Quality Evaluation of the Oil of Camellia spp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Treatment of Camellia spp. Seeds
2.3. Fatty Acid Composition and Content Analysis
2.4. Determination of the Components and Content of Camellia spp.
2.4.1. Determination of Bioactive Compounds Using GC–MS and HPLC
2.4.2. Determination of Total Phenolic and Total Flavonoid Content
2.5. Determination of Antioxidant Activity
2.5.1. DPPH (1, 1-diphenyl-2-picrylhydrazyl) Radical Scavenging Assay
2.5.2. ABTS (3-ethylbenzothiazoline-6-sulfonicacid) Radical Scavenging Assay
2.5.3. Ferric Reducing Antioxidant Power (FRAP) Assay
2.6. Data Statistical Analysis
3. Results
3.1. The Comparative Analysis of the Oil Content
3.2. Fatty Acid Composition
3.2.1. Standard Samples
3.2.2. Camellia spp. Oil Samples
3.2.3. Correlation between the Four Major Fatty Acids
3.3. Analysis of the Bioactive Components
3.3.1. The Minor Compounds from the Oil Using GC–MS
3.3.2. The Polar Compounds from the Extraction Meal Determined Using HPLC
3.3.3. Total Phenol and Flavonoid Contents
3.4. Antioxidant Capacity
3.5. Correlations between Bioactive Components and Free Radical Scavenging Capacity
3.6. Cluster Analysis
3.7. Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, C.P.; Yen, G.C. Antioxidant activity and bioactive compounds of tea seed (C.oleifera Abel.) oil. J. Agric. Food Chem. 2006, 54, 779–784. [Google Scholar] [CrossRef]
- Ma, J.L.; Ye, H.; Rui, Y.K.; Chen, G.C.; Zhang, N.Y. Fatty acid composition of Camellia oleifera oil. J. Verbr. Lebensm. 2011, 6, 9–12. [Google Scholar] [CrossRef]
- Yang, C.Y.; Liu, X.M.; Chen, Z.Y.; Lin, Y.S.; Wang, S.Y. Comparison of Oil Content and Fatty Acid Profile of Ten New Camellia oleifera Cultivars. J. Lipids 2016, 3982486. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.L.; Yang, Z.J.; Chen, S.P.; El-Kassaby, Y.A.; Chen, H. High throughput sequencing of small RNAs reveals dynamic microRNAs expression of lipid metabolism during Camellia Oleifera and C. meiocarpa seed natural drying. BMC Genom. 2017, 18, 546. [Google Scholar] [CrossRef] [PubMed]
- Gulick, P.; Caser, M.; Marinoni, D.T.; Scariot, V. Microsatellite-based genetic relationships in the genus Camellia: Potential for improving cultivars. Genome 2010, 53, 384–399. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Y.L.; Yang, G.Y.; Peng, J.; Chen, S.W.; Xu, Z.G. Determination of the evolutionary pressure on Camellia oleifera on Hainan Island using the complete chloroplast genome sequence. PeerJ 2019, 7, e7210. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.Y.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Effect of added caffeic acid and tyrosol on the fatty acid and volatile profiles of camellia oil following heating. J. Agric. Food Chem. 2006, 54, 9551–9558. [Google Scholar] [CrossRef]
- Liu, X.; Jia, L.; Gao, Y.; Li, B.; Tu, Y. Anti-inflammatory activity of total flavonoids from seeds of Camellia oleifera Abel. Acta Biochim. Biophys. Sin. 2014, 46, 920–922. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zeng, Q.; del Mar Contreras, M.; Wang, L. Profiling and quantification of phenolic compounds in camellia seed oils: Natural tea polyphenols in vegetable oil. Food Res. Int. 2017, 102, 184–194. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Q.; Verardo, V.; Contreras, M. Fatty acid and sterol composition of tea seed oils: Their comparison by the “Fancy Tiles” approach. Food Chem. 2017, 233, 302–310. [Google Scholar] [CrossRef]
