Development of a Fluorescence Polarization Assay for Multi-Determination of 10 Aminoglycosides in Pork Muscle Sample Based on Ribosomal Protein S12 and Studying Its Recognition Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Expression of RpsL12
2.3. Molecular Docking
2.4. Surface Plasmon Resonance (SPR)
2.5. Synthesis of Fluorescent Tracer STR-FITC
2.6. Development of Fluorescence Polarization Assay (FPA)
2.7. Sample Extraction and Analysis
3. Results and Discussions
3.1. Characterization of RpsL12
3.2. Recognition Mechanisms for AGs
3.3. Characterization of the Fluorescent Tracer
3.4. Evaluation of RpsL12 and STR-FITC
3.5. Optimization of FPA Method
3.6. Method Performances
3.7. Sample Determination
3.8. Comparison with Related Immunoassays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Aronson, J.K.; Reynolds, D.J. ABC of monitoring drug therapy, aminoglycoside antibiotics. BMJ 1992, 305, 1421–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selimoglu, E. Aminoglycoside-induced ototoxicity. Curr. Pharm. Des. 2007, 3, 119–126. [Google Scholar] [CrossRef]
- Farouk, F.; Azzazy, H.M.E.; Niessen, W.M.A. Challenges in the determination of aminoglycoside antibiotics, a review. Anal. Chim. Acta 2015, 890, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Hari, R.; Taherunnisa, S.; Raut, S.Y.; Mutalik, S.; Koteshwara, K.B. Challenges in the development of analytical test procedure for aminoglycosides: A critical review. J. Appl. Pharm. Sci. 2019, 9, 145–152. [Google Scholar]
- Chen, Y.; Wang, Z.; Wang, Z.; Tang, S.; Zhu, Y.; Xiao, X. Rapid enzyme-linked immunosorbent assay and colloidal gold immunoassay for kanamycin and tobramycin in swine tissues. J. Agric. Food Chem. 2008, 56, 2944–2952. [Google Scholar] [CrossRef] [PubMed]
- Abuknesha, R.A.; Luk, C. Enzyme immunoassays for the analysis of streptomycin in milk, serum and water: Development and assessment of a polyclonal antiserum and assay procedures using novel streptomycin derivatives. Analyst 2005, 130, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Shalev, M.; Kandasamy, J.; Skalka, N.; Belakhov, V.; Rosin-Arbesfeld, R.; Baasov, T. Development of generic immunoassay for the detection of a series of aminoglycosides with 6′-OH group for the treatment of genetic diseases in biological samples. J. Pharmaceut. Biomed. 2013, 75, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.Y.J.; Chan, C.; Chan, K.; Wang, Y.C.; Lin, J.; Chang, C.; Chen, C. Development of a novel bead-based 96-well filtration plate competitive immunoassay for the detection of Gentamycin. Biosens. Bioelectron. 2013, 49, 126–132. [Google Scholar] [CrossRef]
- Xu, F.; Jiang, W.; Zhou, J.; Wen, K.; Wang, Z.; Jiang, H.; Ding, S. Production of monoclonal antibody and development of a new immunoassay for apramycin in food. J. Agric. Food Chem. 2014, 62, 3108–3113. [Google Scholar] [CrossRef]
- Jiang, L.; Wei, D.; Zeng, K.; Shao, J.; Zhu, F.; Du, D. An enhanced direct competitive immunoassay for the detection of kanamycin and tobramycin in milk using multienzyme-particle amplification. Food Anal. Methods 2018, 11, 2066–2075. [Google Scholar] [CrossRef]
- Wei, D.; Meng, H.; Zeng, K.; Huang, Z. Visual dual dot immunoassay for the simultaneous detection of kanamycin and streptomycin in milk. Anal. Methods 2019, 11, 70–77. [Google Scholar] [CrossRef]
