] [CrossRef]
- Visakh, N.U.; Pathrose, B.; Chellappan, M.; Ranjith, M.; Sindhu, P.; Mathew, D. Chemical characterisation, insecticidal and antioxidant activities of essential oils from four Citrus spp. fruit peel waste. Food Biosci. 2022, 50, 102163. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Cui, G.; Wei, M.; Zou, Z.; Ni, H. Efficient extraction of essential oil from Cinnamomum burmannii leaves using enzymolysis pretreatment and followed by microwave-assisted method. LWT 2021, 147, 111497. [Google Scholar] [CrossRef]
- Wan, N.; Kou, P.; Pang, H.-Y.; Chang, Y.-H.; Cao, L.; Liu, C.; Zhao, C.-J.; Gu, C.-B.; Fu, Y.-J. Enzyme pretreatment combined with ultrasonic-microwave-assisted surfactant for simultaneous extraction of essential oil and flavonoids from Baeckea frutescens. Ind. Crop. Prod. 2021, 174, 114173. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, F.; Pang, M.; Jin, X.; Lv, H.; Li, Z.; Lee, M. Microwave-assisted hydrodistillation extraction based on microwave-assisted preparation of deep eutectic solvents coupled with GC-MS for analysis of essential oils from clove buds. Sustain. Chem. Pharm. 2022, 27, 100695. [Google Scholar] [CrossRef]
- Araujo, N.M.P.; Pereira, G.A.; Arruda, H.S.; Prado, L.G.; Ruiz, A.L.T.G.; Eberlin, M.N.; de Castro, R.J.S.; Pastore, G.M. Enzymatic treatment improves the antioxidant and antiproliferative activities of Adenanthera pavonina L. seeds. Biocatal. Agric. Biotechnol. 2019, 18, 101002. [Google Scholar] [CrossRef]
- Xiong, L.; Hu, W.-B.; Yang, Z.-W.; Chen, H.; Ning, W.; Xin, L.; Wang, W.-J. Enzymolysis-ultrasonic assisted extraction of flavanoid from Cyclocarya paliurus (Batal) Iljinskaja:HPLC profile, antimicrobial and antioxidant activity. Ind. Crop. Prod. 2019, 130, 615–626. [Google Scholar] [CrossRef]
- Jiao, J.; Li, Z.-G.; Gai, Q.-Y.; Li, X.-J.; Wei, F.-Y.; Fu, Y.-J.; Ma, W. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chem. 2014, 147, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Bao, M.; Wang, L.; Zhang, H.; Yang, L.; Zhao, H.; Wang, Z. Aqueous enzymatic pretreatment ionic liquid–lithium salt based microwave–assisted extraction of essential oil and procyanidins from pinecones of Pinus koraiensis. J. Clean. Prod. 2019, 236, 117581. [Google Scholar] [CrossRef]
- Pasias, I.N.; Ntakoulas, D.D.; Raptopoulou, K.; Gardeli, C.; Proestos, C. Chemical Composition of Essential Oils of Aromatic and Medicinal Herbs Cultivated in Greece—Benefits and Drawbacks. Foods 2021, 10, 2354. [Google Scholar] [CrossRef]
- Marathe, S.J.; Jadhav, S.B.; Bankar, S.B.; Dubey, K.K.; Singhal, R.S. Improvements in the extraction of bioactive compounds by enzymes. Curr. Opin. Food Sci. 2019, 25, 62–72. [Google Scholar] [CrossRef]
- Mohammadpour, H.; Sadrameli, S.M.; Eslami, F.; Asoodeh, A. Optimization of ultrasound-assisted extraction of Moringa peregrina oil with response surface methodology and comparison with Soxhlet method. Ind. Crop. Prod. 2019, 131, 106–116. [Google Scholar] [CrossRef]