- Cao, Y.; Xie, Y.; Ren, H. Fatty acid composition and tocopherol, sitosterol, squalene components of Camellia reticulata oil. J. Consum. Prot. Food Saf. 2018, 13, 403–406. [Google Scholar] [CrossRef]
- Zou, Y.J. Geographical Patterns of Variations in Main Chemical Components of Oil-Tea Camellia Seeds; Nanchang University: Nanchang, China, 2019. [Google Scholar] [CrossRef]
- Guo, N.; Tong, T.; Ren, N.; Tu, Y.; Li, B. Saponins from seeds of genus camellia: Phytochemistry and bioactivity. Phytochemistry 2018, 149, 42–55. [Google Scholar] [CrossRef]
- Zong, J.F.; Peng, Y.R.; Bao, G.H.; Hou, R.Y.; Wan, X.C. Two new oleanane-type saponins with anti-proliferative activity from Camellia oleifera Abel. seed cake. Molecules 2016, 21, 188. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Xing, H.T.; Guo, Y. Hypolipidemic effeat of a novel biflavonoid from shells of Camellia oleifera (Abel.). Indian J. Exp. Biol. 2013, 51, 458. [Google Scholar]
- Wang, R.; Chen, L.S.; Chen, J.J.; Chen, Y.Z.; Zhang, Z.; Wang, X.N.; Peng, Y.H.; Peng, S.F.; Li, A.L.; Wei, X.Y. Different Nitrate and Ammonium Ratios Affect Growth and Physiological Characteristics of Camellia oleifera Abel. Seedlings. Forests 2018, 9, 784. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Endo, Y. Lipid Characteristics of Camellia Seed Oil. J. Oleo Sci. 2019, 68, 649–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhou, G.Y.; Zhang, H.Y.; Liu, J.A. Research progress on the health function of tea oil. J. Med. Plants Res. 2011, 5, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Jung, E.; Lee, J.; Baek, J.; Jung, K.; Lee, J.; Huha, S.; Kim, S.; Koh, J.; Park, D. Effect of Camellia japonica oil on human type I procollagen production and skin barrier function. J. Ethnopharmacol. 2007, 112, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Endo, Y. Effects of Cultivars and Geography in China on the Lipid Characteristics of Camellia oleifera Seeds. J. Oleo Sci. 2019, 68, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.M.; Song, F.; Chen, W.J.; Chen, W.X. Inhibition of Corn Oil Peroxidation by Extracts from Defatted Seeds of Camellia oleifera Abel. J. Food Qual. 2017, 7, 1871040. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.M.; He, L.M.; Chen, Y.Y.; Wu, L.H.; Wang, L.; Liu, Z.P. Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components. Future Med. Chem. 2017, 9, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- Al Juhaimi, F.; Özcan, M.M.; Ghafoor, K.; Babiker, E.E.; Hussain, S. Comparison of cold-pressing and soxhlet extraction systems for bioactive compounds, antioxidant properties, polyphenols, fatty acids and tocopherols in eight nut oils. J. Food Sci. Tech. 2018, 55, 3163–3173. [Google Scholar] [CrossRef]
- Özcan, M.M.; Al-Juhaimi, F.Y.; Ahmed, I.A.M.; Osman, M.A.; Gassem, M.A. Effect of soxhlet and cold press extractions on the physico-chemical characteristics of roasted and non-roasted chia seed oils. J. Food Meas. Charact. 2019, 13, 648–655. [Google Scholar] [CrossRef]
