Bioactive Compounds and Antioxidant Properties of Wild Rocket (Diplotaxis Tenuifolia L.) Grown under Different Plastic Films and with Different UV-B Radiation Postharvest Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Growing Conditions
2.2. Plastic Film Optical Properties
2.3. Chemical Analysis
2.3.1. Dry Matter Content
2.3.2. Chlorophyll a, b, and Total Carotenoids
2.3.3. Total Polyphenol Content
2.3.4. Individual Phenolic Compounds
2.3.5. Ascorbic Acid
2.3.6. Antioxidant Activity
2.3.7. Statistical Analysis
3. Results and Discussion
3.1. Dry Matter Percentage of Rocket Leaves
3.2. Chlorophyll a, Chlorophyll b, and Carotenoid Content of Rocket Leaves
3.3. Total Phenolic Content and Phenolic Profile of Rocket Leaves
3.4. Antioxidant Activity and Ascorbic Acid Content of Rocket Leaves
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonasia, A.; Conversa, G.; Lazzizera, C.; Elia, A. Post-harvest performance of ready-to-eat wild rocket salad as affected by growing period, soilless cultivation system and genotype. Posth. Biol. Technol. 2019, 156, 110909. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colla, G.; Kim, H.J.; Myriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Ahmad, A.; AShehta, H. Assessment of the effects of different extraction methods on the phytochemicals, antimicrobial and anticancer activities of Eruca sativa extracts. Nov. Res. Microbiol. J. 2020, 4, 825–844. [Google Scholar] [CrossRef]
- Amengual, J. Bioactive Properties of Carotenoids in Human Health. Nutrients 2019, 11, 2388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaafar, N.S.; Jaafar, I.S. Eruca sativa linn.: Pharmacognostical and pharmacological properties and pharmaceutical preparations. Asian J. Pharm. Clin. Res. 2019, 12, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Matev, G.; Dimitrova, P.; Petkova, N.; Ivanov, I.; Mihaylova, D. Antioxidant activity and mineral content of rocket (Eruca sativa) plant from Italian and Bulgarian origins. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 756–759. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Pasini, F.; Verardo, V.; Caboni, M.F.; D’Antuono, L.F. Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chem. 2012, 133, 1025–1033. [Google Scholar] [CrossRef]
- Shankar, S.; Segaran, G.; Sundar, R.D.V.; Settu, S.; Sathiavelu, M. Brassicaceae-A Classical Review on Its Pharmacological Activities. Int. J. Pharm. Sci. Rev. Res. 2019, 55, 107–113. [Google Scholar]
- Li, Z.; Lee, H.W.; Liang, X.; Liang, D.; Wang, Q.; Huang, D.; Ong, C.N. Profiling of phenolic compounds and antioxidant activity of 12 cruciferous vegetables. Molecules 2018, 23, 1139. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Azzini, E.; Lazzè, M.C.; Raguzzini, A.; Pizzala, R.; Maiani, G. Italian wild rocket [Diplotaxis tenuifolia (L.) DC.]: Influence of agricultural practices on antioxidant molecules and on cytotoxicity and antiproliferative effects. Agriculture 2013, 3, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Guijarro-Real, C.; Rodriguez-Burruezo, A.; Prohens, J.; Adalid-Martínez, A.M.; Fita, A. Influence of the growing conditions in the content of vitamin C in Diplotaxis erucoides. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca Hortic. 2017, 74, 144–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiner, M.; Mewis, I.; Huyskens-Keil, S.; Jansen, M.A.K.; Zrenner, R.; Winkler, J.B.; O’Brien, N.; Krumbein, A. UV-B-induced secondary plant metabolites-potential benefits for plant and human health. Crit. Rev. Plant Sci. 2012, 31, 229–240. [Google Scholar] [CrossRef]
- Mormile, P.; Rippa, M.; Graziani, G.; Ritieni, A. Use of greenhouse-covering films with tailored UV-B transmission dose for growing ‘medicines’ through plants: Rocket salad case. J. Sci. Food Agri. 2019, 99, 6931–6936. [Google Scholar] [CrossRef]
