The Effect of Pretreatments on the Physical Properties and Starch Structure of Potato Chips Dried by Microwaves under Vacuum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Pretreatments
2.2. Microwave Vacuum Drying Experiment
2.3. Starch Granules Structure
2.3.1. Light Polarized Microscopy (PLM)
2.3.2. Scanning Electron Microscopy
2.3.3. X-ray Diffraction
2.4. Physical Properties of Dried Samples
2.4.1. Optical Micrographs
2.4.2. Color Measurements
2.4.3. Bulk Density, True Density, and Porosity
2.4.4. Acoustic–Mechanical Properties
2.5. Statistical Analysis
3. Results and Discussion
3.1. Drying Kinetics
3.2. Starch Granule Structure
3.2.1. X-ray Diffraction
3.2.2. Light Polarized Microscopy and MEV
3.3. Physical Properties of Dried Samples
3.3.1. Optical Micrographs
3.3.2. Color Measurements
3.3.3. Bulk Density, True Density, and Porosity
3.3.4. Acoustic–Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salvador, A.; Varela, P.; Sanz, T.; Fiszman, S.M. Understanding Potato Chips Crispy Texture by Simultaneous Fracture and Acoustic Measurements, and Sensory Analysis. LWT Food Sci. Technol. 2009, 42, 763–767. [Google Scholar] [CrossRef]
- Dhital, S.; Baier, S.K.; Gidley, M.J.; Stokes, J.R. Microstructural Properties of Potato Chips. Food Struct. 2018, 16, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Fan, L. Effects of Preliminary Treatment by Ultrasonic and Convective Air Drying on the Properties and Oil Absorption of Potato Chips. Ultrason. Sonochem. 2021, 74, 105548. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Chen, S.; Shi, J.; Chen, J.; Liu, D.; Cai, Y.; Ogawa, Y.; Ye, X. Microstructure and Digestibility of Potato Strips Produced by Conventional Frying and Air-Frying: An in Vitro Study. Food Struct. 2017, 14, 30–35. [Google Scholar] [CrossRef]
- Barreto, I.M.A.; Tribuzi, G.; Marsaioli Junior, A.; Carciofi, B.A.M.; Laurindo, J.B. Oil–Free Potato Chips Produced by Microwave Multiflash Drying. J. Food Eng. 2019, 261, 133–139. [Google Scholar] [CrossRef]
- Gomide, A.I.; Monteiro, R.L.; Laurindo, J.B. Impact of the Power Density on the Physical Properties, Starch Structure, and Acceptability of Oil-Free Potato Chips Dehydrated by Microwave Vacuum Drying. LWT 2022, 155, 112917. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, M.; Mujumdar, A.S.; Xiao, G.; Sun, J. Drying of Edamames by Hot Air and Vacuum Microwave Combination. J. Food Eng. 2006, 77, 977–982. [Google Scholar] [CrossRef]
- Monteiro, R.L.; Carciofi, B.A.M.; Laurindo, J.B. A Microwave Multi-Flash Drying Process for Producing Crispy Bananas. J. Food Eng. 2016, 178, 1–11. [Google Scholar] [CrossRef]
- Monteiro, R.L.; de Moraes, J.O.; Domingos, J.D.; Carciofi, B.A.M.; Laurindo, J.B. Evolution of the Physicochemical Properties of Oil-Free Sweet Potato Chips during Microwave Vacuum Drying. Innov. Food Sci. Emerg. Technol. 2020, 63, 102317. [Google Scholar] [CrossRef]
- Monteiro, R.L.; Gomide, A.I.; Link, J.V.; Carciofi, B.A.M.; Laurindo, J.B. Microwave Vacuum Drying of Foods with Temperature Control by Power Modulation. Innov. Food Sci. Emerg. Technol. 2020, 65, 102473. [Google Scholar] [CrossRef]
