Glycaemic Index of Gluten-Free Biscuits with Resistant Starch and Sucrose Replacers: An In Vivo and In Vitro Comparative Study
Abstract
:1. Introduction
2. Materials and Method
2.1. Samples
2.2. In Vivo Study
2.2.1. Subjects
2.2.2. Study Design
2.2.3. Glycaemic Index and Glycaemic Load
2.3. Data Analysis
3. Results and Discussion
Glycaemic Index and Glycaemic Load
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Cairano, M.; Galgano, F.; Tolve, R.; Caruso, M.C.; Condelli, N. Focus on gluten free biscuits: Ingredients and issues. Trends Food Sci. Technol. 2018, 81, 203–212. [Google Scholar] [CrossRef]
- Pellegrini, N.; Agostoni, C. Nutritional aspects of gluten-free products. J. Sci. Food Agric. 2015, 95, 2380–2385. [Google Scholar] [CrossRef] [PubMed]
- Saturni, L.; Ferretti, G.; Bacchetti, T. The gluten-free diet: Safety and nutritional quality. Nutrients 2010, 2, 16–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabrò, S.; Cutrignelli, M.I.; Gonzalez, O.J.; Chiofalo, B.; Grossi, M.; Tudisco, R.; Panetta, C.; Infascelli, F. Meat quality of buffalo young bulls fed faba bean as protein source. Meat Sci. 2014, 96, 591–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berti, C.; Riso, P.; Monti, L.D.; Porrini, M. In vitro starch digestibility and in vivo glucose response of gluten-free foods and their gluten counterparts. Eur. J. Nutr. 2004, 43, 198–204. [Google Scholar] [CrossRef]
- Poulain, C.; Johanet, C.; Delcroix, C.; Lévy-Marchal, C.; Tubiana-Rufi, N. Prevalence and clinical features of celiac disease in 950 children with type 1 diabetes in France. Diabetes Metab. 2007, 33, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Cohn, A.; Sofia, A.M.; Kupfer, S.S. Type 1 diabetes and celiac disease: Clinical overlap and new insights into disease pathogenesis. Curr. Diab. Rep. 2014, 14, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kylökäs, A.; Kaukinen, K.; Huhtala, H.; Collin, P.; Mäki, M.; Kurppa, K. Type 1 and type 2 diabetes in celiac disease: Prevalence and effect on clinical and histological presentation. BMC Gastroenterol. 2016, 16, 76. [Google Scholar] [CrossRef] [Green Version]
- King, J.A.; Jeong, J.; Underwood, F.E.; Quan, J.; Panaccione, N.; Windsor, J.W.; Coward, S.; Debruyn, J.; Ronksley, P.E.; Shaheen, A.A.; et al. Incidence of Celiac Disease Is Increasing over Time: A Systematic Review and Meta-analysis. Am. J. Gastroenterol. 2020, 115, 507–525. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, F.; Foster-Powell, K.; Brand-Miller, J.C. Internation Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed]
- Kanter, M.; Angadi, S.; Miller-Jones, J.; Beals, K.A. Limitations of the glycaemic index and the need for nuance when determining carbohydrate quality. Cardiovasc. Res. 2022, 118, E38–E39. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Vega-López, S.; Venn, B.J.; Slavin, J.L. Relevance of the glycemic index and glycemic load for body weight, diabetes, and cardiovascular disease. Nutrients 2018, 10, 1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Turati, F.; Lagiou, P.; Trichopoulos, D.; Augustin, L.S.; La Vecchia, C.; Trichopoulou, A. Mediterranean diet and glycaemic load in relation to incidence of type 2 diabetes: Results from the Greek cohort of the population-based European Prospective Investigation into Cancer and Nutrition (EPIC). Diabetologia 2013, 56, 2405–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, C.; Jia, Q.; Ding, G.; Wu, X.; Yang, M. Low-Glycemic Index Diets as an Intervention in Metabolic Diseases: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Oppermann, A.K.L.; De Graaf, C.; Scholten, E.; Stieger, M.; Piqueras-fiszman, B.; Mohammed, I.; Ahmed, A.R.; Senge, B.; Pruett, A.; Manuscript, A.; et al. Comparison of Rate-All-That-Apply (RATA) and Descriptive sensory Analysis (DA) of model double emulsions with subtle perceptual differences. Food Qual. Prefer. 2014, 56, 577–585. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Fiszman, S.; Reis, F.; Chheang, S.L.; Kam, K.; Pineau, B.; Deliza, R.; Ares, G. Influence of evoked contexts on hedonic product discrimination and sensory characterizations using CATA questions. Food Qual. Prefer. 2017, 56, 138–148. [Google Scholar] [CrossRef]