- Neugart, S.; Schreiner, M. UVB and UVA as eustressors in horticultural and agricultural crops. Sci. Hort. 2018, 234, 370–381. [Google Scholar] [CrossRef]
- Agarwal, S.J.B.P. Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biol. Plant. 2007, 51, 157–160. [Google Scholar] [CrossRef]
- Caldwell, C.R.; Britz, S.J. Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of greenhouse-grown leaf lettuce (Lactuca sativa L.) cultivars. J. Food Comp. Anal. 2006, 19, 637–644. [Google Scholar] [CrossRef]
- Higashio, H.; Hirokane, H.; Sato, F.; Tokuda, S.; Uragami, A. Effect of UV irradiation after the harvest on the content of flavonoid in vegetables. V Inter Postharvest Symp. 2004, 682, 1007–1012. [Google Scholar] [CrossRef]
- Kasım, M.U.; Kasım, R. Yellowing of fresh-cut spinach (Spinacia oleracea L.) leaves delayed by UV-B applications. Info. Proc. Agric. 2017, 4, 214–219. [Google Scholar] [CrossRef]
- Hao, J.; Lou, P.; Han, Y.; Zheng, L.; Lu, J.; Chen, Z.; Ni, J.; Yang, Y.; Xu, M. Ultraviolet-B Irradiation Increases Antioxidant Capacity of Pakchoi (Brassica rapa L.) by Inducing Flavonoid Biosynthesis. Plants 2022, 11, 766. [Google Scholar] [CrossRef] [PubMed]
- Sangtarash, M.H.; Qaderi, M.M.; Chinnappa, C.C.; Reid, D.M. Differential sensitivity of canola (Brassica napus) seedlings to ultraviolet-B radiation, water stress and abscisic acid. Envi. Exper. Bot. 2009, 66, 212–219. [Google Scholar] [CrossRef]
- Perez, C.P.; Ulrichs, C.; Huyskens-Keil, S.; Schreiner, M.; Krumbein, A.; Schwarz, D.; Kläring, H.P. Composition of carotenoids in tomato fruits as affected by moderate UV-B radiation before harvest. Intern. Symp. Tomato Trop. 2008, 821, 217–222. [Google Scholar] [CrossRef]
- Liao, C.; Liu, X.; Gao, A.; Zhao, A.; Hu, J.; Li, B. Maintaining postharvest qualities of three leaf vegetables to enhance their shelf lives by multiple ultraviolet-c treatment. Lebensm.-Wiss. Und-Technol.-Food Sci. Technol. 2016, 73, 1–5. [Google Scholar] [CrossRef]
- Araque, L.C.O.; Rodoni, L.M.; Darré, M.; Ortiz, C.M.; Civello, P.M.; Vicente, A.R. Cyclic low dose uv-c treatments retain strawberry fruit quality more effectively than conventional pre-storage single high fluence applications. LWT 2018, 92, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Sheng, K.; Zheng, H.; Shui, S.S.; Yan, L.; Liu, C.; Zheng, L. Comparison of postharvest uv-b and uv-c treatments on table grape: Changes in phenolic compounds and their transcription of biosynthetic genes during storage. Postharvest Biol. Technol. 2018, 138, 74–81. [Google Scholar] [CrossRef]
- Zhang, W.; and Jiang, W. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends Food Sci. Technol. 2019, 92, 71–80. [Google Scholar] [CrossRef]
- Mariz-Ponte, N.; Martins, S.; Gonçalves, A.; Correia, C.M.; Ribeiro, C.; Dias, M.C.; Santos, C. The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Sci. Hortic. 2019, 246, 777–784. [Google Scholar] [CrossRef]
- Liu, C.; Han, X.; Cai, L.; Lu, X.; Ying, T.; Jiang, Z. Postharvest UV-B irradiation maintains sensory qualities and enhances antioxidant capacity in tomato fruit during storage. Postharvest Biol. Technol. 2011, 59, 232–237. [Google Scholar] [CrossRef]
- Becatti, E.; Petroni, K.; Giuntini, D.; Castagna, A.; Calvenzani, V.; Serra, G.; Ranieri, A. Solar UV− B radiation influences carotenoid accumulation of tomato fruit through both ethylene-dependent and-independent mechanisms. J. Agric. Food Chem. 2009, 57, 10979–10989. [Google Scholar] [CrossRef]
- Shen, J.; Jiang, C.Q.; Yan, Y.F.; Liu, B.R.; Zu, C.L. Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves. Genet Mol. Res. 2017, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Maraldisementi. Available online: https://www.maraldisementi.it/en/wild-rocket/ (accessed on 19 November 2021).