- Monteiro, R.L.; de Moraes, J.O.; Gomide, A.I.; Carciofi, B.A.M.; Laurindo, J.B. Temperature Control for High-Quality Oil-Free Sweet Potato CHIPS Produced by Microwave Rotary Drying under Vacuum. LWT 2022, 157, 113047. [Google Scholar] [CrossRef]
- Arroqui, C.; López, A.; Esnoz, A.; Vírseda, P. Mathematic Model of an Integrated Blancher/Cooler. J. Food Eng. 2003, 59, 297–307. [Google Scholar] [CrossRef]
- Xiao, H.; Pan, Z.; Deng, L.; El-mashad, H.M.; Yang, X.; Mujumdar, A.S.; Gao, Z.; Zhang, Q. Recent Developments and Trends in Thermal Blanching—A Comprehensive Review. Inf. Process. Agric. 2017, 4, 101–127. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Ek, K.L.; Brand-miller, J.; Copeland, L. Glycemic Effect of Potatoes. Food Chem. 2012, 133, 1230–1240. [Google Scholar] [CrossRef]
- Nayak, B.; Berrios, J.D.J.; Tang, J. Impact of Food Processing on the Glycemic Index (GI) of Potato Products. Food Res. Int. 2014, 56, 35–46. [Google Scholar] [CrossRef]
- Cai, C.; Wei, C. In Situ Observation of Crystallinity Disruption Patterns during Starch Gelatinization. Carbohydr. Polym. 2013, 92, 469–478. [Google Scholar] [CrossRef]
- Xie, Y.; Hu, X.; Jin, Z.; Xu, X.; Chen, H. Effect of Repeated Retrogradation on Structural Characteristics and in Vitro Digestibility of Waxy Potato Starch. Food Chem. 2014, 163, 219–225. [Google Scholar] [CrossRef]
- Brennan, C.S. Dietary Fiber, Glycaemic Response, and Diabetes. Mol. Nutr. Food Res. 2005, 49, 560–570. [Google Scholar] [CrossRef]
- Miyazaki, M.; Morita, N. Effect of Heat-Moisture Treated Maize Starch on the Properties of Dough and Bread. Food Res. Int. 2005, 38, 369–376. [Google Scholar] [CrossRef]
- Leeman, A.M.; Bårström, L.M.; Björck, I.M.E. In Vitro Availability of Starch in Heat-Treated Potatoes as Related to Genotype, Weight and Storage Time. J. Sci. Food Agric. 2005, 85, 751–756. [Google Scholar] [CrossRef]
- Tahvonen, R.; Hietanen, R.M.; Sihvonen, J.; Salminen, E. Influence of Different Processing Methods on the Glycemic Index of Potato (Nicola). J. Food Compos. Anal. 2006, 19, 372–378. [Google Scholar] [CrossRef]
- Tian, J.; Chen, J.; Ye, X.; Chen, S. Health Benefits of the Potato Affected by Domestic Cooking: A Review. Food Chem. 2016, 202, 165–175. [Google Scholar] [CrossRef]
- Midilli, A.; Kucuk, H.; Yapar, Z. A New Model for Single-Layer Drying. Dry. Technol. 2002, 20, 1503–1513. [Google Scholar] [CrossRef]
- Singh, J.; Dartois, A.; Kaur, L. Starch Digestibility in Food Matrix: A Review. Trends Food Sci. Technol. 2010, 21, 168–180. [Google Scholar] [CrossRef]
- Cárdenas-Pérez, S.; Chanona-Pérez, J.; Méndez-Méndez, J.V.; Calderón-Domínguez, G.; López-Santiago, R.; Perea-Flores, M.J.; Arzate-Vázquez, I. Evaluation of the Ripening Stages of Apple (Golden Delicious) by Means of Computer Vision System. Biosyst. Eng. 2017, 159, 46–58. [Google Scholar] [CrossRef]
- Yan, Z.; Sousa-Gallagher, M.J.; Oliveira, F.A.R. Shrinkage and Porosity of Banana, Pineapple and Mango Slices during Air-Drying. J. Food Eng. 2008, 84, 430–440. [Google Scholar] [CrossRef]
