Analysis and Screening of Commercialized Protein Supplements for Sports Practice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
Type of Products Tested
- Whey (dairy): It is a protein of high biological value with a high concentration of branched amino acids, including leucine. There are three tips: Concentrated (with 70–80% protein and small amounts of carbohydrates and fats); Isolated (with minimal amounts of carbohydrates and fats and 90% protein); Hydrolyzed (protein chains are broken to give short chain peptides so that their absorption is faster) [45].
- Casein (dairy): It is a protein of high biological value that makes up 80% of milk protein. Due to the acidic environment of the stomach, it forms clots that cause it to be absorbed more slowly [45].
- Egg Albumin (Egg white): It is a protein of high biological value without fat or carbohydrates [45].
- Soy: It is a protein of high biological value; its digestion is fast, and it can be found as isolated or connected. It is usually low in leucine unless it is fortified [45].
- Others plant proteins: It a protein that tends to have lower biological value unless several sources are mixed or fortified [45].
2.2. Quality of Data
2.3. Database Development
2.4. Analysis of the Supplements, Attending to the Three Specified Screening
2.4.1. Analysis of First Screening: Legislative Framework
2.4.2. Analysis of Second Screening: Protein Quality
2.4.3. Analysis of Third Screening: Presence of Other Ingredients
3. Results
3.1. Results of First Screening: Legislative Framework
3.2. Results of Second Screening: Protein Quality
3.3. Results of Third Screening: Presence of Other Ingredients
4. Discussion
4.1. Discussion of First Screening: Legislative Framework
Current Legislative Framework Regulating Protein Supplements
4.2. Discussion of Second Screening: Protein Quality
Rationale and Evidence for the Use of Protein Supplements
- Recommended amount
- Protein composition
- Intake patterns
- Protein digestibility and bioavailability
4.3. Discussion of Third Screening: Presence of Other Ingredients
Ingredients Commonly Used in the Formulation of Protein Supplements
- Presence of other macronutrients
- Presence of ingredients associated with performance improvements
- The presence of ingredients without evidence or that may pose a risk to the consumer
5. Conclusions
6. Limitations and Future Research Paths
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Colmenero, M.V.; Martínez-Sanz, J.M.; Navarro, A.N.; Ortíz-Moncada, R.; Hurtado, J.A.; Baladia, E. Variables used in questionnaires about ergonutritionals supplements intake. Nutr. Hosp. 2015, 32, 556–572. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R.J.; Greenhaff, P.L.; Hespel, P. Dietary supplements for athletes: Emerging trends and recurring themes. J. Sports Sci. 2011, 29, S57–S66. [Google Scholar] [CrossRef] [PubMed]
- Fernando Rodríguez, R.; Mirta Crovetto, M.; Andrea González, A.; Nikol Morant, C.; Francisco Santibáñez, T. Nutritional supplement intake in gymnasium, consumer profile and charateristics of their use. Rev. Chil. Nutr 2011, 38, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Palacios, N.; De Antuñano, G.; Manonelles, P.; Redondo, R.B.; Fernández, C.C.; Bonafonte, L.F.; Aurrekoetxea, T.G.; González, B.M.; Galván, C.D.T.; Soto, V.; et al. Suplementos nutricionales para el deportista. Ayudas ergogénicas en el deporte—2019. Med. Deport. 2019, 36, 7–83. [Google Scholar]
- Petrenko, A.S.; Ponomareva, M.N.; Sukhanov, B.P. Regulation of food supplements in the European Union and its member States. Part 2. Vopr. Pitan. 2014, 83, 52–57. [Google Scholar]
