Effect of Pulsed Electric Field Pre-Treatment and the Freezing Methods on the Kinetics of the Freeze-Drying Process of Apple and Its Selected Physical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. PEF Treatment
2.3. Freezing of Apples
2.4. Freeze-Drying
2.5. The Physical Properties of Apples and the Freeze-Dried Plant Material
2.5.1. Electrical Conductivity Disintegration Index Z as a Measure of Cell Disintegration of Apple Tissue
2.5.2. Determination of the Water Content in the Freeze-Dried Material
2.5.3. Water Activity Measurement
2.5.4. Colour Measurement
2.6. Kinetics of the Freeze-Drying of Apples and Mathematical Modelling of the Process
2.7. Statistical Methods
3. Results and Discussion
3.1. Determination of the Dependence of on the Amount of Energy Supplied during Treatment with a Pulsed Electric Field on the Electrical Conductivity Disintegration Index
3.2. The Physical Properties of Apples and the Freeze-Dried Plant Material
3.3. Kinetics of the Freeze-Drying of Apples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatta, S.; Janezic, T.S.; Ratti, C. Freeze-drying of plant-based foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Nowak, D.; Jakubczyk, E. The freeze-drying of foods-the characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef] [PubMed]
- Gaidhani, K.A.; Harwalkar, M.; Bhambere, D.; Nirgude, P.S. Lyophilization/freeze drying—A review. World J. Pharm. Res. 2015, 4, 516–543. [Google Scholar]
- Andrieu, J.; Vessot, S. A review on experimental determination and optimization of physical quality factors during pharmaceuticals freeze-drying cycles. Dry Technol. 2018, 36, 129–145. [Google Scholar] [CrossRef]
- Duan, X.; Yang, X.; Ren, G.; Pang, Y.; Liu, L.; Liu, Y. Technical aspects in freeze-drying of foods. Dry Technol. 2015, 34, 1271–1285. [Google Scholar] [CrossRef]
- Oikonomopoulou, V.P.; Krokida, M.K. Structural properties of dried potatoes, mushrooms, and strawberries as a function of freeze-drying pressure. Dry Technol 2012, 30, 351–361. [Google Scholar] [CrossRef]
- Agudelo-Laverde, L.M.; Schebor, C.; Buera, M.D. Evaluation of structural shrinkage on freeze-dried fruits by image analysis: Effect of relative humidity and heat treatment. Food Bioprocess Technol. 2014, 7, 2618–2626. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Kamińska-Dwórznicka, A.; Ostrowska-Ligęza, E. The effect of composition, pre-treatment on the mechanical and acoustic properties of apple gels and freeze-dried materials. Gels 2022, 8, 110. [Google Scholar] [CrossRef]
- PF Guiné, R.; João Barroca, M. Influence of freeze-drying treatment on the texture of mushrooms and onions. Croat. J. Food Sci. Technol. 2011, 3, 26–31. [Google Scholar]
- Marques, L.G.; Silveira, A.M.; Freire, J.T. Freeze-drying characteristics of tropical fruits. Dry. Technol. 2006, 24, 457–463. [Google Scholar] [CrossRef]
- Ramesh, M.N.; Wolf, W.; Tevini, D.; Jung, G. Influence of processing parameters on the drying of spice paprika. J. Food Eng. 2001, 49, 63–72. [Google Scholar] [CrossRef]
- Deng, L.-Z.; Mujumdar, A.S.; Zhang, Q.; Yang, X.-H.; Wang, J.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1408–1432. [Google Scholar] [CrossRef] [PubMed]
- Oikonomopoulou, V.P.; Krokida, M.K.; Karathanos, V.T. The influence of freeze drying conditions on microstructural changes of food products. Procedia Food Sci. 2011, 1, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Assegehegn, G.; Brito-de la Fuente, E.; Franco, J.M.; Gallegos, C. Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals. Adv. Food Nutr. Res. 2020, 93, 1–58. [Google Scholar] [CrossRef]
