Functional Performance of Plant Proteins
Abstract
:1. Introduction
2. Methods and Search Criteria
3. Literature Review
3.1. Plant Protein Ingredients
3.1.1. Cultivars and Genotypes
3.1.2. Different Forms of Plant Proteins
3.1.3. Commercial or Laboratory Processed Plant Proteins
3.1.4. Structure of Plant Proteins
3.1.5. Extraction Methods
3.1.6. Drying Methods
3.2. Characterization of Plant Protein Functional Properties
3.2.1. Water and Oil Holding Properties
3.2.2. Gelling Properties
3.2.3. Protein Solubility
3.2.4. Emulsifying Properties
3.2.5. Foaming Properties
4. Prediction of Plant Protein Functional Properties
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Oberst, Why the Global Rise in Vegan and Plant-Based Eating Isn’t a Fad (600% Increase in U.S. Vegans + Other Astounding Stats). 2018. Available online: https://foodrevolution.org/blog/vegan-statistics-global/ (accessed on 4 November 2020).
- Malav, O.P.; Talukder, S.; Gokulakrishnan, P.; Chand, S. Meat Analog: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczak, K.; Onopiuk, A.; Szpicer, A.; Poltorak, A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods 2022, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Kumar, S. Meat Analogues: Plant based alternatives to meat products—A review. Int. J. Food Ferment. Technol. 2015, 5, 107–119. [Google Scholar] [CrossRef]
- Mintel Group Ltd. Patent Insights: Next-Gen Plant Protein Ingredients; UMass Library: Amherst, MA, USA, 2020; Available online: https://store.mintel.com/report/patent-insights-next-gen-plant-protein-ingredients (accessed on 21 December 2021).
- Asgar, M.A.; Fazilah, A.; Huda, N.; Bhat, R.; Karim, A.A. Nonmeat protein alternatives as meat extenders and meat analogs. Compr. Rev. Food Sci. Food Saf. 2010, 9, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Loveday, S.M. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins. Annu. Rev. Food Sci. Technol. 2019, 10, 311–339. [Google Scholar] [CrossRef]
- Schutyser, M.A.I.; Pelgrom, P.J.M.; van der Goot, A.J.; Boom, R.M. Dry fractionation for sustainable production of functional legume protein concentrates. Trends Food Sci. Technol. 2015, 45, 327–335. [Google Scholar] [CrossRef]
- Ramani, A.; Kushwaha, R.; Malaviya, R.; Kumar, R.; Yadav, N. Molecular, functional and nutritional properties of chickpea (Cicer arietinum L.) protein isolates prepared by modified solubilization methods. J. Food Meas. Charact. 2021, 15, 2352–2368. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, N. Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chem. 2007, 102, 366–374. [Google Scholar] [CrossRef]
- Aryee, A.N.A.; Boye, J.I. Comparative Study of the Effects of Processing on the Nutritional, Physicochemical and Functional Properties of Lentil. J. Food Process. Preserv. 2017, 41, e12824. [Google Scholar] [CrossRef]
- Vogelsang-O’Dwyer, M.; Zannini, E.; Arendt, E.K. Production of pulse protein ingredients and their application in plant-based milk alternatives. Trends Food Sci. Technol. 2021, 110, 364–374. [Google Scholar] [CrossRef]
- Boye, J.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- Aydemir, L.Y.; Yemenicioĝlu, A. Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT—Food Sci. Technol. 2013, 50, 686–694. [Google Scholar] [CrossRef] [Green Version]
- Stone, A.K.; Karalash, A.; Tyler, R.T.; Warkentin, T.D.; Nickerson, M.T. Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Res. Int. 2015, 76, 31–38. [Google Scholar] [CrossRef]
- Fernández-Quintela, A.; Macarulla, M.T.; del Barrio, A.S.; Martínez, J.A. Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods Hum. Nutr. 1997, 51, 331–341. [Google Scholar] [CrossRef]
