Phenolic Extraction of Moringa oleifera Leaves in DES: Characterization of the Extracts and Their Application in Methylcellulose Films for Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. DES Preparation
2.2.2. Extraction of Moringa oleifera Leaves in DES
2.2.3. Spectrophotometric Analysis of Moringa oleifera Leaf Extracts
Phenolic Compounds
Antioxidant Capacity
2.2.4. HPLC-DAD-ESI-MSn Analysis
2.2.5. Films Preparation
2.3. Film Properties
2.3.1. Thickness Measurements
2.3.2. Water Vapor Permeability (WVP)
2.3.3. Mechanical Properties
2.3.4. Scanning Electron Microscopy (SEM)
2.4. Bread Experiences
2.4.1. Evaluation of Antifungal Effectiveness of Methylcellulose Films in Sliced Bread
2.4.2. Determination of Bread Firmness
2.4.3. Weight Loss Measurements
2.5. Color Measurements
2.6. Statistical Analyses
3. Results and Discussion
3.1. Spectrophotometric Analysis of Moringa oleifera Leaf Extract
3.2. HPLC-DAD-MSn Profiling of Phenolics from Moringa oleifera Leaf Extracts
3.3. Color Parameters and Optical Properties of Films
3.4. Thickness, Mechanical Properties, and Water Vapor Permeability of MC Films
3.5. Morphologic Analysis of Films
3.6. Effectiveness of MC Films on Sliced Wheat Bread
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, P.; Patel, N.; Patel, D.; Desai, S.; Meshram, D. Phytochemical analysis and antifungal activity of moringa oleifera. Int. J. Pharm. Pharm. Sci. 2014, 6, 144–147. [Google Scholar]
- Kekuda, T.R.P.; Raghavendra, H.L.; Solomon, T.; Duressa, D. Antifungal and antiradical potential of Moringa stenopetala (Baker f.) Cufod (Moringaceae). J. Biosci. Agric. Res. 2016, 11, 923–929. [Google Scholar] [CrossRef]
- El–Mohamedy, R.S.R.; Abdalla, A.M. Evaluation of antifungal activity of Moringa oleifera extracts as natural fungicide against some plant pathogenic fungi In-vitro. Int. J. Agric. Technol. 2014, 10, 963–982. [Google Scholar]
- Djande, C.Y.H.; Piater, L.A.; Steenkamp, P.A.; Madala, N.E.; Dubery, I.A. Differential extraction of phytochemicals from the multipurpose tree, Moringa oleifera, using green extraction solvents. South Afr. J. Bot. 2018, 115, 81–89. [Google Scholar] [CrossRef]
- Karageorgou, I.; Grigorakis, S.; Lalas, S.; Makris, D.P. Enhanced extraction of antioxidant polyphenols from Moringa oleifera Lam. leaves using a biomolecule-based low-transition temperature mixture. Eur. Food Res. Technol. 2017, 243, 1839–1848. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Peng, C.; Zhang, Y.; Wang, Z.-R.; Chen, Y.-M.; Dong, J.-F.; Xiao, M.-L.; Li, D.-L.; Li, W.; Zou, Q.-J.; et al. Optimization, identification and bioactivity of flavonoids extracted from Moringa oleifera leaves by deep eutectic solvent. Food Biosci. 2022, 47, 101687. [Google Scholar] [CrossRef]
- Lee, K.Y.; Yang, H.J.; Song, K.B. Application of a puffer fish skin gelatin film containing Moringa oleifera Lam. leaf extract to the packaging of Gouda cheese. J. Food Sci. Technol. 2016, 53, 3876–3883. [Google Scholar] [CrossRef]
- Nunez-Gastelum, J.A.; Rodriguez-Nunez, J.R.; de la Rosa, L.A.; Diaz-Sanchez, A.G.; Alvarez-Parrilla, E.; Martinez-Martinez, A.; Villa-Lerma, G. Screening of the physical and structural properties of chitosan-polycaprolactone films added with Moringa Oleifera leaf extract. Rev. Mex. De Ing. Quim. 2019, 18, 99–105. [Google Scholar] [CrossRef]