- Al-Sayed, L.; Boy, V.; Madieta, E.; Mehinagic, E.; Lanoisellé, J.-L. Pulsed electric fields (PEF) as pre-treatment for freeze-drying of plant tissues. In Proceedings of the IDS 2018. 21st International Drying Symposium Proceedings, Valencia, Spain, 11–14 September 2018; pp. 1575–1582. [Google Scholar]
- Wiktor, A.; Nowacka, M.; Dadan, M.; Rybak, K.; Lojkowski, W.; Chudoba, T.; Witrowa-Rajchert, D. The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Dry Technol. 2016, 34, 1286–1296. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Munir, M.A.; Naderipour, A.; Qureshi, M.I.; Bekhit, A.E.; Liu, Z.W.; Aadil, R.M. Pulsed electric field: A potential alternative towards a sustainable food processing. Trends Food Sci. Technol. 2021, 111, 43–54. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.A.; Ali, A.; Zeng, F.; Farooq, M.A.; Han, Z.; Khalid, S.; Jabbar, S. Influence of different pulsed electric field strengths on the quality of the grapefruit juice. Int. J. Food Sci. Technol. 2015, 50, 2290–2296. [Google Scholar] [CrossRef]
- Ribas-Agusti, A.; Martin-Belloso, O.; Soliva-Fortuny, R.; Elez-Martinez, P. Influence of pulsed electric fields processing on the bioaccessible and non-bioaccessible fractions of apple phenolic compounds. J. Funct. Foods 2019, 59, 206–214. [Google Scholar] [CrossRef]
- Lammerskitten, M.; Mykhailyk, V.; Wiktor, A.; Toepfl, S.; Nowacka, M.; Bialik, M.; Czyzewski, J.; Witrowa-Rajchert, D.; Parniakov, O. Impact of pulsed electric fields on physical properties of freeze-dried apple tissue. Innov. Food Sci. Emerg. Technol. 2019, 57, 7. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The application of PEF technology in food processing and human nutrition. J. Food Sci. Technol. 2021, 58, 397–411. [Google Scholar] [CrossRef]
- Hanna, H.; Denzi, A.; Liberti, M.; André, F.M.; Mir, L.M. Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields: Quantitative Study with Calcium Ions. Sci. Rep. 2017, 7, 13079. [Google Scholar] [CrossRef] [Green Version]
- Tylewicz, U. How does pulsed electric field work? In Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow; Barba, F.J., Parniakov, O., Wiktor, A., Eds.; Elsevier: London, UK, 2020; pp. 3–21. [Google Scholar]
- Won, Y.-C.; Min, S.C.; Lee, D.-U. Accelerated Drying and Improved Color Properties of Red Pepper by Pretreatment of Pulsed Electric Fields. Dry Technol. 2015, 33, 926–932. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, T.; Sun, D.-W. Pressure-related cooling and freezing techniques for the food industry: Fundamentals and applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 2793–2808. [Google Scholar] [CrossRef]
- Silva, A.C.C.; Schmidt, F.C. Vacuum freezing of coffee extract under different process conditions. Food Bioprocess Technol. 2019, 12, 1683–1695. [Google Scholar] [CrossRef]
- Nowak, D.; Piechucka, P.; Witrowa-Rajchert, D.; Wiktor, A. Impact of material structure on the course of freezing and freeze-drying and on the properties of dried substance, as exemplified by celery. J. Food Eng. 2016, 180, 22–28. [Google Scholar] [CrossRef]
- Liu, C.Y.; Grimi, N.; Lebovka, N.; Vorobiev, E. Effects of pulsed electric fields treatment on vacuum drying of potato tissue. LWT 2018, 95, 289–294. [Google Scholar] [CrossRef]