- Lozano, J.E.; Rotstein, E.; Urbicain, M.J. Total Porosity and Open-Pore Porosity in the Drying of Fruits. J. Food Sci. 1980, 45, 1403–1407. [Google Scholar] [CrossRef]
- Carciofi, B.A.M.; Prat, M.; Laurindo, J.B. Dynamics of Vacuum Impregnation of Apples: Experimental Data and Simulation Results Using a VOF Model. J. Food Eng. 2012, 113, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Andreani, P.; de Moraes, J.O.; Murta, B.H.P.; Link, J.V.; Tribuzi, G.; Laurindo, J.B.; Paul, S.; Carciofi, B.A.M. Spectrum Crispness Sensory Scale Correlation with Instrumental Acoustic High-Sampling Rate and Mechanical Analyses. Food Res. Int. 2020, 129, 108886. [Google Scholar] [CrossRef]
- De Moraes, J.O.; Andreani, P.; Murta, B.H.P.; Link, J.V.; Tribuzi, G.; Laurindo, J.B.; Paul, S.; Carciofi, B.A.M. Mechanical-Acoustical Measurements to Assess the Crispness of Dehydrated Bananas at Different Water Activities. LWT 2022, 154, 112822. [Google Scholar] [CrossRef]
- Monteiro, R.L.; Carciofi, B.A.M.; Marsaioli, A.; Laurindo, J.B. How to Make a Microwave Vacuum Dryer with Turntable. J. Food Eng. 2015, 166, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, R.L.; Domschke, N.N.; Tribuzi, G.; Teleken, J.T.; Carciofi, B.A.M.; Laurindo, J.B. Producing Crispy Chickpea Snacks by Air, Freeze, and Microwave Multi-Flash Drying. LWT 2021, 140, 110781. [Google Scholar] [CrossRef]
- Monteiro, R.L.; Link, J.V.; Tribuzi, G.; Carciofi, B.A.M.; Laurindo, J.B. Microwave Vacuum Drying and Multi-Flash Drying of Pumpkin Slices. J. Food Eng. 2018, 232, 1–10. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, J.; Mujumdar, A.S.; Wang, S. Trends in Microwave-Related Drying of Fruits and Vegetables. Food Sci. Technol. 2006, 17, 524–534. [Google Scholar] [CrossRef]
- Monteiro, R.L.; Garcia, A.H.; Tribuzi, G.; Mattar Carciofi, B.A.; Laurindo, J.B. Microwave Vacuum Drying of Pereskia Aculeata Miller Leaves: Powder Production and Characterization. J. Food Process Eng. 2021, 44, e13612. [Google Scholar] [CrossRef]
- McPherson, A.E.; Jane, J. Comparison of Waxy Potato with Other Root and Tuber Starches. Carbohydr. Polym. 1999, 40, 57–70. [Google Scholar] [CrossRef]
- Colussi, R.; Singh, J.; Kaur, L.; da Rosa Zavareze, E.; Dias, A.R.G.; Stewart, R.B.; Singh, H. Microstructural Characteristics and Gastro-Small Intestinal Digestion in Vitro of Potato Starch: Effects of Refrigerated Storage and Reheating in Microwave. Food Chem. 2017, 226, 171–178. [Google Scholar] [CrossRef]
- Tian, J.; Chen, S.; Wu, C.; Chen, J.; Du, X.; Chen, J.; Liu, D.; Ye, X. Effects of Preparation Methods on Potato Microstructure and Digestibility: An in Vitro Study. Food Chem. 2016, 211, 564–569. [Google Scholar] [CrossRef]
- Ai, Y.; Jane, J.L. Gelatinization and Rheological Properties of Starch. Starch/Staerke 2015, 67, 213–224. [Google Scholar] [CrossRef]
- Biliaderis, C.G. Structural Transitions and Related Physical Properties of Starch. In Starch: Chemistry and Technology; James, B.M., Roy, W., Eds.; Academic Press; Elsevier: London, UK, 2009; pp. 293–359. ISBN 9780127462752. [Google Scholar]