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Sabatino, L.; Sifola, M.I.; Mormile, P.; Mori, M. Optical Characteristics of greenhouse plastic films affect yield and some quality traits of spinach (Spinacia oleracea L.) Subjected to Different Nitrogen Doses. Horticulturae 2021, 7, 200. [Google Scholar] [CrossRef]
- Luca, A.; Kjær, A.; Edelenbos, M. Volatile organic compounds as markers of quality changes during the storage of wild rocket. Food Chem. 2017, 232, 579–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, D.R.; Lemos, L.; Rodríguez, S.D.C. Effect of UV-C and ozone on the bioactive compounds and antioxidant capacity of minimally processed rocket (Eruca Sativa Mill.). Int. J. New Technol. Res. 2018, 4, 23–29. [Google Scholar] [CrossRef]
- Toledo-Martín, E.M.; Font, R.; Obregón-Cano, S.; Haro-Bailón, D.; Villatoro-Pulido, M.; Río-Celestino, D. Rapid and cost-effective quantification of glucosinolates and total phenolic content in rocket leaves by visible/near-infrared spectroscopy. Molecules 2017, 22, 851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Sánchez, A.; Allende, A.; Bennett, R.N.; Ferreres, F.; Gil, M.I. Microbial, nutritional and sensory quality of rocket leaves as affected by different sanitizers. Postharvest Biol. Technol. 2006, 42, 86–97. [Google Scholar] [CrossRef]
- Romano, R.; De Luca, L.; Aiello, A.; Rossi, D.; Pizzolongo, F.; Masi, P. Bioactive compounds extracted by liquid and supercritical carbon dioxide from citrus peels. Intern. J. Food Sci. Technol. 2022, 57, 3826–3837. [Google Scholar] [CrossRef]
- Ragusa, L.; Picchi, V.; Tribulato, A.; Cavallaro, C.; Lo Scalzo, R.; Branca, F. The effect of the germination temperature on the phytochemical content of broccoli and rocket sprouts. Inter. Food Sci. Nutr. 2017, 68, 411–420. [Google Scholar] [CrossRef]
- Romano, R.; Aiello, A.; Meca, G.; De Luca, L.; Pizzolongo, F.; Masi, P. Recovery of bioactive compounds from walnut (Juglans regia L.) green husk by supercritical carbon dioxide extraction. Int. J. Food Sci. Technol. 2021, 56, 4658–4668. [Google Scholar] [CrossRef]
- Araújo-Rodrigues, H.; Santos, D.; Campos, D.A.; Guerreiro, S.; Ratinho, M.; Rodrigues, I.M.; Pintado, M.E. Impact of Processing Approach and Storage Time on Bioactive and Biological Properties of Rocket, Spinach and Watercress Byproducts. Foods 2021, 10, 2301. [Google Scholar] [CrossRef]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Giordano, M.; El-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants 2019, 8, 208. [Google Scholar] [CrossRef] [PubMed]
- Schiattone, M.I.; Candido, V.; Cantore, V.; Montesano, F.F.; Boari, F. Water use and crop performance of two wild rocket genotypes under salinity conditions. Agric. Water Manag. 2017, 194, 214–221. [Google Scholar] [CrossRef]
- Žnidarčič, D.; Ban, D.; Šircelj, H. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem. 2021, 129, 1164–1168. [Google Scholar] [CrossRef]
- León-Chan, R.G.; López-Meyer, M.; Osuna-Enciso, T.; Sañudo-Barajas, J.A.; Heredia, J.B.; León-Félix, J. Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environ. Exp. Bot. 2017, 139, 143–151. [Google Scholar] [CrossRef]
- Heimler, D.; Isolani, L.; Vignolini, P.; Tombelli, S.; Romani, A. Polyphenol content and antioxidative activity in some species of freshly consumed salads. J. Agric. Food Chem. 2007, 55, 1724–1729. [Google Scholar] [CrossRef]
- Koukounaras, A.; Siomos, A.S.; Sfakiotakis, E. Impact of heat treatment on ethylene production and yellowing of modified atmosphere packaged rocket leaves. Postharvest Biol. Technol. 2009, 54, 172–176. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.U. Recent studies on kaempferol and its biological and pharmacological activities. EXCLI J. 2020, 19, 627. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, I.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Stochmal, A.; Rolnik, A.; Skalski, B.; Zuchowski, J.; Olas, B. Antiplatelet and Anticoagulant Activity of Isorhamnetin and Its Derivatives Isolated from Sea Buckthorn Berries, Measured in Whole Blood. Molecules 2022, 27, 4429. [Google Scholar] [CrossRef]