- Parniakov, O.; Bals, O.; Lebovka, N.; Vorobiev, E. Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innov. Food Sci. Emerg. Technol. 2016, 35, 52–57. [Google Scholar] [CrossRef]
- Parniakov, O.; Lebovka, N.I.; Bals, O.; Vorobiev, E. Effect of electric field and osmotic pre-treatments on quality of apples after freezing–thawing. Innov. Food Sci. Emerg. Technol. 2015, 29, 23–30. [Google Scholar] [CrossRef]
- Bal, L.M.; Kar, A.; Satya, S.; Naik, S.N. Kinetics of colour change of bamboo shoot slices during microwave drying. Int. J. Food Sci. Technol. 2011, 46, 827–833. [Google Scholar] [CrossRef]
- Maskan, M. Kinetics of colour change of kiwifruits during hot air and microwave drying. J. Food Eng. 2001, 48, 169–175. [Google Scholar] [CrossRef]
- Djekic, I.; Tomic, N.; Bourdoux, S.; Spilimbergo, S.; Smigic, N.; Udovicki, B.; Hofland, G.; Devlieghere, F.; Rajkovic, A. Comparison of three types of drying (supercritical CO2, air and freeze) on the quality of dried apple—Quality index approach. LWT 2018, 94, 64–72. [Google Scholar] [CrossRef]
- Lewis, W.K. The rate of drying of solid materials. J. Ind. Eng. Chem. 1921, 13, 427–432. [Google Scholar] [CrossRef]
- Yaldýz, O.; Ertekýn, C. Drying of eggplant and selection of a suitable thin layer drying model. J. Food Eng. 2004, 63, 349–359. [Google Scholar] [CrossRef]
- Verma, L.R.; Bucklin, R.A.; Endan, J.B.; Wratten, F.T. Effects of drying air parameters on rice drying models. Trans. ASAE 1985, 28, 296–301. [Google Scholar] [CrossRef]
- Midilli, A.; Kucuk, H.; Yapar, Z. A new model for single-layer drying. Dry. Technol. 2002, 20, 1503–1513. [Google Scholar] [CrossRef]
- Yagcioglu, A.; Degirmencioglu, A.; Cagatay, F. Drying characteristic of laurel leaves under different conditions. In Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, Adana, Turkey, 26–27 May 1999; pp. 565–569. [Google Scholar]
- Henderson, S.M.; Pabis, S. Grain drying theory I: Temperature effect on drying coefficient. J. Agric. Eng. Res. 1961, 6, 169–174. [Google Scholar]
- Moraes, M.A.; Rosa, G.S.; Pinto, L.A.A. Moisture sorption isotherms and thermodynamic properties of apple Fuji and garlic. Int. J. Food Sci. Technol. 2008, 43, 1824–1831. [Google Scholar] [CrossRef]
- Lester, J.E. Freezing Effects on Food Quality; Marcel Dekker: Boca Raton, FL, USA, 1996. [Google Scholar] [CrossRef]
- Labuza, T.P.; Tannenbaum, S.R.; Karel, M. Water content and stability of low-moisture and intermediate-moisture foods. Food Technol. 1970, 24, 543–550. [Google Scholar]
- Krokida, M.K.; Kiranoudis, C.T.; Maroulis, Z.B.; Marinos-Kouris, D. Effect of pretreatment on color of dehydrated products. Dry. Technol. 2000, 18, 1239–1250. [Google Scholar] [CrossRef]
- Krokida, M.K.; Tsami, E.; Maroulis, Z.B. Kinetics on color changes during drying of some fruits and vegetables. Dry. Technol. 1998, 16, 667–685. [Google Scholar] [CrossRef]
- Kahraman, O.; Malvandi, A.; Vargas, L.; Feng, H. Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method. Ultrason. Sonochem. 2021, 73, 105510. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Kharaghani, A.; Lech, K.; Figiel, A.; Carbonell-Barrachina, Á.A.; Tsotsas, E. Drying kinetics and microstructural and sensory properties of black chokeberry (Aronia melanocarpa) as affected by drying method. Food Bioprocess Technol. 2015, 8, 63–74. [Google Scholar] [CrossRef]
- Menges, H.O.; Ertekin, C. Mathematical modeling of thin layer drying of Golden apples. J. Food Eng. 2006, 77, 119–125. [Google Scholar] [CrossRef]