- Wang, S.; Copeland, L. Molecular Disassembly of Starch Granules during Gelatinization and Its Effect on Starch Digestibility: A Review. Food Funct. 2013, 4, 1564–1580. [Google Scholar] [CrossRef]
- Greve, L.C.; Shackel, K.A.; Ahmadi, H.; Mcardle, R.N.; Gohlke, J.R.; Labavitch, J.M. Impact of Heating on Carrot Firmness: Contribution of Cellular Turgor? J. Agric. Food Chem. 1994, 42, 2896–2899. [Google Scholar] [CrossRef]
- Jiang, H.; Ling, B.; Zhou, X.; Wang, S. Effects of Combined Radio Frequency with Hot Water Blanching on Enzyme Inactivation, Color and Texture of Sweet Potato. Innov. Food Sci. Emerg. Technol. 2020, 66, 102513. [Google Scholar] [CrossRef]
- Xanthakis, E.; Gogou, E.; Taoukis, P.; Ahrné, L. Effect of Microwave Assisted Blanching on the Ascorbic Acid Oxidase Inactivation and Vitamin C Degradation in Frozen Mangoes. Innov. Food Sci. Emerg. Technol. 2018, 48, 248–257. [Google Scholar] [CrossRef]
- Wu, B.; Guo, Y.; Wang, J.; Pan, Z.; Ma, H. Effect of Thickness on Non-Fried Potato Chips Subjected to Infrared Radiation Blanching and Drying. J. Food Eng. 2018, 237, 249–255. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Zhang, X.; Shi, Q.; Xin, L.; Fu, H.; Wang, Y. Effects of Radio Frequency Assisted Blanching on Polyphenol Oxidase, Weight Loss, Texture, Color and Microstructure of Potato. Food Chem. 2018, 248, 173–182. [Google Scholar] [CrossRef]
- Segura, L.A.; Badillo, G.M.; Alves-Filho, O. Microstructural Changes of Apples (Granny Smith) during Drying: Visual Microstructural Changes and Possible Explanation from Capillary Pressure Data. Dry. Technol. 2014, 32, 1692–1698. [Google Scholar] [CrossRef]
- Krokida, M.K.; Maroulis, Z.B. Structural Properties of Dehydrated Products during Rehydration. Int. J. Food Sci. Technol. 2001, 36, 529–538. [Google Scholar] [CrossRef]
- Laurindo, J.B.; Peleg, M. Mechanical Measurements in Puffed Rice Cakes. J. Texture Stud. 2007, 38, 619–634. [Google Scholar] [CrossRef]
- Laurindo, J.B.; Peleg, M. Mechanical Characterization of Shredded Wheat. J. Texture Stud. 2008, 39, 444–459. [Google Scholar] [CrossRef]
- Fillion, L.; Kilcast, D. Consumer Perception of Crispness and Crunchiness in Fruits and Vegetables. Food Qual. Prefer. 2002, 13, 23–29. [Google Scholar] [CrossRef]
- Scaman, C.H.; Durance, T.D.; Drummond, L.; Sun, D.-W. Combined Microwave Vacuum-Drying. In Emerging Technologies for Food Processing; Sun, D.-W., Ed.; Academic Press; Elsevier: San Diego, CA, USA, 2014; pp. 427–445. [Google Scholar]
- Da Silva Simão, R.; de Moraes, J.O.; Monteiro, R.L.; Schaidt, A.L.; Carciofi, B.A.M.; Laurindo, J.B. Conductive Drying Methods for Producing High-Quality Restructured Pineapple-Starch Snacks. Innov. Food Sci. Emerg. Technol. 2021, 70, 102701. [Google Scholar] [CrossRef]
- Da Silva Simão, R.; de Moraes, J.O.; de Souza, P.G.; Carciofi, B.A.M.; Laurindo, J.B. Production of Mango Leathers by Cast-Tape Drying: Product Characteristics and Sensory Evaluation. LWT 2019, 99, 445–452. [Google Scholar] [CrossRef]