- Hoffman, J.R.; Ratamess, N.A.; Tranchina, C.P.; Rashti, S.L.; Kang, J.; Faigenbaum, A.D. Effect of protein-supplement timing on strength, power, and body-composition changes in resistance-trained men. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 172–185. [Google Scholar] [CrossRef]
- Josse, A.R.; Tang, J.E.; Tarnopolsky, M.A.; Phillips, S.M. Body composition and strength changes in women with milk and resistance exercise. Med. Sci. Sports Exerc. 2010, 42, 1122–1130. [Google Scholar] [CrossRef] [Green Version]
- Hartman, J.W.; Tang, J.E.; Wilkinson, S.B.; Tarnopolsky, M.A.; Lawrence, R.L.; Fullerton, A.V.; Phillips, S.M. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am. J. Clin. Nutr. 2007, 86, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Verdijk, L.B.; Jonkers, R.A.M.; Gleeson, B.G.; Beelen, M.; Meijer, K.; Savelberg, H.H.C.M.; Wodzig, K.W.H.W.; Dendale, P.; Van Loon, L.J.C. Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. Am. J. Clin. Nutr. 2009, 89, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Cribb, P.J.; Hayes, A. Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med. Sci. Sports Exerc. 2006, 38, 1918–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rankin, J.W.; Goldman, L.P.; Puglisi, M.J.; Nickols-Richardson, S.M.; Earthman, C.P.; Gwazdauskas, F.C. Effect of post-exercise supplement consumption on adaptations to resistance training. J. Am. Coll. Nutr. 2004, 23, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Hulmi, J.J.; Kovanen, V.; Selänne, H.; Kraemer, W.J.; Häkkinen, K.; Mero, A.A. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 2009, 37, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sanz, J.M.; Sospedra, I.; Baladía, E.; Arranz, L.; Ortiz-Moncada, R.; Gil-Izquierdo, A. Current Status of Legislation on Dietary Products for Sportspeople in a European Framework. Nutrients 2017, 9, 1225. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sanz, J.M.; Sospedra, I.; Ortiz, C.M.; Baladía, E.; Gil-Izquierdo, A.; Ortiz-Moncada, R. Intended or Unintended Doping? A Review of the Presence of Doping Substances in Dietary Supplements Used in Sports. Nutrients 2017, 9, 1093. [Google Scholar] [CrossRef] [Green Version]
- Petrenko, A.S.; Ponomareva, M.N.; Sukhanov, B.P. Regulation of food supplements in the European Union and its member States. Part i. Vopr. Pitan. 2014, 83, 32–40. [Google Scholar]
- Shimomura, Y.; Murakami, T.; Nakai, N.; Nagasaki, M.; Harris, R.A. Exercise promotes BCAA catabolism: Effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 2004, 134, 1583S–1587S. [Google Scholar] [CrossRef] [Green Version]
- Churchward-Venne, T.A.; Breen, L.; di Donato, D.M.; Hector, A.J.; Mitchell, C.J.; Moore, D.R.; Stellingwerff, T.; Breuille, D.; Offord, E.A.; Baker, S.K.; et al. Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: A double-blind, randomized trial. Am. J. Clin. Nutr. 2014, 99, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Rabassa-Blanco, J.; Palma-Linares, I.; Rabassa-Blanco, J.; Palma-Linares, I. Efectos de los suplementos de proteína y aminoácidos de cadena ramificada en entrenamiento de fuerza: Revisión bibliográfica. Rev. Española Nutr. Hum. Dietética 2017, 21, 55–73. [Google Scholar] [CrossRef] [Green Version]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Bukhari, S.S.I.; Phillips, B.E.; Wilkinson, D.J.; Limb, M.C.; Rankin, D.; Mitchell, W.K.; Kobayashi, H.; Greenhaff, P.L.; Smith, K.; Atherton, P.J. Intake of low-dose leucine-rich essential amino acids stimulates muscle anabolism equivalently to bolus whey protein in older women at rest and after exercise. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E1056–E1065. [Google Scholar] [CrossRef] [PubMed]