- Brishti, F.H.; Zarei, M.; Muhammad, S.K.S.; Ismail-Fitry, M.R.; Shukri, R.; Saari, N. Evaluation of the functional properties of mung bean protein isolate for development of textured vegetable protein. Int. Food Res. J. 2017, 24, 1595–1605. [Google Scholar]
- Butt, M.S.; Batool, R. Nutritional and functional properties of some promising legumes protein isolates. Pak. J. Nutr. 2010, 9, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Lafarga, T.; Álvarez, C.; Villaró, S.; Bobo, G.; Aguiló-Aguayo, I. Potential of pulse-derived proteins for developing novel vegan edible foams and emulsions. Int. J. Food Sci. Technol. 2019, 55, 475–481. [Google Scholar] [CrossRef]
- Gundogan, R.; Karaca, A.C. Physicochemical and functional properties of proteins isolated from local beans of Turkey. LWT 2020, 130, 109609. [Google Scholar] [CrossRef]
- Tang, X.; Shen, Y.; Zhang, Y.; Schilling, M.W.; Li, Y. Parallel comparison of functional and physicochemical properties of common pulse proteins. LWT 2021, 146, 111594. [Google Scholar] [CrossRef]
- Feyzi, S.; Milani, E.; Golimovahhed, Q.A. Grass Pea (Lathyrus sativus L.) Protein Isolate: The Effect of Extraction Optimization and Drying Methods on the Structure and Functional Properties. Food Hydrocoll. 2018, 74, 187–196. [Google Scholar] [CrossRef]
- Singhal, A.; Karaca, A.C.; Tyler, R.; Nickerson, M. Pulse proteins: From processing to structure-function relationships. In Grain Legumes; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Stone, A.K.; Avarmenko, N.A.; Warkentin, T.D.; Nickerson, M.T. Functional properties of protein isolates from different pea cultivars. Food Sci. Biotechnol. 2015, 24, 827–833. [Google Scholar] [CrossRef]
- Singhal, A.; Stone, A.K.; Vandenberg, A.; Tyler, R.; Nickerson, M.T. Effect of genotype on the physicochemical and functional attributes of faba bean (Vicia faba L.) protein isolates. Food Sci. Biotechnol. 2016, 25, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.C.Y.; Karaca, A.C.; Tyler, R.T.; Nickerson, M.T. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 2018, 34, 126–147. [Google Scholar] [CrossRef]
- Nikolopoulou, D.; Grigorakis, K.; Stasini, M.; Alexis, M.N.; Iliadis, K. Differences in chemical composition of field pea (Pisum sativum) cultivars: Effects of cultivation area and year. Food Chem. 2007, 103, 847–852. [Google Scholar] [CrossRef]
- Berghout, J.A.M.; Boom, R.M.; van der Goot, A.J. Understanding the differences in gelling properties between lupin protein isolate and soy protein isolate. Food Hydrocoll. 2015, 43, 465–472. [Google Scholar] [CrossRef]
- Tang, C.H.; Wang, X.Y.; Yang, X.Q.; Li, L. Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties. J. Food Eng. 2009, 92, 432–437. [Google Scholar] [CrossRef]
- Sun, X.D.; Arntfield, S.D. Gelation properties of salt-extracted pea protein induced by heat treatment. Food Res. Int. 2010, 43, 509–515. [Google Scholar] [CrossRef]
- Añón, M.C.; Sorgentini, D.A.; Wagner, J.R. Relationships between different hydration properties of commercial and laboratory soybean isolates. J. Agric. Food Chem. 2001, 49, 4852–4858. [Google Scholar] [CrossRef]
- Lu, Z.X.; He, J.F.; Zhang, Y.C.; Bing, D.J. Composition, physicochemical properties of pea protein and its application in functional foods. Crit. Rev. Food Sci. Nutr. 2019, 60, 2593–2605. [Google Scholar] [CrossRef]