- Gachovska, T.K.; Adedeji, A.A.; Ngadi, M.; Raghavan, G.V.S. Drying characteristics of pulsed electric field-treated carrot. Dry. Technol. 2008, 26, 1244–1250. [Google Scholar] [CrossRef]
- Gachovska, T.K.; Simpson, M.V.; Ngadi, M.O.; Raghavan, G.S.V. Pulsed electric field treatment of carrots before drying and rehydration. J. Sci. Food Agric. 2009, 89, 2372–2376. [Google Scholar] [CrossRef]
- Ade-Omowaye, B.; Rastogi, N.; Angersbach, A.; Knorr, D. Combined effects of pulsed electric field pre-treatment and partial osmotic dehydration on air drying behaviour of red bell pepper. J. Food Eng. 2003, 60, 89–98. [Google Scholar] [CrossRef]
- Wiktor, A.; Iwaniuk, M.; Sledz, M.; Nowacka, M.; Chudoba, T.; Witrowa-Rajchert, D. Drying kinetics of apple tissue treated by pulsed electric field. Dry. Technol. 2013, 31, 112–119. [Google Scholar] [CrossRef]
- Harnkarnsujarit, N.; Kawai, K.; Suzuki, T. Effects of Freezing Temperature And Water Activity On Microstructure, Color, And Protein Conformation Of Freeze-Dried Bluefin Tuna (Thunnus orientalis). Food Bioprocess Technol. 2015, 8, 916–925. [Google Scholar] [CrossRef]
- Lebovka, N.I.; Shynkaryk, N.V.; Vorobiev, E. Pulsed electric field enhanced drying of potato tissue. J. Food Eng. 2007, 78, 606–613. [Google Scholar] [CrossRef]
- Rahaman, A.; Siddeeg, A.; Manzoor, M.F.; Zeng, X.A.; Ali, S.; Baloch, Z.; Li, J.; Wen, Q.H. Impact of pulsed electric field treatment on drying kinetics, mass transfer, colour parameters and microstructure of plum. J. Food Sci. Technol. 2019, 56, 2670–2678. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, N.; Eshtiaghi, M.; Knorr, D. Accelerated mass transfer during osmotic dehydration of high intensity electrical field pulse pretreated carrots. J. Food Sci. 1999, 64, 1020–1023. [Google Scholar] [CrossRef]
- Harnkarnsujarit, N.; Charoenrein, S. Influence of collapsed structure on stability of β-carotene in freeze-dried mangoes. Food Res. Int. 2011, 44, 3188–3194. [Google Scholar] [CrossRef]
Samples | Number of Pulses (PEF Treatment) | Supplied Specify Energy (kJ/kg) | Method of Freezing |
---|---|---|---|
FF_0 | 0 | 0 | Fast freezing |
SF_0 | 0 | 0 | Slow freezing |
VF_0 | 0 | 0 | Vacuum freezing |
FF_120 | 120 | 896.3 | Fast freezing |
SF_120 | 120 | 941.4 | Slow freezing |
VF_120 | 120 | 928.9 | Vacuum freezing |
FF_160 | 160 | 1361.5 | Fast freezing |
SF_160 | 160 | 1306.2 | Slow freezing |
VF_160 | 160 | 1326.8 | Vacuum freezing |
Number of Model | Name of Model | Equation of Model | Reference |
---|---|---|---|
1 | Newton | [35,36] | |
2 | Logistic | [37] | |
3 | Midilli et al. | [38] | |
4 | Logarithmic | [36,39] | |
5 | Henderson and Pabis | [40] | |
6 | Two terms | [36,39] |
Samples | Water Content, % | Water Activity | L* | a* | b* | ΔE | BI |
---|---|---|---|---|---|---|---|
FF_0 | 3.55 ± 0.07 c * | 0.226 ± 0.004 a | 71.54 ± 0.21 a | −0.41 ± 0.20 d | 22.25 ± 0.36 d | (—) ** | 35.8 ± 1.0 b |
SF_0 | 3.53 ± 0.11 c | 0.209 ± 0.001 c | 63.93 ± 0.24 b | 3.10 ± 0.68 c | 27.11 ± 0.32 a | 9.07 ± 0.31 c | 57.2 ± 0.3 a |
VF_0 | 2.99 ± 0.16 d | 0.165 ± 0.001 f | 63.28 ± 0.47 bc | 3.22 ± 0.57 c | 24.34 ± 1.06 bc | 9.31 ± 0.46 c | 53.1 ± 3.0 a |
FF_120 | 3.77 ± 0.01 b | 0.217 ± 0.002 b | 61.32 ± 1.06 bc | 7.20 ± 1.03 ab | 24.66 ± 0.11 bc | 12.97 ± 1.45 a | 59.0 ± 2.3 a |
SF_120 | 2.81 ± 0.08 d | 0.192 ± 0.003 e | 62.87 ± 2.78 b | 5.83 ± 1.65 b | 24.02 ± 0.84 bc | 10.83 ± 3.31 abc | 54.4 ± 7.5 a |
VF_120 | 3.61 ± 0.07 c | 0.202 ± 0.002 d | 63.59 ± 0.53 b | 6.65 ± 0.65 ab | 23.85 ± 0.62 bcd | 10.77 ± 0.78 b | 53.8 ± 2.6 a |
