Salmonella spp. Response to Lytic Bacteriophage and Lactic Acid on Marinated and Tenderized Raw Pork Loins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Pork Loins
2.2. Meat Marination
2.3. Bacterial Strain and Culture Preparation
2.4. Inoculation of Loins
2.5. Treatment Plan
2.6. Swab Collection
2.7. Translocation Study
2.8. Research Design and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delgado, C.L. Rising consumption of meat and milk in developing countries has created a new food revolution. J. Nutr. 2003, 133, 3907S–3910S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. Food and Agriculture Data. 2021. Available online: https://www.fao.org/faostat/en/#data (accessed on 31 December 2021).
- Centers for Disease Control and Prevention. General information on Salmonella. 2016. Available online: http://www.cdc.gov/salmonella/general/index.htmL (accessed on 30 August 2021).
- Gonçalves- Tenorio, A.; Silva, B.N.; Rodrigues, V.; Cadavez, V.; Gonzales-Barron, U. Prevalence of pathogens in poultry meat: A metaanalysis of European published surveys. Foods 2018, 7, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Zhu, F.; Yang, C.; Deng, Y.; Kwan, P.; Li, Y.; Lin, Y.; Qiu, Y.; Shi, X.; Chen, H.; et al. Whole-genome analysis of Salmonella enterica serovar Enteritidis isolates in outbreak linked to online food delivery, Shenzhen, China, 2018. Emerg. Infect. Dis. 2020, 26, 789–792. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Outbreaks of Salmonella Infections Linked to Backyard Poultry. 2019. Available online: https://www.cdc.gov/salmonella/backyardpoultry-05-19/index.html (accessed on 30 August 2021).
- Doménech, E.; Jiménez-Belenguer, A.; Pérez, R.; Ferrús, M.A.; Escriche, I. Risk characterization of antimicrobial resistance of Salmonella in meat products. Food Control 2015, 57, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Scientific Report. The European Union one Health 2018 Zoonoses Report. 2019. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2019.5926 (accessed on 16 March 2022).
- Eastwood, L.C.; Taylor, T.M.; Savell, J.W.; Gehring, K.B.; Arnold, A.N. Efficacy of antimicrobial interventions in reducing Salmonella enterica, Shiga toxin-producing Escherichia coli, Campylobacter, and Escherichia coli biotype I surrogates on non-chilled and chilled, skin-on and skinless pork. Meat Sci. 2021, 172, 108309. [Google Scholar] [CrossRef]
- Darwin, K.H.; Miller, V.L. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 1999, 12, 405–428. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.C.; Best, E.; Nourse, C. Non-typhoidal Salmonella infections in children: Review of literature and recommendations for management. J. Paediatr. Child. Health 2017, 53, 936–941. [Google Scholar] [CrossRef]
- Roth, J. Brenner’s Encyclopedia of Genetics, 2nd ed.; Academic Press: Cambridge, MA, USA; New England Biolabs: Ipswich, MA, USA, 2013; pp. 321–323. [Google Scholar]
- Centers for Disease Control and Prevention. Questions and answers- Salmonella. 2019. Available online: https://www.cdc.gov/salmonella/general/index.html (accessed on 14 September 2021).