- Jaramillo, S.; Lopez, S.; Varela, L.M.; Rodriguezarcos, R.; Jimenez, A.; Abia, R.; Guillen, R.; Muriana, F.J.G. The flavonol isorhamnetin exhibits cytotoxic effects on human colon cancer cells. J. Agric. Food Chem. 2010, 58, 10869–10875. [Google Scholar] [CrossRef]
- Jin, J.; Koroleva, O.A.; Gibson, T.; Swanston, J.; Magan, J.; Zhang, Y.A.N.; Rowland, I.R.; Wagstaff, C. Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments. J. Agri. Food Chem. 2009, 57, 5227–5234. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Comp. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Chisnall, M.; Macknight, R. Importance of vitamin C in human health and disease. In Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Springer: Cham, Switzerland, 2017; pp. 491–501. [Google Scholar]
- Szwejda-Grzybowska, J.I.; Wrzodak, A.; Grzegorzewska, M.; Gajewski, M.; Kosson, R. Influence of tap and hot water treatment before short-term storage on biologically active compounds and sensory quality of wild rocket leaves (Diplotaxis tenuifolia L.). J. Hort. Res. 2019, 27, 113–120. [Google Scholar] [CrossRef]
Treatments | Kaempferol | Isorhamnetin | Quercetin | Rutin | Caffeic Acid | Gallic Acid |
---|---|---|---|---|---|---|
Greenhouse film | ||||||
Film A | 771.3 b | 386.1 b | 220.8 b | 26.4 b | 5.2 b | 26.0 a |
Film B | 1244.4 a | 566.6 a | 341.5 a | 49.3 a | 6.0 b | 14.4 b |
Film C | 1643.5 a | 613.5 a | 305.5 a | 53.5 a | 43.6 a | 23.5 a |
UV-B | ||||||
I | 1366.3 | 529.0 | 296.0 | 48.2 | 10.6 | 22.4 |
II | 1273.4 | 536.8 | 290.5 | 38.5 | 25.6 | 27.3 |
III | 971.6 | 456.8 | 266.7 | 33.6 | 11.2 | 21.0 |
IV | 1368.4 | 543.1 | 301.3 | 45.6 | 13.3 | 16.3 |
V | 1119.1 | 544.5 | 291.8 | 49.3 | 30.6 | 19.3 |
Significance | ||||||
Greenhouse film (F) | ** | ** | ** | ** | * | ** |
UV-B (L) | NS | NS | NS | NS | NS | NS |
F x L | NS | NS | NS | NS | NS | NS |
Treatments | ABTS mg TE/100 g D.W. | DPPH mg TE/100 g D.W. | |
---|---|---|---|
Greenhouse film | UV-B | ||
Film A | I | 1322.8 | 1074.0 |
II | 1338.6 | 1088.3 | |
III | 1348.0 | 1132.1 | |
IV | 1287.1 | 1023.2 | |
V | 1375.4 | 1148.8 | |
Mean | 1334.4 c ± 32.6 | 1093.3 c ± 49.7 | |
Film B | I | 1965.9 | 1235.2 |
II | 1975.3 | 1210.1 | |
III | 2038.0 | 1301.6 | |
IV | 2074.2 | 1264.0 | |
V | 2148.7 | 1286.5 | |
Mean | 2040.4 b ± 75.3 | 1259.4 b ± 37.3 | |
Film C | I | 2303.8 | 1405.3 |
II | 2373.5 | 1586.2 | |
III | 2394.8 | 1613.7 | |
IV | 2455.6 | 1620.9 | |
V | 2529.9 | 1756.0 | |
Mean | 2411.5 a ± 85.6 | 1596.4 a ± 125.5 | |
Significance | |||
Greenhouse Film (F) | ** | ** | |
UV-B (L) | NS | ** | |
F x L | NS | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, R.; Pizzolongo, F.; De Luca, L.; Cozzolino, E.; Rippa, M.; Ottaiano, L.; Mormile, P.; Mori, M.; Di Mola, I. Bioactive Compounds and Antioxidant Properties of Wild Rocket (Diplotaxis Tenuifolia L.) Grown under Different Plastic Films and with Different UV-B Radiation Postharvest Treatments. Foods 2022, 11, 4093. https://doi.org/10.3390/foods11244093
Romano R, Pizzolongo F, De Luca L, Cozzolino E, Rippa M, Ottaiano L, Mormile P, Mori M, Di Mola I. Bioactive Compounds and Antioxidant Properties of Wild Rocket (Diplotaxis Tenuifolia L.) Grown under Different Plastic Films and with Different UV-B Radiation Postharvest Treatments. Foods. 2022; 11(24):4093. https://doi.org/10.3390/foods11244093
Chicago/Turabian StyleRomano, Raffaele, Fabiana Pizzolongo, Lucia De Luca, Eugenio Cozzolino, Massimo Rippa, Lucia Ottaiano, Pasquale Mormile, Mauro Mori, and Ida Di Mola. 2022. "Bioactive Compounds and Antioxidant Properties of Wild Rocket (Diplotaxis Tenuifolia L.) Grown under Different Plastic Films and with Different UV-B Radiation Postharvest Treatments" Foods 11, no. 24: 4093. https://doi.org/10.3390/foods11244093
APA StyleRomano, R., Pizzolongo, F., De Luca, L., Cozzolino, E., Rippa, M., Ottaiano, L., Mormile, P., Mori, M., & Di Mola, I. (2022). Bioactive Compounds and Antioxidant Properties of Wild Rocket (Diplotaxis Tenuifolia L.) Grown under Different Plastic Films and with Different UV-B Radiation Postharvest Treatments. Foods, 11(24), 4093. https://doi.org/10.3390/foods11244093