- Barac, M.; Cabrilo, S.; Pesic, M.; Stanojevic, S.; Zilic, S.; Macej, O.; Ristic, N. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. Int. J. Mol. Sci. 2010, 11, 4973–4990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.W.; Lu, Y.; Zhang, Y.; Fu, C.; Huang, D. Physicochemical and functional properties of red lentil protein isolates from three origins at different pH. Food Chem. 2021, 358, 129749. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.; Hillen, C.; Robinson, J.G. Composition, nutritional value, and health benefits of pulses. Cereal Chem. 2017, 94, 11–31. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.; Van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millar, K.A.; Gallagher, E.; Burke, R.; McCarthy, S.; Barry-Ryan, C. Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. J. Food Compos. Anal. 2019, 82, 103233. [Google Scholar] [CrossRef]
- Sharan, S.; Zanghelini, G.; Zotzel, J.; Bonerz, D.; Aschoff, J.; Saint-Eve, A.; Maillard, M.N. Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Compr. Rev. Food Sci. Food Saf. 2021, 20, 401–428. [Google Scholar] [CrossRef]
- Sosulski, F.W.; Sosulski, K. Composition and functionality of protein, starch, and fiber from wet and dry processing of grain legumes. In Plant Proteins: Applications, Biological Effects and Chemistry; American Chemical Society: Washington, DC, USA, 1986; pp. 176–189. [Google Scholar] [CrossRef]
- Karaca, A.C.; Low, N.; Nickerson, M. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res. Int. 2011, 44, 2742–2750. [Google Scholar] [CrossRef]
- Langton, M.; Ehsanzamir, S.; Karkehabadi, S.; Feng, X.; Johansson, M.; Johansson, D.P. Gelation of faba bean proteins—Effect of extraction method, pH and NaCl. Food Hydrocoll. 2019, 103, 105622. [Google Scholar] [CrossRef]
- Alfaro-Diaz, A.; Urías-Silvas, J.E.; Loarca-Piña, G.; Gaytan-Martínez, M.; Prado-Ramirez, R.; Mojica, L. Techno-functional properties of thermally treated black bean protein concentrate generated through ultrafiltration process. LWT 2020, 136, 110296. [Google Scholar] [CrossRef]
- Joshi, M.; Adhikari, B.; Aldred, P.; Panozzo, J.F.; Kasapis, S. Physicochemical and functional properties of lentil protein isolates prepared by different drying methods. Food Chem. 2011, 129, 1513–1522. [Google Scholar] [CrossRef]
- Abdul-Fattah, A.M.; Kalonia, D.S.; Pikal, M.J. The challenge of drying method selection for protein pharmaceuticals: Product quality implications. J. Pharm. Sci. 2007, 96, 1886–1916. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-Z.; Cheng, Y.-Q.; Fan, J.-F.; Lu, Z.-H.; Yamaki, K.; Li, L.-T. Effects of drying method on physicochemical and functional properties of soy protein isolates. J. Food Process. Preserv. 2009, 34, 520–540. [Google Scholar] [CrossRef]
- Tontul, İ.; Kasimoglu, Z.; Asik, S.; Atbakan, T.; Topuz, A. Functional properties of chickpea protein isolates dried by refractance window drying. Int. J. Biol. Macromol. 2018, 109, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.R. Functional and Electrophoretic Characteristics of Succinylated Peanut Flour Protein. J. Agric. Food Chem. 1977, 25, 258–261. [Google Scholar] [CrossRef]
- Lin, M.J.Y.; Humbert, E.S.; Sosulski, F.W. Certain functional properties of sunflower meal products. J. Food Sci. 1974, 39, 368–370. [Google Scholar] [CrossRef]
- Wang, C.; Zayas, J. Water Retention and Solubility of Soy Proteins and Corn Germ Proteins in a Model System. J. Food Sci. 1991, 56, 455–458. [Google Scholar] [CrossRef]
- Keskin, S.O.; Ali, T.M.; Ahmed, J.; Shaikh, M.; Siddiq, M.; Uebersax, M.A. Physico-chemical and functional properties of legume protein, starch, and dietary fiber—A review. Legume Sci. 2021, e117. [Google Scholar] [CrossRef]
- Hall, A.E.; Moraru, C.I. Structure and function of pea, lentil and faba bean proteins treated by high pressure processing and heat treatment. LWT 2021, 152, 112349. [Google Scholar] [CrossRef]
- Dzudie, T.; Scher, J.; Hardy, J. Common bean flour as an extender in beef sausages. J. Food Eng. 2002, 52, 143–147. [Google Scholar] [CrossRef]