- Hou, K.; Yang, X.; Bao, M.; Chen, F.; Tian, H.; Yang, L. Composition, characteristics and antioxidant activities of fruit oils from Idesia polycarpa using homogenate-circulating ultrasound-assisted aqueous enzymatic extraction. Ind. Crop. Prod. 2018, 117, 205–215. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, L.; Liang, S.; Lu, Y.; Zheng, J.; Zhang, G.; Li, W.; Jiang, H. Encapsulation of Capsaicin in Whey Protein and OSA-Modified Starch Using Spray-Drying: Physicochemical Properties and Its Stability. Foods 2022, 11, 612. [Google Scholar] [CrossRef] [PubMed]
- Ozogul, Y.; Karsli, G.T.; Durmuş, M.; Yazgan, H.; Oztop, H.M.; McClements, D.J.; Ozogul, F. Recent developments in industrial applications of nanoemulsions. Adv. Colloid Interface Sci. 2022, 304, 102685. [Google Scholar] [CrossRef]
- Marhamati, M.; Ranjbar, G.; Rezaie, M. Effects of emulsifiers on the physicochemical stability of Oil-in-water Nanoemulsions: A critical review. J. Mol. Liq. 2021, 340, 117218. [Google Scholar] [CrossRef]
- Wang, K.; Cheng, L.; Li, Z.; Li, C.; Hong, Y.; Gu, Z. The degree of substitution of OSA-modified starch affects the retention and release of encapsulated mint flavour. Carbohydr. Polym. 2022, 294, 119781. [Google Scholar] [CrossRef] [PubMed]
- Bolduc, J.A.; Collins, J.A.; Loeser, R.F. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic. Biol. Med. 2019, 132, 73–82. [Google Scholar] [CrossRef]
Sample | Isolation Time | Code |
---|---|---|
CrBL.P without treatment (control) | 30 min | CrBL-EOC1 |
180 min | CrBL-EOC2 | |
CrBL.P with pre-enzymolysis treatment | 30 min | CrBL-EOE1 |
180 min | CrBL-EOE2 | |
CrBL.P with ultrasound–microwave treatment | 30 min | CrBL-EOUS1 |
180 min | CrBL-EOUS2 | |
CrBL.P with pre-enzymolysis and ultrasound–microwave treatment | 30 min | CrBL-EOEUS1 |
180 min | CrBL-EOEUS2 |
RT 1 | Components | Concentration (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C30 | C180 | E30 | E180 | US30 | US180 | EUS30 | EUS180 | |||
01.352 | Pentane | nd 2 | 2.00 | nd | nd | nd | 2.32 | nd | nd | |
01.603 | 2-methylpentane | 21.61 | 18.8 | 21.63 | 20.13 | 21.24 | 26.49 | 18.7 | 20.46 | |
02.133 | Cyclohexane | 1.56 | 1.69 | 1.53 | 1.46 | 1.54 | 2.02 | 1.4 | 1.5 | |
07.455 | (−)-α-pinene | 1.59 | 1.17 | 1.66 | 1.6 | 1.56 | 1.18 | 1.35 | 1.14 | |
09.448 | (−)-β-pinene | 4.1 | 2.78 | 3.93 | 3.96 | 3.99 | 2.64 | 3.05 | 3.11 | |
09.472 | β-phellandrene | nd | tr 3 | 0.65 | tr | 0.84 | tr | nd | tr | |
10.952 | D-limonene | 59.35 | 50.32 | 58.74 | 54.14 | 57.2 | 52.44 | 65.7 | 56.68 | |
13.307 | Linalool | 0.94 | tr | 0.75 | tr | 1.05 | tr | 0.55 | tr | |
14.857 | β-terpineol | tr | tr | tr | 0.55 | tr | tr | tr | 0.61 | |
16.023 | Terpinen-4-ol | 1.76 | 1.19 | 1.14 | 1.08 | 1.29 | 0.97 | 1.25 | 1.02 | |
16.530 | α-terpineol | 0.92 | 1.83 | 1.2 | 1.99 | 1.2 | 1.5 | 1.25 | 2.83 | |
17.095 | Decanal | 0.83 | 0.62 | 0.99 | 0.8 | 1.29 | 0.78 | 0.75 | 0.91 | |
17.900 | β-citronellol | 0.69 | 0.58 | 0.56 | tr | 0.71 | 0.5 | 0.75 | 0.62 | |
19.392 | dl-perillaldehyde | 0.83 | 0.75 | 0.56 | tr | 0.61 | 0.5 | 0.85 | 0.79 | |
19.998 | p-mentha-1(7),8(10)-dien-9-ol | tr | tr | tr | tr | tr | nd | tr | 0.87 | |
20.785 | 2-methoxy-4-vinylphenol | nd | nd | nd | 0.75 | nd | nd | nd | 0.35 | |
23.373 | (-)-cis-β-elemene | tr | tr | tr | 0.56 | tr | 0.53 | 0.55 | 0.64 | |
23.932 | Dodecanal | tr | 0.54 | tr | 0.72 | tr | 0.56 | tr | 0.83 | |