- Tesfay, S.Z.; Magwaza, L.S. Evaluating the efficacy of moringa leaf extract, chitosan and carboxymethyl cellulose as edible coatings for enhancing quality and extending postharvest life of avocado (Persea americana Mill.) fruit. Food Packag. Shelf 2017, 11, 40–48. [Google Scholar] [CrossRef]
- Bhat, V.G.; Narasagoudr, S.S.; Masti, S.P.; Chougale, R.B.; Vantamuri, A.B.; Kasai, D. Development and evaluation of Moringa extract incorporated Chitosan/Guar gum/Poly (vinyl alcohol) active films for food packaging applications. Int. J. Biol. Macromol. 2022, 200, 50–60. [Google Scholar] [CrossRef]
- Mezhoudi, M.; Salem, A.; Abdelhedi, O.; Fakhfakh, N.; Debeaufort, F.; Jridi, M.; Zouari, N. Edible films from triggerfish gelatin and Moringa oleifera extract: Physical properties and application in wrapping ricotta cheese. J. Food Meas. Charact. 2022. [Google Scholar] [CrossRef]
- Labuza, T.P. Shelf-Life Dating of Foods; Food & Nutrition Press, Inc.: Westport, CT, USA, 1982. [Google Scholar]
- Appendinia, P.; Hotchkissb, J.H. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 2002, 3, 113–126. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F. Strategies to Extend Bread and GF Bread Shelf-Life: From Sourdough to Antimicrobial Active Packaging and Nanotechnology. Fermentation 2018, 4, 9. [Google Scholar] [CrossRef]
- Jideani, V.A.; Vogt, K. Antimicrobial Packaging for Extending the Shelf Life of Bread-A Review. Crit. Rev. Food Sci. 2016, 56, 1313–1324. [Google Scholar] [CrossRef]
- Azmin, S.N.H.M.; Hayat, N.A.b.M.; Nor, M.S.M. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J. Bioresour. Bioprod. 2020, 5, 248–255. [Google Scholar] [CrossRef]
- Oyeoka, H.C.; Ewulonu, C.M.; Nwuzor, I.C.; Obele, C.M.; Nwabanne, J.T. Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. J. Bioresour. Bioprod. 2021, 6, 168–185. [Google Scholar] [CrossRef]
- Zhao, L.; Duan, G.; Zhang, G.; Yang, H.; He, S.; Jiang, S. Electrospun Functional Materials toward Food Packaging Applications: A Review. Nanomaterials 2020, 10, 150. [Google Scholar] [CrossRef]
- Turhan, K.N. Cellulose based packaging films containing natural antimicrobial agents. J. Hyg. Eng. Des. 2013, 5, 13–17. [Google Scholar]
- Vojdani, F.; Torres, J.A. Potassium Sorbate Permeability of Methylcellulose and Hydroxypropyl Methylcellulose Multi-Layer Films. J. Food Process. Preserv. 1989, 13, 417–430. [Google Scholar] [CrossRef]
- Vojdani, F.; Torres, J. Potassium sorbate permeability of polysaccharide films: Chitosan, methylcellulose and hydroxypropyl methylcellulose. J. Food Process. Eng. 1990, 12, 33–48. [Google Scholar] [CrossRef]
- Vojdani, F.; Torres, J.A. Potassium Sorbate Permeability of Methylcellulose and Hydroxypropyl Methylcellulose Coatings—Effect of Fatty-Acids. J. Food Sci. 1990, 55, 841–846. [Google Scholar] [CrossRef]
- Otoni, C.G.; Pontes, S.F.O.; Medeiros, E.A.A.; Soares, N.D.F. Edible Films from Methylcellulose and Nanoemulsions of Clove Bud (Syzygium aromaticum) and Oregano (Origanum vulgare) Essential Oils as Shelf Life Extenders for Sliced Bread. J. Agric. Food Chem. 2014, 62, 5214–5219. [Google Scholar] [CrossRef] [PubMed]
- Noshirvani, N.; Ghanbarzadeh, B.; Mokarram, R.R.; Hashemi, M. Novel active packaging based on carboxymethyl cellulose-chitosan -ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packag. Shelf 2017, 11, 106–114. [Google Scholar] [CrossRef]
- Braham, F.; Carvalho, D.O.; Almeida, C.M.R.; Zaidi, F.; Magalhaes, J.M.C.S.; Guido, L.F.; Goncalves, M.P. Online HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from Moringa oleifera leaves. S. Afr. J. Bot. 2020, 129, 146–154. [Google Scholar] [CrossRef]