- Sanjeewa, W.G.T.; Wanasundara, J.P.D.; Pietrasik, Z.; Shand, P.J. Characterization of chickpea (Cicer arietinum L.) flours and application in low-fat pork bologna as a model system. Food Res. Int. 2010, 43, 617–626. [Google Scholar] [CrossRef]
- Shoaib, A.; Sahar, A.; Sameen, A.; Saleem, A.; Tahir, A.T. Use of pea and rice protein isolates as source of meat extenders in the development of chicken nuggets. J. Food Process. Preserv. 2018, 42, e13763. [Google Scholar] [CrossRef]
- Samard, S.; Ryu, G.H. Physicochemical and functional characteristics of plant protein-based meat analogs. J. Food Process. Preserv. 2019, 43, e14123. [Google Scholar] [CrossRef]
- Schreuders, F.K.G.; Dekkers, B.L.; Bodnár, I.; Erni, P.; Boom, R.M.; van der Goot, A.J. Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. J. Food Eng. 2019, 261, 32–39. [Google Scholar] [CrossRef]
- Sathe, S.K.; Deshpande, S.S.; Salunkhe, D.K. Functional Properties of Lupin Seed (Lupinus mutabilis) Proteins and Protein Concentrates. J. Food Sci. 1982, 47, 491–497. [Google Scholar] [CrossRef]
- Shand, P.J.; Ya, H.; Pietrasik, Z.; Wanasundara, P.K.J.P.D. Physicochemical and textural properties of heat-induced pea protein isolate gels. Food Chem. 2007, 102, 1119–1130. [Google Scholar] [CrossRef]
- Makri, E.A.; Papalamprou, E.M.; Doxastakis, G.I. Textural properties of legume protein isolate and polysaccharide gels. J. Sci. Food Agric. 2006, 86, 1855–1862. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Kaur, A.; Rana, J.C. Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocoll. 2015, 43, 679–689. [Google Scholar] [CrossRef]
- Motamedi, A.; Vahdani, M.; Baghaei, H.; Alsadat, M.B. Considering the Physicochemical and Sensorial Properties of Momtaze Hamburgers Containing Lentil and Chickpea Seed Flour. Nutr. Food Sci. Res. 2015, 2, 55–62. [Google Scholar]
- Ghribi, A.M.; Ben Amira, A.; Gafsi, I.M.; Lahiani, M.; Bejar, M.; Triki, M.; Zouari, A.; Attia, H.; Besbes, S. Toward the enhancement of sensory profile of sausage ‘Merguez’ with chickpea protein concentrate. Meat Sci. 2018, 143, 74–80. [Google Scholar] [CrossRef]
- Kamani, M.H.; Meera, M.S.; Bhaskar, N.; Modi, V.K. Partial and total replacement of meat by plant-based proteins in chicken sausage: Evaluation of mechanical, physico-chemical and sensory characteristics. J. Food Sci. Technol. 2019, 56, 2660–2669. [Google Scholar] [CrossRef]
- Žugčić, T.; Abdelkebir, R.; Barba, F.J.; Jambrak, A.R.; Gálvez, F.; Zamuz, S.; Granato, D.; Lorenzo, J.M. Effects of pulses and microalgal proteins on quality traits of beef patties. J. Food Sci. Technol. 2018, 55, 4544–4553. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Q.; Wang, J.; Stoddard, F.; Salovaara, H.; Sontag-Strohm, T. Preparation and characterization of emulsion gels from whole faba bean flour. Foods 2020, 9, 755. [Google Scholar] [CrossRef]
- Johnston, S.P.; Nickerson, M.T.; Low, N.H. The physicochemical properties of legume protein isolates and their ability to stabilize oil-in-water emulsions with and without genipin. J. Food Sci. Technol. 2014, 52, 4135–4145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morr, C.; German, B.; Kinsella, J.; Regenstein, J.; Van Buren, J.; Kilara, A.; Lewis, B.; Mangino, M. A Collaborative Study to Develop a Standardized Food Protein Solubility Procedure. J. Food Sci. 1985, 50, 1715–1718. [Google Scholar] [CrossRef]