26.159 | (-)-germacrene D | tr | tr | tr | 0.51 | tr | tr | tr | 0.62 | |
31.836 | Longifolene | nd | tr | nd | 0.61 | nd | nd | nd | 0.5 | |
36.592 | α-sinensal | tr | 1.87 | 0.55 | 1.84 | tr | 1.23 | 1.5 | 2.26 | |
44.286 | n-hexadecanoic acid | tr | 2.28 | tr | 1.17 | tr | 0.53 | tr | 1.53 | |
48.821 | Linoleic acid | tr | 0.72 | tr | 1.07 | nd | nd | nd | nd | |
Yield % | Total | 0.65 ± 0.02 f | 0.72 ± 0.03 e | 0.80 ± 0.02 d | 0.86 ± 0.02 c | 0.81 ± 0.03 d | 0.86 ± 0.02 c | 0.90 ± 0.02 b | 1.03 ± 0.06 a | |
4 YI% | – | 11.86 | – | 7.47 | – | 7.07 | – | 14.5 |
Treatment System | DPPH•-SA (%) | ABTS•+-SA (mM Trolox) | ||
---|---|---|---|---|
Result | IR 1 | Result | IR | |
CrBL-EOC1 | 80.70 ± 0.20 e | – | 0.0173 ± 0.0011 e | – |
CrBL-EOC2 | 81.37 ± 0.42 e | 0.00 | 0.0183 ± 0.0011 e | 0.00 |
CrBL-EOE1 | 82.70 ± 0.20 d | 1.64 | 0.0213 ± 0.0011 d | 16.36 |
CrBL-EOE2 | 82.93 ± 0.15 d | 1.93 | 0.0217 ± 0.0011 d | 18.18 |
CrBL-EOUS1 | 82.80 ± 0.10 d | 1.76 | 0.0210 ± 0.0012 d | 14.55 |
CrBL-EOUS2 | 82.83 ± 0.25 d | 1.80 | 0.0220 ± 0.0007 d | 20.00 |
CrBL-EOEUS1 | 87.40 ± 0.30 b | 7.41 | 0.0280 ± 0.0007 b | 52.73 |
CrBL-EOEUS2 | 87.50 ± 0.30 b | 7.54 | 0.0283 ± 0.0008 b | 54.55 |
CrBL-EONE | 87.47 ± 0.32 b | 7.50 | 0.0277 ± 0.0004 b | 50.91 |
D-limonene | 90.73 ± 0.47 a | 11.51 | 0.0330 ± 0.0014 a | 80.00 |
TBHQ | 91.67 ± 0.20 a | 12.66 | 0.0360 ± 0.0012 a | 96.36 |
BHT | 85.97 ± 0.80 c | 5.65 | 0.0253 ± 0.0011 c | 38.18 |
Treatment System | DR | ||||
---|---|---|---|---|---|
0 min | 20 min | 40 min | 60 min | R2 | |
Control | 0 | 0.0213 c,A | 0.0544 c,B | 0.00544 c,B | 0.7500 |
CrBL-EOEUS2 | 0 | 0.0037 b,A | 0.0071 b,B | 0.0094 b,B | 0.9895 |
CrBL-EONE | 0 | 0.0039 b,A | 0.0076 b,B | 0.0099 b,C | 0.9856 |
D-LNE | 0 | 0.0017 a,A | 0.0034 a,B | 0.0036 a,B | 0.8280 |
D-limonene | 0 | 0.0016 a,A | 0.0035 a,B | 0.0041 a,B | 0.9300 |
TBHQ | 0 | 0.0014 a,A | 0.0025 a,B | 0.0030 a,B | 0.9526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashed, M.M.A.; You, L.; Ghaleb, A.D.S.; Du, Y. Two-Phase Extraction Processes, Physicochemical Characteristics, and Autoxidation Inhibition of the Essential Oil Nanoemulsion of Citrus reticulata Blanco (Tangerine) Leaves. Foods 2023, 12, 57. https://doi.org/10.3390/foods12010057
Rashed MMA, You L, Ghaleb ADS, Du Y. Two-Phase Extraction Processes, Physicochemical Characteristics, and Autoxidation Inhibition of the Essential Oil Nanoemulsion of Citrus reticulata Blanco (Tangerine) Leaves. Foods. 2023; 12(1):57. https://doi.org/10.3390/foods12010057
Chicago/Turabian StyleRashed, Marwan M. A., Ling You, Abduljalil D. S. Ghaleb, and Yonghua Du. 2023. "Two-Phase Extraction Processes, Physicochemical Characteristics, and Autoxidation Inhibition of the Essential Oil Nanoemulsion of Citrus reticulata Blanco (Tangerine) Leaves" Foods 12, no. 1: 57. https://doi.org/10.3390/foods12010057
APA StyleRashed, M. M. A., You, L., Ghaleb, A. D. S., & Du, Y. (2023). Two-Phase Extraction Processes, Physicochemical Characteristics, and Autoxidation Inhibition of the Essential Oil Nanoemulsion of Citrus reticulata Blanco (Tangerine) Leaves. Foods, 12(1), 57. https://doi.org/10.3390/foods12010057