- De Sousa Santos, C.; Nascimento, F.E.L. Isolated branched-chain amino acid intake and muscle protein synthesis in humans: A biochemical review. Einstein 2019, 17, eRB4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ives, S.J.; Norton, C.; Miller, V.; Minicucci, O.; Robinson, J.; O’Brien, G.; Escudero, D.; Paul, M.; Sheridan, C.; Curran, K.; et al. Multi-modal exercise training and protein-pacing enhances physical performance adaptations independent of growth hormone and BDNF but may be dependent on IGF-1 in exercise-trained men. Growth Horm. IGF Res. 2017, 32, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Arciero, P.J.; Ives, S.J.; Norton, C.; Escudero, D.; Minicucci, O.; O’Brien, G.; Paul, M.; Ormsbee, M.J.; Miller, V.; Sheridan, C.; et al. Protein-Pacing and Multi-Component Exercise Training Improves Physical Performance Outcomes in Exercise-Trained Women: The PRISE 3 Study. Nutrients 2016, 8, 332. [Google Scholar] [CrossRef] [PubMed]
- De Zwaan, M.; Burgard, M.A.; Schenck, C.H.; Mitchell, J.E. Night time eating: A review of the literature. Eur. Eat. Disord. Rev. 2003, 11, 7–24. [Google Scholar] [CrossRef]
- Ormsbee, M.J.; Gorman, K.A.; Miller, E.A.; Baur, D.A.; Eckel, L.A.; Contreras, R.J.; Panton, L.B.; Spicer, M.T. Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes. Appl. Physiol. Nutr. Metab. 2016, 41, 719–727. [Google Scholar] [CrossRef]
- Baron, K.G.; Reid, K.J.; Kern, A.S.; Zee, P.C. Role of sleep timing in caloric intake and BMI. Obesity 2011, 19, 1374–1381. [Google Scholar] [CrossRef]
- FAO. Dietary Protein Quality Evaluation in Human Nutrition. Report of an FAQ Expert Consultation; FAO: Rome, Italy, 2013; Volume 92, ISBN 9789251074176. [Google Scholar]
- Bandyopadhyay, S.; Kashyap, S.; Calvez, J.; Devi, S.; Azzout-Marniche, D.; Tomé, D.; Kurpad, A.V.; Gaudichon, C. Evaluation of Protein Quality in Humans and Insights on Stable Isotope Approaches to Measure Digestibility—A Review. Adv Nutr. 2022, 13, 1131–1143. [Google Scholar] [CrossRef]
- FAO. Evaluación de la Calidad de las Proteínas de la Dieta en Nutrición Humana: Consulta de Expertos de la FAO; FAO: Rome, Italy, 2013; ISBN 9788469774731. [Google Scholar]
- Hoffman, J.R.; Falvo, M.J. Protein—Which is Best? J. Sports Sci. Med. 2004, 3, 118. [Google Scholar]
- Mata-Ordonez, F.; Grimaldi-Puyana, M.; Jesus Sanchez-Oliver, A. Replenishment of muscle glycogen in the recovery of the athlete. Sport Tk-Revista Euroam. Ciencias Deport. 2019, 8, 57–66. [Google Scholar]
- Ivy, J.L. Dietary strategies to promote glycogen synthesis after exercise. Can. J. Appl. Physiol. 2001, 26, S236–S245. [Google Scholar] [CrossRef] [PubMed]
- Patton, K. Fueling and Recovery. Sports Med. Arthrosc. 2019, 27, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Zicari, G.; Carraro, E.; Bonetta, S. The Regulation (EC) N. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Prog. Nutr. 2007, 9, 239–247. [Google Scholar]
- O’Bryan, K.R.; Doering, T.M.; Morton, R.W.; Coffey, V.G.; Phillips, S.M.; Cox, G.R. Do multi-ingredient protein supplements augment resistance training-induced gains in skeletal muscle mass and strength? A systematic review and meta-analysis of 35 trials. Br. J. Sports Med. 2020, 54, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Naclerio, F.; Larumbe-Zabala, E. Effects of Whey Protein Alone or as Part of a Multi-ingredient Formulation on Strength, Fat-Free Mass, or Lean Body Mass in Resistance-Trained Individuals: A Meta-analysis. Sport. Med. 2016, 46, 125–137. [Google Scholar] [CrossRef]
- Harty, P.S.; Zabriskie, H.A.; Erickson, J.L.; Molling, P.E.; Kerksick, C.M.; Jagim, A.R. Multi-ingredient pre-workout supplements, safety implications, and performance outcomes: A brief review. J. Int. Soc. Sports Nutr. 2018, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Prohibited List Q&A | World Anti-Doping Agency. Available online: https://www.wada-ama.org/en/questions-answers/prohibited-list-qa (accessed on 25 October 2021).