- Chao, D.; Aluko, R.E. Modification of the structural, emulsifying, and foaming properties of an isolated pea protein by thermal pretreatment. CYTA—J. Food 2018, 16, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Thirumdas, R.; Brnčić, M.; Brnčić, S.R.; Barba, F.J.; Gálvez, F.; Zamuz, S.; Lacomba, R.; Lorenzo, J.M. Evaluating the impact of vegetal and microalgae protein sources on proximate composition, amino acid profile, and physicochemical properties of fermented Spanish ‘chorizo’ sausages. J. Food Process. Preserv. 2018, 42, e13817. [Google Scholar] [CrossRef]
- Tan, E.S.; Ying-Yuan, N.; Gan, C.Y. A comparative study of physicochemical characteristics and functionalities of pinto bean protein isolate (PBPI) against the soybean protein isolate (SPI) after the extraction optimisation. Food Chem. 2014, 152, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Barac, M.B.; Pesic, M.B.; Stanojevic, S.P.; Kostic, A.Z.; Bivolarevic, V. Comparative study of the functional properties of three legume seed isolates: Adzuki, pea and soy bean. J. Food Sci. Technol. 2015, 52, 2779–2787. [Google Scholar] [CrossRef] [Green Version]
- Yasumatsu, K.; Sawada, K.; Moritaka, S.; Misaki, M.; Toda, J.; Wada, T.; Ishii, K. Agricultural and Biological Chemistry Whipping and Emulsifying Properties of Soybean Products Whipping and Emulsifying Properties of Soybean Productst. Agric. Biol. Chem. 1972, 36, 719–727. [Google Scholar] [CrossRef]
- McClements, D.J. Characterization of emulsion properties. In Food Emulsions; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Pearce, K.N.; Kinsella, J.E. Emulsifying Properties of Proteins: Evaluation of a Turbidimetric Technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
- McClements, D.J. Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Chen, Y.; Kong, X.; Zhang, C.; Hua, Y. Emulsifying properties and oil/water (O/W) interface adsorption behavior of heated soy proteins: Effects of heating concentration, homogenizer rotating speed, and salt addition level. J. Agric. Food Chem. 2014, 62, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Gumus, C.E.; Decker, E.A.; McClements, D.J. Formation and Stability of ω-3 Oil Emulsion-Based Delivery Systems Using Plant Proteins as Emulsifiers: Lentil, Pea, and Faba Bean Proteins. Food Biophys. 2017, 12, 186–197. [Google Scholar] [CrossRef]
- Leonard, W.; Hutchings, S.C.; Warner, R.D.; Fang, Z. Effects of incorporating roasted lupin (Lupinus angustifolius) flour on the physicochemical and sensory attributes of beef sausage. Int. J. Food Sci. Technol. 2019, 54, 1849–1857. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I.; Simpson, B.K. Preparation of Salad Dressing Emulsions Using Lentil, Chickpea and Pea Protein Isolates: A Response Surface Methodology Study. J. Food Qual. 2016, 39, 274–291. [Google Scholar] [CrossRef]
- Gupta, S.; Chhabra, G.S.; Liu, C.; Bakshi, J.S.; Sathe, S.K. Functional Properties of Select Dry Bean Seeds and Flours. J. Food Sci. 2018, 83, 2052–2061. [Google Scholar] [CrossRef]
- Jarpa-Parra, M.; Wong, L.; Wismer, W.; Temelli, F.; Han, J.; Huang, W.; Eckhart, E.; Tian, Z.; Shi, K.; Sun, T.; et al. Quality characteristics of angel food cake and muffin using lentil protein as egg/milk replacer. Int. J. Food Sci. Technol. 2017, 52, 1604–1613. [Google Scholar] [CrossRef]
- Pollard, N.J.; Stoddard, F.L.; Popineau, Y.; Wrigley, C.W.; MacRitchie, F. Lupin flours as additives: Dough mixing, breadmaking, emulsifying, and foaming. Cereal Chem. 2002, 79, 662–669. [Google Scholar] [CrossRef]
- Sharif, H.R.; Williams, P.A.; Sharif, M.K.; Abbas, S.; Majeed, H.; Masamba, K.G.; Safdar, W.; Zhong, F. Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants—A review. Food Hydrocoll. 2018, 76, 2–16. [Google Scholar] [CrossRef]
- Roy, K.; Kar, S.; Das, R.N. A Primer on QSAR/QSPR Modeling: Fundamental Concepts; Springer International Publishing: Cham, Switzerland, 2015; Available online: https://www.springer.com/gp/book/9783319172804 (accessed on 21 December 2021).