- Gouveia, T.I.A.; Biernacki, K.; Castro, M.C.R.; Goncalves, M.P.; Souza, H.K.S. A new approach to develop biodegradable films based on thermoplastic pectin. Food Hydrocolloid. 2019, 97, 105175. [Google Scholar] [CrossRef]
- Oomah, B.D.; Corbe, A.; Balasubramanian, P. Antioxidant and Anti-inflammatory Activities of Bean (Phaseolus vulgaris L.) Hulls. J. Agric. Food Chem. 2010, 58, 8225–8230. [Google Scholar] [CrossRef]
- Skerget, M.; Kotnik, P.; Hadolin, M.; Hras, H.R.; Simonic, M.; Knez, Z. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Horszwald, A.; Andlauer, W. Characterisation of bioactive compounds in berry juices by traditional photometric and modern microplate methods. J. Berry Res. 2011, 1, 189–199. [Google Scholar] [CrossRef]
- Huang, D.J.; Ou, B.X.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate flourescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Giao, M.S.; Gonzalez-Sanjose, M.L.; Rivero-Perez, M.D.; Pereira, C.I.; Pintado, M.E.; Malcata, F.X. Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenol content on extraction features. J. Sci. Food Agric. 2007, 87, 2638–2647. [Google Scholar] [CrossRef] [PubMed]
- ASTME96–00; Standard Test Methods for Water Vapour Transmission of Materials. Annual Book of ASTM Standards. ASTM: West Conshohocke, PA, USA, 2000; Volume 4.
- Cauvain, S.P.; Young, L.S. Chemical and Physical Deterioration of Bakery Products. Chemical Deterioration and Physical Instability of Food and Beverages; Technology and Nutrition; Woodhead: Cambridge, UK, 2010. [Google Scholar]
- Ruesgas-Ramon, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- Ivanovic, M.; Grujic, D.; Cerar, J.; Razborsek, M.I.; Topalic-Trivunovic, L.; Savic, A.; Kocar, D.; Kolar, M. Extraction of Bioactive Metabolites from Achillea millefolium L. with Choline Chloride Based Natural Deep Eutectic Solvents: A Study of the Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 724. [Google Scholar] [CrossRef]
- Alsaud, N.; Shahbaz, K.; Farid, M. Antioxidant and antibacterial evaluation of Manuka leaves (Leptospermum scoparium) extracted by hydrophobic deep eutectic solvent. Chem. Eng. Res. Des. 2021, 174, 96–106. [Google Scholar] [CrossRef]
- Clifford, M.N.; Kirkpatrick, J.; Kuhnert, N.; Roozendaal, H.; Salgado, P.R. LC-MSn analysis of the cis isomers of chlorogenic acids. Food Chem. 2008, 106, 379–385. [Google Scholar] [CrossRef]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef] [PubMed]
- Willems, J.L.; Khamis, M.M.; Saeid, W.M.; Purves, R.W.; Katselis, G.; Low, N.H.; El-Aneed, A. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry. Anal. Chim. Acta 2016, 933, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Vuković, N.; Vukić, M.; Đelić, G.; Kacaniova, M.; Cvijovic, M. The investigation of bioactive secondary metabolites of the methanol extract of eryngium amethystinum. Kragujev. J. Sci. 2018, 40, 113–129. [Google Scholar] [CrossRef]
- Ibrahim, R.M.; El-Halawany, A.M.; Saleh, D.O.; El Naggar, E.; El-Shabrawy, A.O.; El-Hawary, S.S. HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev. Bras. Farm. 2015, 25, 134–141. [Google Scholar] [CrossRef]
- Kajdzanoska, M.; Gjamovski, V.; Stefova, M. HPLC-DAD-ESI-MSn identification of phenolic compounds in cultivated strawberries from Macedonia. Maced. J. Chem. Chem. Eng. 2010, 29, 181–194. [Google Scholar] [CrossRef]