- Rufián-Henares, J.A.; Delgado-Andrade, C.; Jiménez-Pérez, S.; Morales, F.J. Assessing nutritional quality of milk-based sport supplements as determined by furosine. Food Chem. 2007, 101, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Park, C.W.; Stout, M.A.; Drake, M.A. The effect of spray-drying parameters on the flavor of nonfat dry milk and milk protein concentrate 70. J. Dairy Sci. 2016, 99, 9598–9610. [Google Scholar] [CrossRef] [Green Version]
- Delgado Hervas, M.T.; Delgado Hervas, M.T. Contenido en Furosina, Lactulosa y B-Lactoglobulina Como Indicadores de Calidad de Leches Liquida y en Polvo; Universidad Complutense: Madrid, Spain, 1993. [Google Scholar]
- Manonelles, P.; Aynés, O.A.; López-Plaza, D.; Calero, M.F.; Daniela, C.; Calero, Q.; Caravaca, L.A.; Terreros, J.L. Accidental doping. Prevention strategies. Arch. Med. Deport. 2020, 37, 44–51. [Google Scholar]
- Walpurgis, K.; Thomas, A.; Geyer, H.; Mareck, U.; Thevis, M. Dietary Supplement and Food Contaminations and Their Implications for Doping Controls. Foods 2020, 9, 1012. [Google Scholar] [CrossRef]
- Australian Institute of Sport AIS Sports Supplement Framework. 2021, 1–4. Available online: https://www.ais.gov.au/nutrition/supplements (accessed on 28 September 2022).
- Binder, J.-H.; Gortsos, C.V. REGULATION (EU) No 1022/2013 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL. Eur. Bank. Union 2015, 2012, 115–124. [Google Scholar] [CrossRef]
- Ministerio de la Presidencia Real Decreto 1487/2009, de 26 de Septiembre, Relativo a los Complementos Alimenticios, Boletín Of Estado: Madrid, Spain, 2009; Volume 244, 85370–85377.
- European Commission Commission Regulation (EU) No 1018/2013 of 23 October 2013 amending Regulation (EU) No 432/2012 establishing a list of permitted health claims made on foods other than those referring to the reduction of disease risk and to children’s development and heal. Off. J. Eur. Union 2013, 56, 43–45.
- Europeo, E.L.P.; Consejo, E.L.; Uni, D.E.L.a; Do, D.O.; Do, D.O. Reglamento 1169/2011 sobre la información alimentaria facilitada al consumidor. Diario Oficial Unión Eur. 2011, 2011, 18–63. [Google Scholar]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sport Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef]
- Wolfe, R.R. Regulation of muscle protein by amino acids. J. Nutr. 2002, 132, 3219S–3224S. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, B.B.; Tipton, K.D.; Miller, S.L.; Wolf, S.E.; Wolfe, R.R. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J. Appl. Physiol. 2000, 88, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Børsheim, E.; Tipton, K.D.; Wolf, S.E.; Wolfe, R.R. Essential amino acids and muscle protein recovery from resistance exercise. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E648–E657. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.L.; Tipton, K.D.; Chinkes, D.L.; Wolf, S.E.; Wolfe, R.R. Independent and combined effects of amino acids and glucose after resistance exercise. Med. Sci. Sports Exerc. 2003, 35, 449–455. [Google Scholar] [CrossRef]
- Biolo, G.; Williams, B.D.; Fleming, R.Y.D.; Wolfe, R.R. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 1999, 48, 949–957. [Google Scholar] [CrossRef]
- Kobayashi, H.; Børsheim, E.; Anthony, T.G.; Traber, D.L.; Badalamenti, J.; Kimball, S.R.; Jefferson, L.S.; Wolfe, R.R. Reduced amino acid availability inhibits muscle protein synthesis and decreases activity of initiation factor eIF2B. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E488–E498. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, B.B.; Wolfe, R.R.; Volpi, E. Oral and intravenously administered amino acids produce similar effects on muscle protein synthesis in the elderly. J. Nutr. Health Aging 2002, 6, 358. [Google Scholar]
- Reidy, P.T.; Rasmussen, B.B. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism. J. Nutr. 2016, 146, 155–183. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.M. Dietary protein requirements and adaptive advantages in athletes. Br. J. Nutr. 2012, 108, S158–S167. [Google Scholar] [CrossRef] [Green Version]