- Desai, S.N.; Jadhav, A.J.; Holkar, C.R.; Pawar, B.G.; Pinjari, D.V. Extraction and microencapsulation of Buchanania lanzan Spreng seed oil. Chem. Pap. 2022, 76, 3521–3530. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Z.C. The Comparative Study on Chemical Constituents and Bioactivities of Camellia oleifera Oils and Cakes from Different Locations; Hainan University: Haikou, China, 2017. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corp: Carol Stream, IL, USA, 2001. [Google Scholar]
- Zantar, S.; Haouzi, R.; Chabbi, M.; Laglaoui, A.; Mouhib, M.; Boujnah, M.; Bakkali, M.; Zerrouk, M.H. Effect of gamma irradiation on chemical composition, antimicrobial and antioxidant activities of Thymus vulgaris and Mentha pulegium essential oils. Radiat. Phys. Chem. 2015, 115, 6–11. [Google Scholar] [CrossRef]
- Stojanovic, G.S.; Mitic, V.D.; Petrovic, G.M.; Jovanovic, V.P.S.; Radojkovic, I.R. Antioxidant capacity and chemical composition of propolis from different serbian regions. Oxid. Commun. 2015, 34, 1580–1590. [Google Scholar]
- Sakhno, L.O. Variability in the fatty acid composition of rapeseed oil: Classical breeding and biotechnology. Cytol. Genet. 2011, 44, 389–397. [Google Scholar] [CrossRef]
- Wang, Z.W.; Zhang, Z.Y.; Lin, L.T.; Zhang, J.W.; Liu, M.J.; Qiao, Y. Study of Artificial miRNA Regulate Erucic Acid in Brassica napus. J. Nucl. Agric. Sci. 2019, 33, 24–30. [Google Scholar]
- Gueguen, V.; Macherel, D.; Jaquinod, M.; Douce, R.; Bourguignon, J. Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. J. Biol. Chem. 2000, 275, 5016–5025. [Google Scholar] [CrossRef] [Green Version]
- Gillingham, L.G.; Gustafson, J.A.; Han, S.Y.; Jones, D.S.; Jones, P.J. High-oleic rapeseed (canola) and flaxseed oils modulate serum lipids and inflammatory biomarkers in hypercholesterolaemic subjects. Brit. J. Nutr. 2011, 105, 417–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.B.; Yang, G.L. Physiochemical characteristics, fatty acid profile and tocopherol composition of the Camellia oleifera Abel. cultivated in Henan, China. Grasas Aceites 2018, 69, 255–263. [Google Scholar] [CrossRef]
- Wang, L.Y.; Ahmad, S.; Wang, X.; Li, H.; Luo, Y.P. Comparison of Antioxidant and Antibacterial Activities of Camellia Oil from Hainan with Camellia Oil from Guangxi, Olive Oil, and Peanut Oil. Front. Nutr. 2021, 8, 66774. [Google Scholar] [CrossRef] [PubMed]
- Samia, D.; Imed, R.; Adel, E.; Noureddine, G.; Beligh, M.; Mohamed, H. Effect of controlled crossing on the triglyceride and fatty acid composition of virgin olive oils. Chem. Biodivers. 2010, 7, 1801–1813. [Google Scholar] [CrossRef]
- Pirav-Vanak, Z.; Ghasem, J.B.; Ghavami, M.; Ezzatpanah, H.; Zolfonoun, E. The influence of growing region on fatty acids and sterol composition of iranian olive oils by unsupervised clustering methods. J. Am. Oil Chem. Soc. 2012, 89, 371–378. [Google Scholar] [CrossRef]
- Abraham, G.; Antonio, J.; Gabrel, B.; Alberto, R. Correlation of fatty acid composition of virgin olive oil with thermal and physical properties. Eur. J. Lipid Sci. Tech. 2015, 117, 366–376. [Google Scholar] [CrossRef]
- Wang, Y.P.; Fei, X.Q.; Yao, X.Y.; Wang, K.L.; Guo, S.H.; Ren, H.D. Principal component analysis and cluster analysis of fatty acids and triglycerides in oil—tea camellia seeds from different origins. China Oils Fats 2021, 46, 112–119. [Google Scholar] [CrossRef]