- Bennett, R.N.; Mellon, F.A.; Foidl, N.; Pratt, J.H.; Dupont, M.S.; Perkins, L.; Kroon, P.A. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L. J. Agric. Food Chem. 2003, 51, 3546–3553. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Niazi, M.B.K.; Naqvi, S.R.; Farooq, W. Influence of Plasticizers on Mechanical and Thermal Properties of Methyl Cellulose-Based Edible Films. J. Polym. Environ. 2018, 26, 291–300. [Google Scholar] [CrossRef]
- Chambi, H.N.M.; Grosso, C.R.F. Mechanical and water vapor permeability properties of biodegradables films based on methylcellulose, glucomannan, pectin and gelatin. Cienc. Tecnol. Alime 2011, 31, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Donhowe, I.G.; Fennema, O. The Effects of Plasticizers on Crystallinity, Permeability, and Mechanical-Properties of Methylcellulose Films. J. Food Process. Preserv. 1993, 17, 247–257. [Google Scholar] [CrossRef]
- Turhan, K.N.; Sahbaz, F. Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. J. Food Eng. 2004, 61, 459–466. [Google Scholar] [CrossRef]
- Pastor, C.; Sanchez-Gonzalez, L.; Chiralt, A.; Chafer, M.; Gonzalez-Martinez, C. Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocolloid. 2013, 30, 272–280. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Wilpiszewska, K.; Spychaj, T. Deep eutectic solvents for polysaccharides processing. A review. Carbohydr. Polym. 2018, 200, 361–380. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Johansson, C. Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents. Carbohydr. Polym. 2016, 151, 103–112. [Google Scholar] [CrossRef]
- Depoorter, J.; Mourlevat, A.; Sudre, G.; Morfin, I.; Prasad, K.; Serghei, A.; Bernard, J.; Fleury, E.; Charlot, A. Fully Biosourced Materials from Combination of Choline Chloride Based Deep Eutectic Solvents and Guar Gum. Acs Sustain. Chem. Eng. 2019, 7, 16747–16756. [Google Scholar] [CrossRef]
- Galvis-Sanchez, A.C.; Sousa, A.M.M.; Hilliou, L.; Goncalves, M.P.; Souza, H.K.S. Thermo-compression molding of chitosan with a deep eutectic mixture for biofilms development. Green Chem. 2016, 18, 1571–1580. [Google Scholar] [CrossRef]
- Almeida, C.M.R.; Magalhaes, J.M.C.S.; Souza, H.K.S.; Goncalves, M.P. The role of choline chloride-based deep eutectic solvent and curcumin on chitosan films properties. Food Hydrocolloid. 2018, 81, 456–466. [Google Scholar] [CrossRef]
- Ju, A.; Baek, S.K.; Kim, S.; Song, K.B. Development of an antioxidative packaging film based on khorasan wheat starch containing moringa leaf extract. Food Sci. Biotechnol. 2019, 28, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Suwanamornlert, P.; Kerddonfag, N.; Sane, A.; Chinsirikul, W.; Zhou, W.B.; Chonhenchob, V. Poly(lactic acid)/poly(butylene-succinate-co-adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread. Food Packag. Shelf 2020, 25, 100515. [Google Scholar] [CrossRef]
- Thanakkasaranee, S.; Kim, D.; Seo, J. Preparation and characterization of polypropylene/sodium propionate (PP/SP) composite films for bread packaging application. Packag. Technol. Sci. 2018, 31, 221–231. [Google Scholar] [CrossRef]
- Baik, M.Y.; Chinachoti, P. Moisture redistribution and phase transitions during bread staling. Cereal Chem. 2000, 77, 484–488. [Google Scholar] [CrossRef]
- Muizniece-Brasava, S.; Dukalska, L.; Murniece, I.; Dabina-Bicka, I.; Kozlinskis, E.; Sarvi, F.S.; Santars, R.; Silvjane, A. Active packaging influence on shelf life extension of sliced wheat bread. Int. J. Nutr. Food Eng. 2012, 6, 480–486. Available online: https://publications.waset.org/7005/pdf (accessed on 30 July 2022).