- Beelen, M.; Burke, L.M.; Gibala, M.J.; van Loon L, J.C. Nutritional strategies to promote postexercise recovery. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 515–532. [Google Scholar] [CrossRef] [Green Version]
- Federal Register of Legislation. Jurisdiction=Commonwealth of A. corporateName=Australian S. Group B. Fish Fish Oil Health Dis. Prev. 2016, 1–11. [Google Scholar]
- European Parliament and Council of the European Union Regulation (EC). No 1332/2008 of the European Parliament and of the Council of 16 December 2008 on food enzymes and amending Council Directive 83/417/EEC, Council Regulation (EC) No 1493/1999, Directive 2000/13/EC, Council Directive 2001/112/EC and(..). Off. J. Eur. Union 2008, 51, 7–15. [Google Scholar]
- Mathews, N.M. Prohibited Contaminants in Dietary Supplements. Sports Health 2018, 10, 19–30. [Google Scholar] [CrossRef]
- Eichner, A.; Tygart, T. Adulterated dietary supplements threaten the health and sporting career of up-and-coming young athletes. Drug Test. Anal. 2016, 8, 304–306. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.M.; Chevalier, S.; Leidy, H.J. Protein “requirements” beyond the RDA: Implications for optimizing health. Appl. Physiol. Nutr. Metab. 2016, 41, 565–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, S12970-S017. [Google Scholar] [CrossRef] [PubMed]
- Nair, K.S.; Short, K.R. Hormonal and signaling role of branched-chain amino acids. J. Nutr. 2005, 135, 1547S–1552S. [Google Scholar] [CrossRef] [PubMed]
- Blomstrand, E.; Eliasson, J.; Karlssonr, H.K.R.; Köhnke, R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 2006, 136, 269S–273S. [Google Scholar] [CrossRef] [Green Version]
- Drummond, M.J.; Rasmussen, B.B. Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 222–226. [Google Scholar] [CrossRef]
- Dreyer, H.C.; Drummond, M.J.; Pennings, B.; Fujita, S.; Glynn, E.L.; Chinkes, D.L.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E392–E400. [Google Scholar] [CrossRef] [Green Version]
- Madzima, T.A.; Panton, L.B.; Fretti, S.K.; Kinsey, A.W.; Ormsbee, M.J. Night-time consumption of protein or carbohydrate results in increased morning resting energy expenditure in active college-aged men. Br. J. Nutr. 2014, 111, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Kinsey, A.W.; Cappadona, S.R.; Panton, L.B.; Allman, B.R.; Contreras, R.J.; Hickner, R.C.; Ormsbee, M.J. The Effect of Casein Protein Prior to Sleep on Fat Metabolism in Obese Men. Nutrients 2016, 8, 452. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.T.K.; Weisell, R.; Albert, J.; Tomé, D.; Kurpad, A.V.; Uauy, R. Research Approaches and Methods for Evaluating the Protein Quality of Human Foods Proposed by an FAO Expert Working Group in 2014. J. Nutr. 2016, 146, 929–932. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M.; Kiens, B.; Ivy, J.L. Carbohydrates and fat for training and recovery. J. Sports Sci. 2004, 22, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M.; Van Loon, L.J.C.; Hawley, J.A. Postexercise muscle glycogen resynthesis in humans. J. Appl. Physiol. 2017, 122, 1055–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alghannam, A.F.; Gonzalez, J.T.; Betts, J.A. Restoration of Muscle Glycogen and Functional Capacity: Role of Post-Exercise Carbohydrate and Protein Co-Ingestion. Nutrients 2018, 10, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reitelseder, S.; Agergaard, J.; Doessing, S.; Helmark, I.C.; Lund, P.; Kristensen, N.B.; Frystyk, J.; Flyvbjerg, A.; Schjerling, P.; Van Hall, G.; et al. Whey and casein labeled with L-[1-13C]leucine and muscle protein synthesis: Effect of resistance exercise and protein ingestion. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E231–E242. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The role of the anabolic properties of plant-versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [Green Version]