- Haluszka, E.; Niclis, C.; Diaz, M.d.P.; Osella, A.R.; Aballay, L.R. Higher dietary glycemic index, intake of high-glycemic index foods, and insulin load are associated with the risk of breast cancer, with differences according to body mass index in women from Córdoba, Argentina. Nutr. Res. 2022, 104, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.Y.; Zhang, L.; Zhang, Y.H.; Qin, L.Q. Dietary glycaemic index and glycaemic load in relation to the risk of type 2 diabetes: A meta-analysis of prospective cohort studies. Br. J. Nutr. 2011, 106, 1649–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 26642:2010; Food Products—Determination of the Glycaemic Index (GI) and Recommendation for Food Classification. International Organization for Standardization: Geneva, Switzerland, 2010.
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Englyst, K.N.; Englyst, H.N.; Hudson, G.J.; Cole, T.J.; Cummings, J.H. Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. Am. J. Clin. Nutr. 1999, 69, 448–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food-an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, H.; Hu, J.; Zuo, S.; Zhang, S.; Li, M.; Nie, S. In vitro gastrointestinal digestion and fermentation models and their applications in food carbohydrates. Crit. Rev. Food Sci. Nutr. 2021, 62, 5349–5371. [Google Scholar] [CrossRef] [PubMed]
- Di Pede, G.; Dodi, R.; Scarpa, C.; Brighenti, F.; Dall’asta, M.; Scazzina, F. Glycemic index values of pasta products: An overview. Foods 2021, 10, 2541. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Sharma, N.; Singh, A.; Phimolsiripol, Y.; Brennan, C.S. Glycaemic response of pseudocereal-based gluten-free food products: A review. Int. J. Food Sci. Technol. 2022, 57, 4936–4944. [Google Scholar] [CrossRef]
- Capriles, V.; Areas, J. Approaches to reduce the glycemic response of gluten-free products: In vivo and in vitro studies. Food Funct. 2016, 7, 1266–1272. [Google Scholar] [CrossRef]
- Valitutti, F.; Iorfida, D.; Anania, C.; Trovato, C.M.; Montuori, M.; Cucchiara, S.; Catassi, C. Cereal consumption among subjects with celiac disease: A snapshot for nutritional considerations. Nutrients 2017, 9, 396. [Google Scholar] [CrossRef] [Green Version]
- Di Cairano, M.; Condelli, N.; Caruso, M.C.; Marti, A.; Cela, N.; Galgano, F. Functional properties and predicted glycemic index of gluten free cereal, pseudocereal and legume flours. LWT-Food Sci. Technol. 2020, 133, 109860. [Google Scholar] [CrossRef]
- Di Cairano, M.; Caruso, M.C.; Galgano, F.; Favati, F.; Ekere, N.; Tchuenbou-Magaia, F. Effect of sucrose replacement and resistant starch addition on textural properties of gluten-free doughs and biscuits. Eur. Food Res. Technol. 2021, 247, 707–718. [Google Scholar] [CrossRef]
- Di Cairano, M.; Condelli, N.; Galgano, F.; Caruso, M.C. Experimental gluten-free biscuits with underexploited flours versus commercial products: Preference pattern and sensory characterisation by Check All That Apply Questionnaire. Int. J. Food Sci. Technol. 2021, 57, 1936–1944. [Google Scholar] [CrossRef]
- Di Cairano, M.; Condelli, N.; Caruso, M.C.; Cela, N.; Tolve, R.; Galgano, F. Use of Underexploited Flours for the Reduction of Glycaemic Index of Gluten-Free Biscuits: Physicochemical and Sensory Characterization. Food Bioprocess Technol. 2021, 14, 1490–1502. [Google Scholar] [CrossRef]