FF_160 | 3.61 ± 0.08 c | 0.188 ± 0.002 e | 63.99 ± 1.96 b | 6.30 ± 0.94 ab | 25.01 ± 0.53 b | 10.51 ± 2.00 bc | 55.9 ± 4.0 a |
SF_160 | 4.25 ± 0.06 a | 0.211 ± 0.008 bc | 59.09 ± 4.29 c | 7.82 ± 1.65 a | 23.63 ± 1.25 d | 15.03 ± 4.59 a | 60.8 ± 11.5 a |
VF_160 | 3.59 ± 0.01 c | 0.226 ± 0.001 a | 68.37 ± 1.77 a | 4.24 ± 0.92 c | 18.09 ± 1.17 e | 7.31 ± 0.77 d | 36.0 ± 3.1 b |
No. Model | Types of Freeze-Dried Apples | ||||||||
---|---|---|---|---|---|---|---|---|---|
FF_0 | SF_0 | VF_0 | FF_120 | SF_120 | VF_120 | FF_160 | SF_160 | VF_160 | |
1 | 0.0439 * | 0.0460 | 0.0430 | 0.0547 | 0.0477 | 0.0418 | 0.0484 | 0.0436 | 0.0404 |
(0.984) ** | (0.984) | (0.985) | (0.976) | (0.981) | (0.984) | (0.981) | (0.987) | (0.985) | |
2 | 0.0109 | 0.0187 | 0.0145 | 0.0247 | 0.0198 | 0.0270 | 0.0235 | 0.0198 | 0.0239 |
(0.996) | (0.996) | (0.993) | (0.995) | (0.996) | (0.993) | (0.995) | (0.997) | (0.994) | |
3 | 0.0113 | 0.0101 | 0.0101 | 0.0127 | 0.0073 | 0.0133 | 0.0123 | 0.0114 | 0.0103 |
(0.999) | (0.999) | (0.999) | (0.998) | (0.999) | (0.998) | (0.998) | (0.999) | (0.999) | |
4 | 0.0109 | 0.0141 | 0.0181 | 0.0160 | 0.0093 | 0.0124 | 0.0129 | 0.0129 | 0.0104 |
(0.999) | (0.998) | (0.997) | (0.998) | (0.998) | (0.998) | (0.998) | (0.998) | (0.999) | |
5 | 0.0353 | 0.0371 | 0.0337 | 0.0434 | 0.0375 | 0.0420 | 0.040 | 0.0360 | 0.0395 |
(0.990) | (0.989) | (0.991) | (0.985) | (0.988) | (0.984) | (0.987) | (0.989) | (0.986) | |
6 | 0.0420 | 0.3580 | 0.0930 | 0.0730 | 0.0779 | 0.0511 | 0.481 | 0.0369 | 0.0505 |
(0.985) | (0.871) | (0.935) | (0.956) | (0.952) | (0.977) | (0.982) | (0.989) | (0.978) |
Samples | a | 10−5 × b | 10−3 × k | n | Drying Time, Min |
---|---|---|---|---|---|
FF_0 | 1.020 (0.001) * | −13.0 (1.2) | 2.6 (0.3) | 1.031 (0.020) | 800 |
SF_0 | 0.994 (0.004) | −7.9 (0.8) | 1.5 (0.2) | 1.180 (0.018) | 720 |
VF_0 | 0.987 (0.005) | −3.6 (0.6) | 1.2 (0.2) | 1.232 (0.017) | 785 |
FF_120 | 0.998 (0.059 | −10.0 (1.2) | 1.1 (0.2) | 1.195(0.024) | 720 |
SF_120 | 1.000 (0.004) | −10.0 (0.9) | 1.8 (0.1) | 1.124 (0.014) | 705 |
VF_120 | 0.958 (0.006) | −20.1 (1.6) | 2.0 (0.3) | 1.035 (0.028) | 840 |
FF_160 | 1.001 (0.006) | −10.0 (1.1) | 1.6 (0.2) | 1.119 (0.023) | 795 |
SF_160 | 0.995 (0.005) | −7.47 (0.8) | 1.3 (0.1) | 1.138 (0.019) | 920 |
VF_160 | 0.969 (0.004) | −13.0 (0.9) | 1.6 (0.2) | 1.066 (0.020) | 935 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, D.; Jakubczyk, E. Effect of Pulsed Electric Field Pre-Treatment and the Freezing Methods on the Kinetics of the Freeze-Drying Process of Apple and Its Selected Physical Properties. Foods 2022, 11, 2407. https://doi.org/10.3390/foods11162407
Nowak D, Jakubczyk E. Effect of Pulsed Electric Field Pre-Treatment and the Freezing Methods on the Kinetics of the Freeze-Drying Process of Apple and Its Selected Physical Properties. Foods. 2022; 11(16):2407. https://doi.org/10.3390/foods11162407
Chicago/Turabian StyleNowak, Dorota, and Ewa Jakubczyk. 2022. "Effect of Pulsed Electric Field Pre-Treatment and the Freezing Methods on the Kinetics of the Freeze-Drying Process of Apple and Its Selected Physical Properties" Foods 11, no. 16: 2407. https://doi.org/10.3390/foods11162407
APA StyleNowak, D., & Jakubczyk, E. (2022). Effect of Pulsed Electric Field Pre-Treatment and the Freezing Methods on the Kinetics of the Freeze-Drying Process of Apple and Its Selected Physical Properties. Foods, 11(16), 2407. https://doi.org/10.3390/foods11162407