- Gorissen, S.H.M.; Witard, O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc. 2018, 77, 20–31. [Google Scholar] [CrossRef]
- van Vliet, S.; Burd, N.A.; van Loon, L.J.C. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Narváez, F.; Medina-Pineda, Y.; Contreras-Calderón, J. Evaluation of the heat damage of whey and whey proteins using multivariate analysis. Food Res. Int. 2017, 102, 768–775. [Google Scholar] [CrossRef]
- Opinion, S. Scientific Opinion on lactose thresholds in lactose intolerance and galactosaemia. EFSA J. 2010, 8, 1–29. [Google Scholar] [CrossRef]
Screening 1: Legislative Framework | |
---|---|
Labeling | Regulation (EU) No. 1169/2011 |
If it has been manufactured in Spain: Royal Decree 1487/2009 | |
Claims | Regulation (EU) No. 1924/2006 |
Regulation (EU) 432/2012 | |
Other type of advertising outside the legislative framework | |
Other regulation | Other certifications |
World Anti-Doping Agency (WADA) | |
Screening 2: Protein quality | |
Recommended amount | Manufacturer’s Recommended Dose |
Amount of protein per recommended dose | |
Protein composition | Amount of branched-chain amino acids (BCAAs) (leucine, isoleucine, and valine) |
Amount of leucine present | |
Intake patterns | Manufacturer’s intake recommendations (intake patterns) |
Protein digestibility and bioavailability | Presence of essential amino acids. (EAA) |
EAA not present (limiting essential amino acid) | |
Screening 3: Presence of other ingredients | |
Presence of other macronutrients | Presence of carbohydrates, fats, and other amino acids in free form |
Presence of ingredients associated with performance enhancements | Presence of ingredients associated with performance enhancements such as creatine, caffeine, beta-alanine |
Presence of ingredients without evidence or that may pose a risk to the consumer | WADA Prohibited Substances |
Quality loss indicators | |
Presence of allergens |
Product (100 g) | Commercial House | Kilocalories (Kcal) | Protein (g) | Aminogram (g) | Branched-Chain Amino Acids (BCAA) (g) | Carbohydrates (g) | Of Which Sugars (g) | Fats (g) | Sodium (mg) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Abbreviation | PR | CH | KCAL | PROT | AA | BCAA | HC | SUG | FAT | NA | ||
Screening 1 | Screening 2 | |||||||||||
Regulation 1169/2011 | Royal Decree 1487/2009 | Regulation 432/2012 | Regulation 1924/2006 | World Anti-Doping Code (World Anti-Doping Agency) | Amount of protein per recommended dose | Limiting amino acid | ||||||
Abbreviation | R1 | R2 | R3 | R4 | R5 | AP | LA | |||||
Screening 3 | ||||||||||||
Others manufacture’s intake recommendation | Allergens | Enzymes | Additives | B12 (mi-crograms) | Serving | Degree of evidence AIS | Certification | Frequency | Source of information | Complies with what is established in the legislation | ||
Abbreviation | OR | AG | EZY | ADD | B12 | SG | DE | CT | FC | SI | √ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Lopez, P.; Rueda-Robles, A.; Sánchez-Rodríguez, L.; Blanca-Herrera, R.M.; Quirantes-Piné, R.M.; Borrás-Linares, I.; Segura-Carretero, A.; Lozano-Sánchez, J. Analysis and Screening of Commercialized Protein Supplements for Sports Practice. Foods 2022, 11, 3500. https://doi.org/10.3390/foods11213500
Rodriguez-Lopez P, Rueda-Robles A, Sánchez-Rodríguez L, Blanca-Herrera RM, Quirantes-Piné RM, Borrás-Linares I, Segura-Carretero A, Lozano-Sánchez J. Analysis and Screening of Commercialized Protein Supplements for Sports Practice. Foods. 2022; 11(21):3500. https://doi.org/10.3390/foods11213500
Chicago/Turabian StyleRodriguez-Lopez, Paloma, Ascensión Rueda-Robles, Leticia Sánchez-Rodríguez, Rosa María Blanca-Herrera, Rosa María Quirantes-Piné, Isabel Borrás-Linares, Antonio Segura-Carretero, and Jesús Lozano-Sánchez. 2022. "Analysis and Screening of Commercialized Protein Supplements for Sports Practice" Foods 11, no. 21: 3500. https://doi.org/10.3390/foods11213500