- Song, E.; Yu, M.; Wang, Y.; Hu, W.; Cheng, D.; Swihart, M.T.; Song, Y. Multi-color quantumdot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosens. Bioelectron. 2015, 72, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.J.; Zhang, J.B.; Wang, H.L.; Chen, X.; Wu, N.; Zhao, Y.F.; Wang, X.M.; Zhang, H.; Zhang, J.Y.; Zhu, L.; et al. Rapid and sensitive chemiluminescent enzyme immunoassay for the determination of neomycin residues in milk. Biomed. Environ. Sci. 2016, 29, 374–378. [Google Scholar] [PubMed]
- Jin, Y.; Jang, J.; Lee, M.; Han, C. Development of ELISA and immunochromatographic assay for the detection of neomycin. Clin. Chim. Acta 2006, 364, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, O.D.; Byzova, N.A.; Zvereva, E.A.; Zherdev, A.V.; Dzantiev, B.B. Sensitive lateral flow immunoassay of an antibiotic neomycin. J. Food Sci. Technol. 2021, 58, 292–301. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, J.; Yang, S.; Sang, Q.; Teng, M.; Li, Q.; Deng, R.; Feng, L.; Hu, X.; Zhang, G. Development of an immunochromatographic lateral flow strip for the simultaneous detection of aminoglycoside residues in milk. RSC Adv. 2018, 8, 9580. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Zhang, X.; Chen, B.; Zeng, K. Using bimetallic Au@Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays: Application for the detection of streptomycin. Anal. Chim. Acta 2020, 1126, 106–113. [Google Scholar] [CrossRef]
- Yue, F.; Li, F.; Kong, Q.; Guo, Y.; Sun, X. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. Sci. Total Environ. 2021, 762, 143129. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Z.; Wang, C.; Wen, K.; Mi, T.; Zhang, J.; Zhang, S. A proof-of-concept receptor-based assay for sulfonamides. Anal. Biochem. 2013, 438, 110–116. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, X.; Wen, K.; Zhang, S.; Li, C.; Shen, J. A highly sensitive and class-specific fluorescence polarisation assay for sulphonamides based on dihydropteroate synthase. Biosens. Bioelectron. 2015, 70, 1–4. [Google Scholar] [CrossRef]
- Liang, X.; Li, C.; Zhu, J.; Song, X.; Yu, W.; Zhang, J.; Zhang, S.; Shen, J.; Wang, Z. Dihydropteroate synthase based sensor for screening multi-sulfonamides residue and its comparison with broad-specific antibody based immunoassay by molecular modeling analysis. Anal. Chim. Acta 2019, 1050, 139–145. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Liu, J.; Wang, J.P. Development of a dihydropteroate synthase based fluorescence polarization assay for detection of sulfonamides and studying its recognition mechanism. J. Agric. Food Chem. 2021, 69, 13953–13963. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Cui, P.L.; Liu, J.; Feng, C.; Wang, J.P. Production of a natural dihydropteroate synthase and development of a signal amplified pseudo immunoassay for determination of sulfonamides in pork. J. Agric. Food Chem. 2022, 70, 3023–3032. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Ning, J.; Cheng, G.; Maan, M.K.; Chen, T.; Ahmad, I.; Algharib, S.A.; Yuan, Z. Development and validation of an enzyme-linked receptor assay based on mutant protein I188K/S19C/G24C for 40 beta-lactams antibiotics detection in 13 food samples. Microchem. J. 2020, 152, 104354. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, H.C.; Liu, J.; Wang, J.P. A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk. Anal. Biochem. 2019, 564–565, 40–46. [Google Scholar] [CrossRef]