- Nakai, S.; Li-chan, E. Structure Modification and Functionality of Whey Proteins: Quantitative Structure-Activity Relationship Approach. J. Dairy Sci. 1985, 68, 2763–2772. [Google Scholar] [CrossRef]
- Mune, M.A.M.; Sogi, D.S.; Minka, S.R. Response surface methodology for investigating structure–function relationship of grain legume proteins. J. Food Process. Preserv. 2017, 42, e13524. [Google Scholar] [CrossRef]
- Keivaninahr, F.; Gadkari, P.; Benis, K.Z.; Tulbek, M.; Ghosh, S. Prediction of emulsification behaviour of pea and faba bean protein concentrates and isolates from structure-functionality analysis. RSC Adv. 2021, 11, 12117–12135. [Google Scholar] [CrossRef]
- Arteaga, G.E.; Nakai, S. Predicting Protein Functionality with Artificial Neural Networks: Foaming and Emulsifying Properties. J. Food Sci. 1993, 58, 1152–1156. [Google Scholar] [CrossRef]
- Liu, X. Deep recurrent neural network for protein function prediction from sequence. arXiv 2017, arXiv:1701.08318. [Google Scholar]
- Rifaioglu, A.S.; Doğan, T.; Martin, M.J.; Cetin-Atalay, R.; Atalay, V. DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep Neural Networks. Sci. Rep. 2019, 9, 7344. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Orsat, V.; Raghavan, V. Soybean hydrophobic protein response to external electric field: A molecular modeling approach. Biomolecules 2013, 3, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Vagadia, B.H.; Vanga, S.K.; Singh, A.; Raghavan, V. Effects of thermal and electric fields on soybean trypsin inhibitor protein: A molecular modelling study. Innov. Food Sci. Emerg. Technol. 2016, 35, 9–20. [Google Scholar] [CrossRef]
- Singh, A.; Vanga, S.K.; Orsat, V.; Raghavan, V. Application of molecular dynamic simulation to study food proteins: A review. Crit. Rev. Food Sci. Nutr. 2017, 58, 2779–2789. [Google Scholar] [CrossRef]
- Kuhlman, B.; Bradley, P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 2019, 20, 681–697. [Google Scholar] [CrossRef]
- Barroso da Silva, F.L.B.; Carloni, P.; Cheung, D.; Cottone, G.; Donnini, S.; Foegeding, E.A.; Gulzar, M.; Jacquier, J.C.; Lobaskin, V.; MacKernan, D.; et al. Understanding and Controlling Food Protein Structure and Function in Foods: Perspectives from Experiments and Computer Simulations. Annu. Rev. Food Sci. Technol. 2020, 11, 365–387. [Google Scholar] [CrossRef] [Green Version]
- Walsh, M.C.; Gunn, C. Non-dairy milk substitutes: Are they of adequate nutritional composition? In Milk and Dairy Foods; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Cole, E.; Goeler-Slough, N.; Cox, A.; Nolden, A. Examination of the nutritional composition of alternative beef burgers available in the United States. Int. J. Food Sci. Nutr. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tso, R.; Forde, C.G. Unintended consequences: Nutritional impact and potential pitfalls of switching from animal- to plant-based foods. Nutrients 2021, 13, 2527. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, M.; Kinchla, A.J.; Nolden, A.A. Role of sensory evaluation in consumer acceptance of plant-based meat analogs and meat extenders: A scoping review. Foods 2020, 9, 1334. [Google Scholar] [CrossRef] [PubMed]
- Short, E.C.; Kinchla, A.J.; Nolden, A.A. Plant-based cheeses: A systematic review of sensory evaluation studies and strategies to increase consumer acceptance. Foods 2021, 10, 725. [Google Scholar] [CrossRef]
Forms of Protein | Protein Type | Protein Content * (%) | WHC (gH2O/g) | OHC (g oil/g) | LGC (%) | References |
---|---|---|---|---|---|---|