- Nair, D.V.T.; Venkitanarayanan, K.; Johny, A.K. Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 2018, 7, 167. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.L.; Fajardo, A.; Garmendia, L.; Hernandez, A.; Linares, J.F.; Martínez-Solano, L.; Sánchez, M.B. A global view of antibiotic resistance. FEMS Microbiol. Rev. 2009, 33, 44–65. [Google Scholar] [CrossRef] [Green Version]
- Mandilara, G.; Sideroglou, T.; Chrysostomou, A.; Rentifis, I.; Papadopoulos, T.; Polemis, M.; Tzani, M.; Tryfinopoulou, K.; Mellou, K. The rising burden of salmonellosis caused by monophasic Salmonella Typhimurium (1,4,[5],12:i:-) in Greece and new food vehicles. Antibiotics 2021, 10, 185. [Google Scholar] [CrossRef]
- Cristobal-Cueto, P.; Garcia-Quintanilla, A.; Esteban, J.; Garcia-Quintanilla, M. Phages in food industry biocontrol and bioremediation. Antibiotics 2021, 10, 786. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Higgins, S.E.; Guenther, K.L.; Huff, W.; Donoghue, A.M.; Donoghue, D.J.; Hargis, B.M. Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poult. Sci. J. 2005, 84, 1141–1145. [Google Scholar] [CrossRef]
- Shousha, A.; Awaiwanont, N.; Sofka, D.; Smulders, F.J.; Paulsen, P.; Szostak, M.P.; Humphrey, T.; Hilbert, F. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes. Appl. Environ. Microbiol. 2015, 81, 4600–4606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, G.A.M.; Donato, T.C.; Baptista, A.A.S.; Corrêa, M.O.; Garcia, K.C.O.D.; Filho, R.L.A. Bacteriophage-induced reduction in Salmonella Enteritidis counts in the crop of broiler chickens undergoing preslaughter feed withdrawal. Poult. Sci. J. 2014, 93, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Walker, N.; Li, S.; Strauss, H.; Pokharel, S. Salmonella Typhimurium DT 104 response to Lytic bacteriophage and Lactobionic acid on raw chicken breast. Food Microbiol. 2021, 100, 103862. [Google Scholar] [CrossRef]
- Evangelopoulou, G.; Kritas, S.; Govaris, A.; Burriel, A.R. Pork meat as a potential source of Salmonella enterica subsp. Arizonae infection in humans. J. Clin. Microbiol. 2014, 52, 741–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muras, T.M.; Harris, K.B.; Lucia, L.M.; Hardin, M.D.; Savell, J.W. Dispersion and survival of Escherichia coli O157:H7 and Salmonella Typhimurium during the production of marinated beef inside skirt steak and tri-tip roasts. J. Food Prot. 2012, 75, 255–260. [Google Scholar] [CrossRef]
- García, P.; Martínez, B.; Obeso, J.M.; Rodríguez, A. Bacteriophages and their application in food safety. Lett. Appl. Microbiol. 2008, 47, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Thai, T.H.; Hirai, T.; Lan, N.T.; Yamaguchi, R. Antibiotic resistance profiles of Salmonella serovars isolated from retail pork and chicken meat in North Vietnam. Int. J. Food Microbiol. 2012, 156, 147–151. [Google Scholar] [CrossRef]
- Cao, J.; Fu, H.; Gao, L.; Zheng, Y. Antibacterial activity and mechanism of lactobionic acid against Staphylococcus aureus. Folia Microbiol. 2019, 64, 899–906. [Google Scholar] [CrossRef]
- Epling, L.K.; Carpenter, J.A.; Blankenship, L.C. Prevalence of Campylobacter spp. and Salmonella spp. on pork carcasses and the reduction effected by spraying with Lactic acid. J. Food Prot. 1993, 56, 536–537. [Google Scholar] [CrossRef] [PubMed]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Alvarez-Ordóñez, A.; Fernández, A.; Bernardo, A.; López, M. Acid tolerance in Salmonella Typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Food Microbiol. 2010, 27, 44–49. [Google Scholar] [CrossRef]