- Di Cairano, M.; Condelli, N.; Cela, N.; Sportiello, L.; Caruso, M.C.; Galgano, F. Formulation of gluten-free biscuits with reduced glycaemic index: Focus on in vitro glucose release, physical and sensory properties. LWT-Food Sci. Technol. 2022, 154, 112654. [Google Scholar] [CrossRef]
- Meier, J.J.; Baller, B.; Menge, B.A.; Gallwitz, B.; Schmidt, W.E.; Nauck, M.A. Excess glycaemic excursions after an oral glucose tolerance test compared with a mixed meal challenge and self-measured home glucose profiles: Is the OGTT a valid predictor of postprandial hyperglycaemia and vice versa? Diabetes Obes. Metab. 2009, 11, 213–222. [Google Scholar] [CrossRef]
- Shafaeizadeh, S.; Muhardi, L.; Henry, C.J.; Van de Heijning, B.J.M.; Van der Beek, E.M. Macronutrient Composition and Food Form Affect Glucose and Insulin Responses in Humans. Nutrients 2018, 10, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, S.; Layla, A.; Sestili, P.; Ismail, T.; Afzal, K.; Rizvanov, A.A.; Asad, M.H.H. Bin Glycemic and Insulinemic Responses of Vegetables and Beans Powders Supplemented Chapattis in Healthy Humans: A Randomized, Crossover Trial. Biomed Res. Int. 2019, 2019, 7425367. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO. Carbohydrate Human Nutrition Report of a Joint FAO/WHO Expert Consultation; FAO: Rome, Italy, 1998; Volume 2, pp. 11–18. [Google Scholar]
- Henry, C.J.K.; Lightowler, H.J.; Strik, C.M.; Renton, H.; Hails, S. Glycaemic index and glycaemic load values of commercially available products in the UK. Br. J. Nutr. 2005, 94, 922–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CREA (Centro di Ricerca Alimenti e Nutrizione). Linee Guida per Una Sana Alimentazione; CREA: Rome, Italy, 2019; p. 242. ISBN 9788833850375. [Google Scholar]
- Garsetti, M.; Vinoy, S.; Lang, V.; Holt, S.; Loyer, S.; Brand-Miller, J.C. The Glycemic and Insulinemic Index of Plain Sweet Biscuits: Relationships to in Vitro Starch Digestibility. J. Am. Coll. Nutr. 2005, 24, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Soong, Y.Y.; Quek, R.Y.C.; Henry, C.J. Glycemic potency of muffins made with wheat, rice, corn, oat and barley flours: A comparative study between in vivo and in vitro. Eur. J. Nutr. 2015, 54, 1281–1285. [Google Scholar] [CrossRef]
- Hefni, M.E.; Thomsson, A.; Witthöft, C.M. Bread making with sourdough and intact cereal and legume grains–effect on glycaemic index and glycaemic load. Int. J. Food Sci. Nutr. 2021, 72, 134–142. [Google Scholar] [CrossRef]
- Henry, C.J.K.; Lightowler, H.J.; Newens, K.; Sudha, V.; Radhika, G.; Sathya, R.M.; Mohan, V. Glycaemic index of common foods tested in the UK and India. Br. J. Nutr. 2008, 99, 840–845. [Google Scholar] [CrossRef]
- Louie, J.C.Y.; Jones, M.; Barclay, A.W.; Brand-Miller, J.C. Dietary glycaemic index and glycaemic load among Australian adults-results from the 2011–2012 Australian Health Survey. Sci. Rep. 2017, 7, 43882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livesey, G. Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr. Res. Rev. 2003, 16, 163–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemens, R.A.; Jones, J.M.; Kern, M.; Lee, S.-Y.; Mayhew, E.J.; Slavin, J.L.; Zivanovic, S. Functionality of Sugars in Foods and Health. Compr. Rev. Food Sci. Food Saf. 2016, 15, 433–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Parliament and Council Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. Union 2011, L295, 1–177. [CrossRef]
- European Parliament and the Concil of the European Union Regulation (EC) No 1333/2008 of the European Parliament ans of the Council of 16 December 2998 on food additives. Off. J. Eur. Union 2008, L354, 16–33.