- Wang, G.; Xia, W.Q.; Liu, J.X.; Wang, J.P.; Liu, J. Directional evolution of TetR protein and development of a fluoroimmunoassay for screening of tetracyclines in egg. Microchem. J. 2019, 150, 104184. [Google Scholar] [CrossRef]
- Xia, W.Q.; Cui, P.L.; Wang, J.P.; Liu, J. Synthesis of photoaffinity labeled activity-based protein profiling probe and production of natural TetR protein for immunoassay of tetracyclines in milk. Microchem. J. 2021, 170, 106779. [Google Scholar] [CrossRef]
- Danyi, S.; Degand, G.; Duez, C.; Granier, B.; Maghuin-Rogister, G.; Scippo, M.L. Solubilisation and binding characteristics of a recombinant beta2-adrenergic receptor expressed in the membrane of Escherichia coli for the multianalyte detection of beta-agonists and antagonists residues in food-producing animals. Anal. Chim. Acta 2007, 589, 159–165. [Google Scholar] [CrossRef]
- Magnet, S.; Blanchard, J.S. Molecular insights into aminoglycoside action and resistance. Chem. Rev. 2005, 105, 477–497. [Google Scholar] [CrossRef]
- Carter, A.P.; Clemons, W.M.; Brodersen, D.E.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 2000, 407, 340–348. [Google Scholar] [CrossRef]
- Fosso, M.Y.; Li, Y.; Garneau-Tsodikova, S. New trends in the use of aminoglycosides. Med. Chem. Commun. 2014, 5, 1075–1091. [Google Scholar] [CrossRef] [PubMed]
- Sreevatsan, S.; Pan, X.; Stockbauer, K.E.; Williams, D.L.; Kreiswirth, B.N.; Musser, J.M. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob. Agents Chemother. 1996, 40, 1024–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirthi, N.; Roy-Chaudhuri, B.; Kelley, T.; Culver, G.M. A novel single amino acid change in small subunit ribosomal protein S5 has profound effects on translational fidelity. RNA 2006, 12, 2080–2091. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Inaoka, T.; Okamoto, S.; Ochi, K. A novel insertion mutation in streptomyces coelicolorribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob. Agents Chemother. 2009, 53, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Suriyanarayanan, B.; Lakshmi, P.P.; Santhosh, R.S.; Dhevendaran, K.; Priya, B.; Krishna, S. Streptomycin affinity depends on 13 amino acids forming a loop in homology modeled ribosomal S12 protein (rpsL gene) of Lysinibacillussphaericus DSLS5 associated with marine sponge (Tedaniaanhelans). J. Biomol. Struct. Dyn. 2016, 34, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, S.; Ruyck, K.D.; Beloglazova, N.; Eremin, S.A.; DeSaeger, S.; Zhang, S.; Shen, J.; Wang, Z. Fluorescence polarization assays for chemical contaminants in food and environmental analyses. TRAC Trends Anal. Chem. 2019, 114, 293–313. [Google Scholar] [CrossRef]
- GB 31650-2019; National Food Safety Standard—Maximum Residue Limits for Veterinary Drugs in Foods. Ministry of Agriculture of China: Beijing, China, 2019.
Drug | Binding Energy (kcal/mol) | Contact Amino Acid | KA | IC50 (ng/mL) | LOD (ng/mL) | |
---|---|---|---|---|---|---|
Hydrogen Bond | Hydrophobic Interaction | |||||
STR | 5.56 | TYR28 | SER40 PRO41 GLN42 AGR44 LEU94LEU115 | 24.670 | 59.3 | 7.2 |
AMK | 5.15 | ARG44 | SER40 GLN42 ASN72 | 24.487 | 68.1 | 11.3 |
APM | 5.78 | GLN42 THR71 | LYS43 ARG44 THR71 | 26.102 | 47.6 | 3.6 |