Sample | Methylcellulose % | DES (ChCl:Gly, 1:2) % | MO (Moringa oleifera Extracted in DES) % |
---|---|---|---|
MC 2% | 2 | - | - |
MC 2%-DES 10% | 2 | 10 | - |
MC 2%-DES 20% | 2 | 20 | - |
MC 2%-MO 10% | 2 | - | 10 |
MC 2%-MO 20% | 2 | - | 20 |
Samples | TPC | TFC | DPPH | FRAP | ORAC | ABTS |
---|---|---|---|---|---|---|
(mg GAE⋅g−1) | (mg QE⋅g−1) | (mmol TE⋅g−1) | (mmol TE⋅g−1) | (mmol TE⋅g−1) | (PI) | |
ChCl/LA1:2 | 28.314 ± 0.146 b | 1.595 ± 0.023 b | 0.176 ± 0.022 b | 0.469 ± 0.003 a | 2.107 ± 0.003 a | 55.529 ± 0.267 b |
ChCl/GLY1:2 | 38.409 ± 0.095 a | 2.259 ± 0.023 a | 0.294 ± 0.010 a | 0.361 ± 0.017 b | 1.200 ± 0.066 b | 92.614 ± 0.085 a |
Peak | Rt (min) | λmax (nm) | [M-H]- | MSn fragments | Identification |
---|---|---|---|---|---|
(m/z) | (m/z) | ||||
1 | 24.6 | 325 | 353 | 191, 179, 135 | 3-Caffeoylquinic acid |
2 | 33.1 | 310 | 337 | 191, 173, 163 | p-Coumaroylquinicacid |
3 * | 40.5 | 325 | 353 | 191, 179, 135 | 5-Caffeoylquinic acid |
4 | 52.4 | 271, 334 | 593 | 575, 503, 473, 383, 353 | Apigenin 6,8-di-C-glucoside |
5 | 62.5 | 268, 337 | 431 | 341, 311, 283 | Vitexin/isovitexin |
6 | 65.5 | 271, 337 | 431 | 341, 311, 283 | Vitexin/isovitexin |
7 * | 69.1 | 256, 290sh, 355 | 609 | 301, 179, 151 | Rutin |
8 | 72.8 | 265, 290sh, 350 | 447 | 327, 285 | Kaempferol-3-O-glucoside |
9 | 73.1 | 253, 290sh, 355 | 593 | 285 | Kaempferol-3-O-glucoside-7-rhamnoside |
10 | 76.5 | 264, 289sh, 346 | 533 | 489, 447, 285 | Kaempferol-3-O-malonylglucoside |
Material | Opacity (%) | L* | a* | b* | ΔE* |
MC 2% | 0.64 ± 0.07 a | 93.66 ± 0.20 a | 0.25 ± 0.04 a | 2.48 ± 0.18 a | 2.62 ± 0.09 a |
MC 2%_DES 10% | 0.62 ± 0.06 b | 93.67 ± 0.06 a | 0.25 ± 0.03 a | 2.46 ± 0.18 a | 2.66 ± 0.04 a |
MC 2%_DES 20% | 0.48 ± 0.03 c | 93.33 ± 0.14 b | 0.58 ± 0.09 b | 2.02 ± 0.06 b | 2.99 ± 0.14 b |
MC 2%_MO 10% | 0.53 ± 0.02 d | 93.53 ± 0.14 a | 0.40 ± 0.02 | 2.14 ± 0.19 c | 2.78 ± 0.14 a |
MC 2%_MO 20% | 0.97 ± 0.06 e | 93.25 ± 0.08 b | 0.53 ± 0.08 b | 2.06 ± 0.13 b,c | 3.04 ± 0.07 b |
Material | d/(mm) | TS/(MPa) | Eb/(%) | YM/(MPa) | WVP∙10−10/ (g·m−1·s−1·Pa−1) |
---|---|---|---|---|---|
MC 2% | 0.020 ± 0.001 a | 24.30 ± 1.7 a | 2.455 ± 0.31 a | 32.87 ± 1.0 | 1.40 ± 0.002 |