- Brennan, C.S.; Samyue, E. Evaluation of Starch Degradation and Textural Characteristics of Dietary Fiber Enriched Biscuits. Int. J. Food Prop. 2004, 7, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T. Estimation of glycemic response to maltitol and mixture of maltitol and sucrose in healthy young subjects. Tech. Bull. Fac. Agr. Kagawa Univ. 2003, 55, 56–61. [Google Scholar]
- Secchi, A.; Pontiroli, A.E.; Cammelli, L.; Bizzi, A.; Cini, M.; Pozza, G. Effects of oral administration of maltitol on plasma glucose, plasma sorbitol, and serum insulin levels in man. Klin. Wochenschr. 1986, 64, 265–269. [Google Scholar] [CrossRef]
- Pratt, M.; Lightowler, H.; Henry, C.J.; Thabuis, C.; Wils, D.; Guérin-Deremaux, L. No observable differences in glycemic response to maltitol in human subjects from 3 ethnically diverse groups. Nutr. Res. 2011, 31, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Scazzina, F.; Dall’Asta, M.; Pellegrini, N.; Brighenti, F. Glycaemic index of some commercial gluten-free foods. Eur. J. Nutr. 2015, 54, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Romão, B.; Falcomer, A.L.; Palos, G.; Cavalcante, S.; Botelho, R.B.A.; Nakano, E.Y.; Raposo, A.; Shakeel, F.; Alshehri, S.; Mahdi, W.A.; et al. Glycemic index of gluten-free bread and their main ingredients: A systematic review and meta-analysis. Foods 2021, 10, 506. [Google Scholar] [CrossRef]
- Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr. 2016, 35, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Molinari, R.; Costantini, L.; Timperio, A.M.; Lelli, V.; Bonafaccia, F.; Bonafaccia, G.; Merendino, N. Tartary buckwheat malt as ingredient of gluten-free cookies. J. Cereal Sci. 2018, 80, 37–43. [Google Scholar] [CrossRef]
- Sparvoli, F.; Laureati, M.; Pilu, R.; Pagliarini, E.; Toschi, I.; Giuberti, G.; Fortunati, P.; Daminati, M.G.; Cominelli, E.; Bollini, R. Exploitation of Common Bean Flours with Low Antinutrient Content for Making Nutritionally Enhanced Biscuits. Front. Plant Sci. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuberti, G.; Fortunati, P.; Cerioli, C.; Gallo, A. Gluten free Maize Cookies Prepared with High-amylose Starch: In Vitro Starch Digestibility and Sensory Characteristics. J. Nutr. Food Sci. 2015, 5, 424. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Wang, W.; Zhuang, H.; Song, S.; Yao, L.; Sun, M.; Xu, Z. In vitro digestible properties and quality characterization of nonsucrose gluten-free Lentinus edodes cookies. J. Food Process. Preserv. 2018, 42, e13454. [Google Scholar] [CrossRef]
- Ferrer-Mairal, A.; Peñalva-Lapuente, C.; Iglesia, I.; Urtasun, L.; De Miguel-Etayo, P.; Remón, S.; Cortés, E.; Moreno, L.A. In vitro and in vivo assessment of the glycemic index of bakery products: Influence of the reformulation of ingredients. Eur. J. Nutr. 2012, 51, 947–954. [Google Scholar] [CrossRef]
- Freitas, D.; Le Feunteun, S. Oro-gastro-intestinal digestion of starch in white bread, wheat-based and gluten-free pasta: Unveiling the contribution of human salivary α-amylase. Food Chem. 2019, 274, 566–573. [Google Scholar] [CrossRef]
- Oh, I.K.; Bae, I.Y.; Lee, H.G. Complexation of high amylose rice starch and hydrocolloid through dry heat treatment: Physical property and in vitro starch digestibility. J. Cereal Sci. 2018, 79, 341–347. [Google Scholar] [CrossRef]