GEN | 5.64 | GLN42 LYS43 | TYR28 VAL38 SER40 GLN42 LEU94 | 17.693 | 53.3 | 2.1 |
NEO | 5.84 | TYR28 SER30 GLN42 THR71 | GLY27 VAL38 | 25.997 | 48.3 | 3.4 |
MIM | 5.26 | LYS43 | GLY27 VAL38 SER40 ARG44 THR71 | 14.666 | 63.3 | 9.8 |
SPM | 5.55 | THR71 | GLY27 SER30 VAL38 SER40 LYS43 | 23.900 | 62.5 | 9.2 |
ETM | 5.57 | TYR28 SER40 | GLY27 VAL38 SER40 LYS43 ARG44 LEU94 LEU115 | 11.358 | 61.7 | 6.5 |
NTM | 5.38 | THR71 | GLY27 TYR28 SER30 THR36 VAL38 ARG44 | 14.684 | 65.9 | 7.0 |
PMM | 5.36 | TYR28 | VAL38 | 23.851 | 72.2 | 12.1 |
Drug | Added (ng/g) | Inter-Assay | Intra-Assay | ||
---|---|---|---|---|---|
Recovery (%) | CV (%) | Recovery (%) | CV (%) | ||
streptomycin | 10 | 78.6 | 9 | 79.5 | 6 |
100 | 86.3 | 9 | 75.3 | 6 | |
neomycin | 10 | 86.5 | 9 | 82.5 | 8 |
100 | 92.5 | 11 | 84.3 | 7 | |
gentamicin | 10 | 92.4 | 13 | 92.1 | 7 |
100 | 95.1 | 8 | 94.5 | 7 | |
amikacin | 20 | 76.5 | 9 | 91.2 | 7 |
100 | 80.4 | 14 | 97.6 | 7 | |
spectinomycin | 10 | 91.5 | 10 | 89.3 | 8 |
100 | 93.1 | 9 | 92.2 | 8 | |
apramycin | 10 | 85.8 | 8 | 96.5 | 7 |
100 | 84.3 | 11 | 94.6 | 6 | |
paromomycin | 20 | 76.8 | 8 | 88.5 | 7 |
100 | 84.7 | 8 | 83.2 | 8 | |
netimicin | 10 | 79.6 | 9 | 91.2 | 6 |
100 | 82.6 | 9 | 92.8 | 8 | |
micronomicin | 10 | 82.5 | 12 | 90.7 | 6 |
100 | 74.5 | 8 | 92.6 | 6 | |
etimicin | 10 | 80.6 | 8 | 86.4 | 8 |
100 | 82.8 | 13 | 88.5 | 7 |
Recognition Reagent | Method | Analyte | Assay Time (from Add Sample) | LOD (ng/g) | Ref. |
---|---|---|---|---|---|
Kanamycin mAb | ELISA | 2 AGs | 30 min | 0.9–1.8 | 5 |
Streptomycin pAb | ELISA | 1 drug | 30 min | 1 | 6 |
AGs derivative pAb | ELISA | 3 derivatives | >14 h | 1–20 | 7 |
Gentamycin pAb | ELISA | 1 drug | 2 h | 14.16 | 8 |
Apramycin mAb | Immunoaffinity test column | 1 drug | 20 min | 3–10 | 9 |
Kanamycin mAb | ELISA | 2 AGs | 100 min | 0.022 | 10 |
Streptomycin mAb | ELISA | 2 AGs | 40 min | 0.09–1.37 | 11 |
Streptomycin mAb | Fluorescence ELISA | 1 drug | 60 min | 0.005 | 12 |
Commercial Ab | Chemiluminescent ELISA | 1 drug | 60 min | 9.4 | 13 |
Neomycin mAb | ELISA | 1 drug | 80 min | 2.73 | 14 |
RpsL12 | FPA | 10 AGs | 3 min | 5.25–30.25 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, W.; Zhang, L.; Wang, J. Development of a Fluorescence Polarization Assay for Multi-Determination of 10 Aminoglycosides in Pork Muscle Sample Based on Ribosomal Protein S12 and Studying Its Recognition Mechanism. Foods 2022, 11, 3196. https://doi.org/10.3390/foods11203196
Xia W, Zhang L, Wang J. Development of a Fluorescence Polarization Assay for Multi-Determination of 10 Aminoglycosides in Pork Muscle Sample Based on Ribosomal Protein S12 and Studying Its Recognition Mechanism. Foods. 2022; 11(20):3196. https://doi.org/10.3390/foods11203196
Chicago/Turabian StyleXia, Wanqiu, Lei Zhang, and Jianping Wang. 2022. "Development of a Fluorescence Polarization Assay for Multi-Determination of 10 Aminoglycosides in Pork Muscle Sample Based on Ribosomal Protein S12 and Studying Its Recognition Mechanism" Foods 11, no. 20: 3196. https://doi.org/10.3390/foods11203196
APA StyleXia, W., Zhang, L., & Wang, J. (2022). Development of a Fluorescence Polarization Assay for Multi-Determination of 10 Aminoglycosides in Pork Muscle Sample Based on Ribosomal Protein S12 and Studying Its Recognition Mechanism. Foods, 11(20), 3196. https://doi.org/10.3390/foods11203196