Flour | Chickpea (desi) | 20.0 | 2.20 | 1.15 | N/A | [10] |
Chickpea | 20.6–26.7 | 1.40–1.50 | 1.05–1.24 | 10–14 | [11] | |
Chickpea (Kabuli) | 26.9 | 1.92 | 1.25 | N/A | [10] | |
Green lentil | 27.3 | 1.00 | 1.70 | N/A | [12] | |
Faba bean (protein rich flour) | 64.1 | N/A | N/A | 7 | [13] | |
Concentrates | Chickpea | 63.9–76.5 | 2.50–3.10 | 1.20–1.40 | 10–14 | [14] |
Soybean | 70.0 | 4.52 | 1.73 | >14 | [15] | |
Chickpea | 71.0–77.0 | 4.90–7.94 | 10.9–14.6 | 5–7 | [15] | |
Red lentil | 78.2–82.7 | 3.70–4.10 | 1.10–2.30 | 10–12 | [14] | |
Green lentil | 79.1–88.6 | 3.40–3.90 | 1.20–1.35 | 8–12 | [14] | |
Pea | 80.6–89.0 | 1.91–2.37 | 1.10–1.40 | N/A | [16] | |
Faba bean | 81.2 | 1.80 | 1.60 | 14 | [17] | |
Mung bean | 81.5 | 3.33 | 3.00 | 12 | [18] | |
Pea | 81.7–83.9 | 3.90–4.50 | 1.20–1.75 | 12–14 | [14] | |
Soybean | 82.2 | 1.30 | 1.10 | 16 | [17] | |
Pea | 83.6 | 1.52 | 1.40 | 18 | [19] * | |
Pea | 84.9 | 1.70 | 1.20 | 18 | [17] | |
Mung bean | 85.5 | 1.63 | 1.13 | 16 | [19] * | |
Soybean | 86.0 | 3.0 | 3.45 | 14 | [18] | |
Isolates | Lentil | N/A | 6.78 | 6.37 | N/A | [20] |
Cowpea | N/A | 6.08 | 5.83 | N/A | [20] | |
Faba bean | N/A | 6.52 | 5.09 | N/A | [20] | |
Chickpea | N/A | 5.44 | 5.37 | N/A | [20] | |
Soybean | N/A | 2.39 | 5.37 | N/A | [20] | |
Runner bean | N/A | 5.43 | 3.46 | N/A | [20] | |
Bean | N/A | 5.43 | 5.59 | N/A | [20] | |
Pea | N/A | 6.00 | 4.84 | N/A | [20] | |
Akkus bean | N/A | 1.9 | 4.1 | 9 | [21] | |
Gembos bean | N/A | 1.9 | 4.0 | 10 | [21] | |
Simav bean | N/A | 1.8 | 5.4 | 9 | [21] | |
Hinis bean | N/A | 2.1 | 4.7 | 9 | [21] | |
Bombay bean | N/A | 2.0 | 4.0 | 8 | [21] | |
Different bean | 80.8–84.4 | 1.8–2.1 | 4.0–5.4 | N/A | [21] | |
Green mung bean | 84.7 | 2.2 | 1.76 | 16 | [22] | |
Pigeon pea | 86.9 | 3.6 | 1.16 | 8 | [22] | |
Grass pea | 87.50 | 2.15 | 1.19 | N/A | [23] | |
Yellow lentil | 87.8 | 1.2 | 1.78 | 14 | [22] | |
Commercial soy | 88.6 | 1.5 | 0.89 | 20 | [22] | |
Chickpea | 89.1 | 2.3 | 1.73 | 12 | [22] | |
Pea | 89.2 | 3.5 | 1.75 | 16 | [22] | |
Yellow mung bean | 90.0 | 2.2 | 1.72 | 15 | [22] | |
Faba bean | 90.1 | N/A | N/A | 12 | [13] | |
Cowpea | 91.0 | 2.8 | 1.44 | 13 | [22] | |
White lentil | 91.2 | 4.9 | 1.80 | 11 | [22] | |
Chickpea (Kabuli) | 91.49–98.65 | 3.48–3.95 | 3.65–4.45 | N/A | [10] | |
Soy | 92.4 | 1.5 | 1.16 | 10 | [22] | |
Grass pea | 92.5 | 2.70 | 1.37 | N/A | [23] | |
Chickpea (Desi) | 92.7–96.4 | 2.62–3.78 | 3.24–4.14 | N/A | [10] |
(a) | ||||
---|---|---|---|---|
Protein Type | Protein * Content (%) | Emulsifying Activity (%) | Emulsifying Stability (%) | References |
Mungbean protein isolate | 81.5 | 63.2 | 62.8 | [18] |
Pea protein isolate | 83.6 | 21.0 | 43.2 | [19] |
Green mung bean protein isolate | 84.7 | 62.0 | 53.0 | [22] |
Mungbean protein isolate | 85.5 | 41.1 | 45.5 | [19] |
Soybean protein isolate | 86.0 | 74.5 | 81.2 | [18] |
Pigeon pea protein isolate | 86.9 | 73.0 | 71.0 | [22] |
Grass pea protein isolate | 87.5 | 87.5 | 29.8 | [23] |
Yellow lentil protein isolate | 87.8 | 72.0 | 64.0 | [22] |
Commercial soy protein isolate | 88.6 | 54.0 | 49.0 | [22] |
Chickpea protein isolate | 89.1 | 66.0 | 53.0 | [22] |
Pea protein isolate | 89.2 | 76.0 | 62.0 | [22] |
Yellow mung bean protein isolate | 90.0 | 62.0 | 53.0 | [22] |
Cowpea protein isolate | 91.0 | 69.0 | 61.0 | [22] |
White lentil protein isolate | 91.2 | 68.0 | 67.0 | [22] |
Soy protein isolate | 92.4 | 71.0 | 70.0 | [22] |
Grass pea protein isolate | 92.5 | 35.8 | 28.7 | [23] |
(b) | ||||
Protein Type | Protein Content * (%) | Emulsifying Activity Index (m2/g) | Emulsifying Stability Index (Min) | Reference |
Akkus bean | N/A | 22.0 | 164.2 | [21] |
Gembos bean | N/A | 19.9 | 60.1 | [21] |