- Germaine, K.A.; Samman, S.; Fryirs, C.G.; Griffiths, P.J.; Johnson, S.K.; Quail, K.J. Comparison of in vitro starch digestibility methods for predicting the glycaemic index of grain foods. J. Sci. Food Agric. 2008, 88, 652–658. [Google Scholar] [CrossRef]
- Cervini, M.; Frustace, A.; Garrido, G.D.; Rocchetti, G.; Giuberti, G. Nutritional, physical and sensory characteristics of gluten-free biscuits incorporated with a novel resistant starch ingredient. Heliyon 2021, 7, e06562. [Google Scholar] [CrossRef]
- Kahraman, K.; Aktas-Akyildiz, E.; Ozturk, S.; Koksel, H. Effect of different resistant starch sources and wheat bran on dietary fibre content and in vitro glycaemic index values of cookies. J. Cereal Sci. 2019, 90, 102851. [Google Scholar] [CrossRef]
- Delamare, G.Y.F.; Butterworth, P.J.; Ellis, P.R.; Hill, S.; Warren, F.J.; Edwards, C.H. Incorporation of a novel leguminous ingredient into savoury biscuits reduces their starch digestibility: Implications for lowering the Glycaemic Index of cereal products. Food Chem. X 2020, 5, 100078. [Google Scholar] [CrossRef]
- Afandi, F.A.; Wijaya, C.H.; Faridah, D.N.; Suyatma, N.E.; Jayanegara, A. Evaluation of various starchy foods: A systematic review and meta-analysis on chemical properties affecting the glycemic index values based on in vitro and in vivo experiments. Foods 2021, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- European Commission Commission Regulation (EU) No 432/2012 establishing a list of permitted health claims made on foods other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union 2012, L136, 1–40.
- Foster-Powell, K.; Holt, S.; Brand-Miller, J. International table of glycemic index and glycemic load. Am. Soc. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [Green Version]
- Capuano, E.; Janssen, A.E.M. Food Matrix and Macronutrient Digestion. Annu. Rev. Food Sci. Technol. 2021, 12, 193–212. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T.; Carriere, F.; Day, L.; Deglaire, A.; Egger, L.; Freitas, D.; Golding, M.; Le Feunteun, S.; Macierzanka, A.; Menard, O.; et al. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit. Rev. Food Sci. Nutr. 2018, 58, 2239–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmerón, J.; Manson, J.E.; Stampfer, M.J.; Colditz, G.A.; Wing, A.L.; Willett, W.C. Dietary Fiber, Glycemic Load, and Risk of Non—Insulin-dependent Diabetes Mellitus in Women. JAMA 1997, 277, 472–477. [Google Scholar] [CrossRef]
- Salmerón, J.; Ascherio, A.; Rimm, E.B.; Colditz, G.A.; Spiegelman, D.; Jenkins, D.J.; Stampfer, M.J.; Wing, A.L.; Willett, W.C. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997, 20, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.J.K.; Lightowler, H.J.; Dodwell, L.M.; Wynne, J.M. Glycaemic index and glycaemic load values of cereal products and weight-management meals available in the UK. Br. J. Nutr. 2007, 98, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scazzina, F.; Dall’Asta, M.; Casiraghi, M.C.; Sieri, S.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Glycemic index and glycemic load of commercial Italian foods. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 419–429. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Supplier | g/kg Dough * |
---|---|---|