MC 2%_DES 10% | 0.018 ± 0.002 a | 23.97 ± 1.7 a | 3.290 ± 0.35 a,b,c | 28.65 ± 0.95 | 1.70 ± 0.028 a |
MC 2%_DES 20% | 0.019 ± 0.002 a | 20.84 ± 1.6 b | 4.330 ± 0.27 b | 22.26 ± 1.3 | 1.71 ± 0.074 a |
MC 2%_MO 10% | 0.021 ± 0.002 a | 21.74 ± 1.3 c | 3.850 ± 0.79 c | 20.5 ± 0.47 a | 2.02 ± 0.039 b |
MC 2%_MO 20% | 0.019 ± 0.001 a | 21.72 ± 0.71 b,c | 8.15 ± 0.39 | 18.02 ± 2.8 a | 2.00 ± 0.026 b |
Day | Bread (N·mm−1) | |||
---|---|---|---|---|
Control | MC | MC_DES | MC_MO | |
0 | 1.03 ± 0.05 a | |||
1 | 0.97 ± 0.04 a | 0.96 ± 0.08 | 0.91 ± 0.06 | 1.34 ± 0.03 a |
4 | 1.59 ± 0.12 | 1.88 ± 0.08 a | 1.44 ± 0.05 | 1.35 ± 0.11 a |
7 | 1.94 ± 0.04 b | 1.94 ± 0.05 a | 1.58 ± 0.08 | 2.16 ± 0.10 |
11 | 1.99 ± 0.02 b | 1.95 ± 0.10 a | 2.14 ± 0.11 | 2.51 ± 0.04 |
Sample | Day | |||
---|---|---|---|---|
1 | 4 | 7 | 11 | |
Control | 0.48 | 0.66 | 0.86 | 1.35 |
MC 2% | 0.00 | 0.04 | 0.35 | 0.68 |
MC 2% _DES 10% | 0.18 | 0.39 | 0.40 | 0.66 |
MC 2% _MO 10% | 0.17 | 0.52 | 0.69 | 2.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braham, F.; Amaral, L.M.P.F.; Biernacki, K.; Carvalho, D.O.; Guido, L.F.; Magalhães, J.M.C.S.; Zaidi, F.; Souza, H.K.S.; Gonçalves, M.P. Phenolic Extraction of Moringa oleifera Leaves in DES: Characterization of the Extracts and Their Application in Methylcellulose Films for Food Packaging. Foods 2022, 11, 2641. https://doi.org/10.3390/foods11172641
Braham F, Amaral LMPF, Biernacki K, Carvalho DO, Guido LF, Magalhães JMCS, Zaidi F, Souza HKS, Gonçalves MP. Phenolic Extraction of Moringa oleifera Leaves in DES: Characterization of the Extracts and Their Application in Methylcellulose Films for Food Packaging. Foods. 2022; 11(17):2641. https://doi.org/10.3390/foods11172641
Chicago/Turabian StyleBraham, Fazia, Luísa M. P. F. Amaral, Krzysztof Biernacki, Daniel O. Carvalho, Luis F. Guido, Júlia M. C. S. Magalhães, Farid Zaidi, Hiléia K. S. Souza, and Maria P. Gonçalves. 2022. "Phenolic Extraction of Moringa oleifera Leaves in DES: Characterization of the Extracts and Their Application in Methylcellulose Films for Food Packaging" Foods 11, no. 17: 2641. https://doi.org/10.3390/foods11172641