Simav bean | N/A | 21.6 | 135.4 | [21] |
Hinis bean | N/A | 15.6 | 60.5 | [21] |
Bombay bean | N/A | 19.6 | 62.3 | [21] |
Chickpea | 63.9–76.5 | 5.7 | 19.70 | [14] |
Soybean | 72.6–87.6 | 43.4–44.2 | 25.0–86.0 | [41] |
Green lentil | 74.7–81.9 | 37.2–44.5 | 11.0–86.8 | [41] |
Red lentil | 78.2–82.7 | 5.1 | 19.2 | [14] |
Green lentil | 79.1–88.6 | 5.0 | 17.8 | [14] |
Pea | 80.6–89.0 | 31.1–39.1 | 11.0–11.3 | [16] |
Pea | 81.1–88.8 | 42.73–42.9 | 10.9–12.4 | [41] |
Chickpea | 81.6–85.4 | 33.8–47.9 | 10.9–82.9 | [41] |
Faba | 82.0–84.1 | 37.1–44.3 | 11.0–62.4 | [41] |
Pea | 84.90 | 4.6 | 18.0 | [14] |
Kidney bean | 90.8–94.7 | 21.3 | 46.0 | [61] |
Kidney bean | 92.5 | 23.7 | 30.9 | [30] |
Pea | 92.8 | 13.1 | 78.1 | [61] |
Protein Type | Protein Content * (%) | Foaming Capacity or Expansion 1 (%) | Foaming Stability 2 (%) | Reference | |
---|---|---|---|---|---|
Flour | Soybean | 70.00 * | 32.0 # | 43.7 # | [15] |
Chickpea | 71.00–77.00 * | 43.9 # | 64.8 # | [15] | |
Consentrates | Faba bean | 81.2 | 15.0 | 77.0 | [17] |
Mungbean | 81.53 * | 89.7 | 78.3 | [18] | |
Soybean | 82.20 | 22 | 93 | [17] | |
Pea | 83.60 | 78 | N/A | [19] | |
Pea | 84.90 | 15.0 | 94.0 | [17] | |
Mungbean | 85.46 * | 110.0 | N/A | [19] | |
Soybean | 86.00 * | 68.7 | 100.0 | [18] | |
Green Lentil | 87.00–95.00 * | 34.8 # | 96.7 # | [15] | |
Isolate | Akkus bean | N/A | 91 | 72 | [21] |
Gembos bean | N/A | 76 | 82 | [21] | |
Simav bean | N/A | 81 | 71 | [21] | |
Hinis bean | N/A | 72 | 80 | [21] | |
Bombay bean | N/A | 83 | 75 | [21] | |
Pea | 80.60–89.00 * | 81.1 * | 27.1 * | [25] | |
Grass pea (optimized extraction yield) | 87.50 | 87 | 78 | [23] | |
Chickpea | 89.90–94.40 | 30.4–44.3 | N/A | [11] | |
Soybean | 90.00 * | 24.0 # | 66.7 # | [15] | |
Soybean | 92.00 * | 36.0 # | 88.9 # | [15] | |
Faba bean | 92.14–99.36 | 143.3–183.3 | 55.9–71.59 | [26] | |
Kidney bean | 92.5 | 244.9 | 87.8 | [30] | |
Pea | 92.8 | 87.0–132.0 | 94.0–96.0 | [61] | |
Grass pea (optimized protein content) | 92.5 | 41 | 100 | [23] |
Functionality | Proposed Standardized Factors |
---|---|
Water/Oil Holding Capacity | Protein concentration, mixing method (incubation time, temperature, pH), centrifugation time/speed |
Gelling property | (1) Lowest gelation concentration: mixing method (dissolution time, temperature, pH), heating conditions (time, temperature); (2) Rheology: texture analysis (compression speed, strain amount, etc.) |
Protein solubility | Mixing method (dissolution time, temperature), solution conditions (pH, buffer type, ionic strength) |
Emulsifying property | Homogenizer operating conditions (such as pressure, number of passes, and temperature), protein concentration, oil-water ratio |
Foaming property | Blender rotational speed/time, protein concentration, solution conditions (pH, buffer type, ionic strength), temperature |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, K.K.; Greis, M.; Lu, J.; Nolden, A.A.; McClements, D.J.; Kinchla, A.J. Functional Performance of Plant Proteins. Foods 2022, 11, 594. https://doi.org/10.3390/foods11040594
Ma KK, Greis M, Lu J, Nolden AA, McClements DJ, Kinchla AJ. Functional Performance of Plant Proteins. Foods. 2022; 11(4):594. https://doi.org/10.3390/foods11040594
Chicago/Turabian StyleMa, Kai Kai, Maija Greis, Jiakai Lu, Alissa A. Nolden, David Julian McClements, and Amanda J. Kinchla. 2022. "Functional Performance of Plant Proteins" Foods 11, no. 4: 594. https://doi.org/10.3390/foods11040594
APA StyleMa, K. K., Greis, M., Lu, J., Nolden, A. A., McClements, D. J., & Kinchla, A. J. (2022). Functional Performance of Plant Proteins. Foods, 11(4), 594. https://doi.org/10.3390/foods11040594