Buckwheat flour | Molino Filippini (Teglio, SO, Italy) | 279.20 |
Sorghum flour | Molino Favero (Padova, PD, Italy) | 169.50 |
Lentil flour | Terre di Altamura (Altamura, BA, Italy) | 109.70 |
Resistant starch-HI-MAIZE® 260 | Ingredion (Westchester, IL, USA) | - |
Sucrose | Suicrà (Pigna Spaccata, NA, Italy) | 189.40 |
Maltitol-Maltite 100 | Tereos (Moussy-le-Vieux, France) | - |
Inulin–FibrulineTM Instant | Cosucra groupe Warcoing s.a., (Warcoing, Belgium) | - |
Eggs | Parmovo (Colorno, PR, Italy) | 134.60 |
High oleic sunflower oil | Tampieri Financial Group (Faenza, RA, Italy) | 89.70 |
Water | 19.90 | |
Ammonium bicarbonate | Esseco (Trecate, NO, Italy) | 4.00 |
Sodium hydrogen carbonate | Esseco (Trecate, NO, Italy) | 3.00 |
Salt | 1.00 |
Sample | Characteristics |
---|---|
Control | Buckwheat, sorghum and lentil flour (50:30:20) biscuits with 19% (of total dough weight) sucrose as sweetener and no resistant starch (RS) |
RS-inulin 30 | As Control but with part of the flours replaced by RS (11.50% of total dough weight) and 30% of sucrose replaced by inulin |
RS-maltitol 50 | As Control but with part of the flours replaced by RS (12.00% of total dough weight) and 50% of sucrose replaced by maltitol |
RS-maltitol 100 | As Control but with part of the flours replaced by RS (11.50% of total dough weight) and total replacement of sucrose with maltitol |
Glycaemic Index | ||
---|---|---|
r | p-Value | |
Predicted Glycaemic Index 1 | 0.992 | 0.005 |
Resistant Starch 1 | −0.984 | 0.066 |
Rapidly available glucose 1 | 0.936 | 0.064 |
Free glucose 1 | 0.984 | 0.016 |
Total sugars 1 | 0.993 | 0.007 |
Sample | GI | pGI * | % Change | pGIG ** | % Change | GL (x serving size) |
---|---|---|---|---|---|---|
Control | 77 ± 5 a | 84 ± 0.4 a | ~9 | 59 ** | ~(−23) | 5.74 |
RS-inulin 30 | 58 ± 7 ab | 78 ± 0.7 b | ~34 | 55 ** | ~(−5) | 5.17 |
RS-maltitol 50 | 52 ± 5 bc | 74 ± 0.6 c | ~42 | 52 ** | ~0 | 4.05 |
RS-maltitol 100 | 33 ± 5 c | 65 ± 0.0 d | ~97 | 46 ** | ~39 | 2.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Cairano, M.; Tchuenbou-Magaia, F.L.; Condelli, N.; Cela, N.; Ojo, C.C.; Radecka, I.; Dunmore, S.; Galgano, F. Glycaemic Index of Gluten-Free Biscuits with Resistant Starch and Sucrose Replacers: An In Vivo and In Vitro Comparative Study. Foods 2022, 11, 3253. https://doi.org/10.3390/foods11203253
Di Cairano M, Tchuenbou-Magaia FL, Condelli N, Cela N, Ojo CC, Radecka I, Dunmore S, Galgano F. Glycaemic Index of Gluten-Free Biscuits with Resistant Starch and Sucrose Replacers: An In Vivo and In Vitro Comparative Study. Foods. 2022; 11(20):3253. https://doi.org/10.3390/foods11203253
Chicago/Turabian StyleDi Cairano, Maria, Fideline Laure Tchuenbou-Magaia, Nicola Condelli, Nazarena Cela, Constance Chizoma Ojo, Iza Radecka, Simon Dunmore, and Fernanda Galgano. 2022. "Glycaemic Index of Gluten-Free Biscuits with Resistant Starch and Sucrose Replacers: An In Vivo and In Vitro Comparative Study" Foods 11, no. 20: 3253. https://doi.org/10.3390/foods11203253
APA StyleDi Cairano, M., Tchuenbou-Magaia, F. L., Condelli, N., Cela, N., Ojo, C. C., Radecka, I., Dunmore, S., & Galgano, F. (2022). Glycaemic Index of Gluten-Free Biscuits with Resistant Starch and Sucrose Replacers: An In Vivo and In Vitro Comparative Study. Foods, 11(20), 3253. https://doi.org/10.3390/foods11203253