- Wang, C.; Yang, J.; Zhu, X.; Lu, Y.; Xue, Y.; Lu, Z. Effects of Salmonella bacteriophage, nisin and potassium sorbate and their combination on safety and shelf life of fresh chilled pork. Food Control 2017, 73B, 869–877. [Google Scholar] [CrossRef]
- Yeh, Y.; Purushothaman, P.; Gupta, N.; Ragnone, M.; Verma, S.C.; de Mello, A.S. Bacteriophage application on red meats and poultry: Effects on Salmonella population in final ground products. Meat Sci. 2017, 127, 30–34. [Google Scholar] [CrossRef]
- Corliss, B.; Brooks, J.C.; Martin, J.N.; Echeverrry, A.; Parks, A.R.; Pokharel, S.; Brashears, M.M. The influence of beef quality characteristics on the internalization and thermal susceptibility of Shiga toxin-producing Escherichia coli (STEC) in blade-tenderized beef steaks. Meat Sci. 2016, 110, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokharel, S.; Brooks, J.C.; Martin, J.N.; Brashears, M.M. Antimicrobial susceptibility and internalization of Salmonella Typhimurium in vacuum-tumbled marinated beef products. Lett. Appl. Microbiol. 2016, 63, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, S.; Brooks, J.C.; Martin, J.N.; Echeverrry, A.; Parks, A.R.; Corliss, B.; Brashears, M.M. Internalization and thermal susceptibility of Shiga toxin-producing Escherichia coli (STEC) in marinated beef products. Meat Sci. 2016, 116, 213–220. [Google Scholar] [CrossRef] [PubMed]
- McDonough, F.E.; Hargrove, R.E. Heat resistance of Salmonella in dried milk. J. Dairy Sci. 1968, 51, 1587–1591. [Google Scholar] [CrossRef]
- Paswan, R.; Park, Y.W. Survivability of Salmonella and Escherichia coli O157:H7 pathogens and food safety concerns on commercial powder milk products. Dairy 2020, 1, 189–201. [Google Scholar] [CrossRef]
- Calle, A.; Porto-Fett, A.C.S.; Shoyer, B.A.; Luchansky, J.B.; Thippareddi, H. Microbiological safety of commercial prime rib preparation methods: Thermal inactivation of Salmonella in mechanically tenderized rib eye. J. Food. Prot. 2015, 78, 2126–2135. [Google Scholar] [CrossRef] [PubMed]
Bacterial Strain Name | Strain Number | Isolate |
---|---|---|
Salmonella Enteritidis | FSL S5–415–ILSI NA | Human isolate |
Salmonella Heidelberg | FSL S5–448–ILSI NA | Human isolate |
Salmonella Montevideo | FSL S5–630–ILSI NA | Bovine isolate |
Bacterial Attachment (Log10 CFU cm−2) | Interventions | SEM 4 | ||||
---|---|---|---|---|---|---|
Control | DI 1 | LA 2 | Phage | LA Phage 3 | ||
Initial surface attachment (30 min) | 4.55 Aa | 4.31 Aa | 3.30 Bb | 4.48 Aa | 4.48 Aa | 0.20 |
Surface attachment (1 h) | 3.90 Ab | 3.97 Aab | 3.86 Aa | 2.18 Bc | 2.13 Bc | 0.11 |
Surface attachment post-tenderization | 3.67 Ab | 3.57 Ab | 3.53 Aab | 3.22 ABb | 3.03 Bb | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Konoval, H.M.; Marecek, S.; Lathrop, A.A.; Pokharel, S. Salmonella spp. Response to Lytic Bacteriophage and Lactic Acid on Marinated and Tenderized Raw Pork Loins. Foods 2022, 11, 879. https://doi.org/10.3390/foods11060879
Li S, Konoval HM, Marecek S, Lathrop AA, Pokharel S. Salmonella spp. Response to Lytic Bacteriophage and Lactic Acid on Marinated and Tenderized Raw Pork Loins. Foods. 2022; 11(6):879. https://doi.org/10.3390/foods11060879
Chicago/Turabian StyleLi, Sherita, Haley M. Konoval, Samantha Marecek, Amanda A. Lathrop, and Siroj Pokharel. 2022. "Salmonella spp. Response to Lytic Bacteriophage and Lactic Acid on Marinated and Tenderized Raw Pork Loins" Foods 11, no. 6: 879. https://doi.org/10.3390/foods11060879
APA StyleLi, S., Konoval, H. M., Marecek, S., Lathrop, A. A., & Pokharel, S. (2022). Salmonella spp. Response to Lytic Bacteriophage and Lactic Acid on Marinated and Tenderized Raw Pork Loins. Foods, 11(6), 879. https://doi.org/10.3390/foods11060879