- Chanvrier, H.; Jakubczyk, E.; Gondek, E.; Gumy, J.C. Insights into the Texture of Extruded Cereals: Structure and Acoustic Properties. Innov. Food Sci. Emerg. Technol. 2014, 24, 61–68. [Google Scholar] [CrossRef]
- Arimi, J.M.; Duggan, E.; O’Sullivan, M.; Lyng, J.G.; O’Riordan, E.D. Effect of Water Activity on the Crispiness of a Biscuit (Crackerbread): Mechanical and Acoustic Evaluation. Food Res. Int. 2010, 43, 1650–1655. [Google Scholar] [CrossRef]
- Chen, J.; Karlsson, C.; Povey, M. Assessment of Biscuits. J. Texture Stud. 2005, 36, 139–156. [Google Scholar] [CrossRef]
Power Reduction Step | Mass (g) | Power Density Proportion | |||
---|---|---|---|---|---|
RW | BL | BLC | RW:BL | RW:BLC | |
Drying start | 200 ± 0 a | 200 ± 0 a | 200 ± 0 a | 1.0 | 1.0 |
1200 W—720 W | 129 ± 5 a | 131 ± 1 a | 127 ± 2 a | 1.0 | 1.0 |
720 W—240 W | 97 ± 3 a | 98 ± 2 a | 97 ± 2 a | 1.0 | 1.0 |
240 W—120 W | 34 ± 1 a | 36 ± 4 a | 34 ± 2 a | 1.1 | 1.0 |
Samples | |||
---|---|---|---|
MWVD-RW ** | MWVD-BL | MWVD-BLC | |
86.37 ± 1.06 a | 85.04 ± 1.44 a | 84.67 ± 1.91 a | |
−2.87 ± 0.15 a | −3.41 ± 0.20 b | −2.81 ± 0.20 a | |
11.94 ± 0.75 c | 27.13 ± 1.41 a | 15.66 ± 0.62 b | |
(g cm−3) | 1.499 ± 0.071 a | 1.267 ± 0.035 b | 1.325 ± 0.004 ab |
(g cm−3) | 0.466 ± 0.077 a | 0.308 ± 0.031 b | 0.338 ± 0.013 b |
(%) | 69.0 ± 3.7 b | 75.7 ± 1.8 a | 74.5 ± 0.9 a |
Parameters | Samples | |||
---|---|---|---|---|
MWVD-RW * | MWVD-BL | MWVD-BLC | ||
Mechanical | Area (n.mm) | 13.4 ± 12.2 a | 17.1 ± 8.6 a | 11.9 ± 6.2 a |
Number of force peaks | 23 ± 8 b | 31 ± 8 a | 31 ± 11 a | |
Average Peak force (n) | 7.1 ± 5.0 a | 6.9 ± 2.1 a | 5.2 ± 1.8 a | |
Maximum force (n) | 25.5 ± 22.2 a | 21.8 ± 9.3 a | 16.8 ± 5.2 a | |
Acoustic | SPL10 (dB) | 103 ± 5 a | 103 ± 6 a | 105 ± 4 a |
SPLmax (dB) | 108 ± 6 a | 108 ± 7 a | 111 ± 5 a | |
Number of acoustic peaks | 2374 ± 868 b | 5557 ± 1591 a | 6091 ± 2155 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomide, A.I.; Monteiro, R.L.; Carciofi, B.A.M.; Laurindo, J.B. The Effect of Pretreatments on the Physical Properties and Starch Structure of Potato Chips Dried by Microwaves under Vacuum. Foods 2022, 11, 2259. https://doi.org/10.3390/foods11152259
Gomide AI, Monteiro RL, Carciofi BAM, Laurindo JB. The Effect of Pretreatments on the Physical Properties and Starch Structure of Potato Chips Dried by Microwaves under Vacuum. Foods. 2022; 11(15):2259. https://doi.org/10.3390/foods11152259
Chicago/Turabian StyleGomide, Aline Iamin, Ricardo Lemos Monteiro, Bruno Augusto Mattar Carciofi, and João Borges Laurindo. 2022. "The Effect of Pretreatments on the Physical Properties and Starch Structure of Potato Chips Dried by Microwaves under Vacuum" Foods 11, no. 15: 2259. https://doi.org/10.3390/foods11152259
APA StyleGomide, A. I., Monteiro, R. L., Carciofi, B. A. M., & Laurindo, J. B. (2022). The Effect of Pretreatments on the Physical Properties and Starch Structure of Potato Chips Dried by Microwaves under Vacuum. Foods, 11(15), 2259. https://doi.org/10.3390/foods11152259