- Qi, H.S.; Dai, J.N.; Yang, Y.N.; Li, S.Y.; Wang, J.; Shi, L.C.; Wu, Y.G.; Lai, G.H.; Hu, X.W.; Yu, J. DNA Barcoding Identification of Camellia spp. Seed Based on trnH-psbA and matK Sequences. Mol. Plant Breed. 2019, 17, 5057–5065. [Google Scholar] [CrossRef]
No. | Variety Name | Species Name | Region | Latitude | Longitude | Altitude (m) |
---|---|---|---|---|---|---|
QZ0 | Qiongzhong 0 | Camellia vietnamensis Huang | Wanling Town, Qiongzhong County, Hainan Province | 19°08′35″ N | 109°53′48″ E | 183–264 |
QZ1 | Qiongzhong 1 | Camellia vietnamensis Huang | ||||
QZ2 | Qiongzhong 2 | Camellia vietnamensis Huang | ||||
QZ3 | Qiongzhong 3 | Camellia vietnamensis Huang | ||||
QZ4 | Qiongzhong 4 | Camellia vietnamensis Huang | ||||
QZ5 | Qiongzhong 5 | Camellia vietnamensis Huang | ||||
QZJ | Qiongzhong J | Camellia vietnamensis Huang | ||||
QZ8 | Qiongzhong 8 | Camellia vietnamensis Huang | ||||
QZ9 | Qiongzhong 9 | Camellia vietnamensis Huang | ||||
QZP1 | Pozhai 1 | Camellia vietnamensis Huang | Pozhai Village, Wanling Town, Qiongzhong County, Hainan Province | 19°12′18″ N | 109°55′31″ E | 250–264 |
QZP2 | Pozhai 2 | Camellia vietnamensis Huang | ||||
NC1 | Nongchang 1 | Camellia vietnamensis Huang | Changhao Farm, Wuzhishan City, Hainan Province | 18°45′19″ N | 109°29′24″ E | 350 |
NC2 | Nongchang 2 | Camellia vietnamensis Huang | ||||
ND1 | Nanding 1 | Camellia vietnamensis Huang | Nanding Village, Wuzhishan City, Hainan Province | 18°49′48″ N | 109°34′56″ E | 556 |
ND3 | Nanding 3 | Camellia vietnamensis Huang | ||||
HS1 | Hongshan 1 | Camellia vietnamensis Huang | Hongshan Village, Wuzhishan City, Hainan Province | 18°51′35″ N | 109°30′56″ E | 620 |
HS2 | Hongshan 2 | Camellia vietnamensis Huang | ||||
HS3 | Hongshan 3 | Camellia vietnamensis Huang | ||||
FS1 | Fansai 1 | Camellia vietnamensis Huang | Fansai Village, Wuzhishan City, Hainan Province | 18°50′37″ N | 109°32′24″ E | 556–600 |
FS2 | Fansai 2 | Camellia vietnamensis Huang | ||||
CM2 | Chengmai 2 | Camellia vietnamensis Huang | Chengmai County, Hainan Province | 19°44′22″ N | 110°00′32″ E | 0 |
CMDF | Chengmai Dafeng | Camellia vietnamensis Huang | Dafeng Town, Chengmai County, Hainan Province | 19°51′12″ N | 110°02′51″ E | 33–48 |
QH | Qionghai Yangjiang | Camellia vietnamensis Huang | Yangjiang Town, Qionghai City, Hainan Province | 19°05′59″ N | 110°20′56″ E | 21 |
HK | Haikou Dongshan | Camellia vietnamensis Huang | Dongshan Town, Haikou City, Hainan Province | 19°44′51″ N | 110°14′15″ E | 30–42 |
BWL | Hainan Bawangling | Camellia vietnamensis Huang | Bawangling, Changjiang County, Hainan Province | 19°13′24″ N | 109°02′32″ E | 90 |
K13 | Ke 13 | Camellia vietnamensis Huang | Guangxi Academy of Forestry (Nanning City) | 22°55′10″ N | 108°21′10″ E | 118 |
CR3 | Cenruan 3 | Camellia oleifera Abel. | ||||
CR | Cenruan Jiaxi | Camellia oleifera Abel. | ||||
XY | Xinyang | Camellia oleifera Abel. | Xinyang City, Henan Province | 32°08′54″ N | 114°05′28″ E | 67–105 |
GX | Guangxi Majiang | Camellia oleifera Abel. | Majiang Town, Zhaoping County, Guangxi Province | 23°52′41″ N | 111°02′51″ E | 54 |
JX | Jiangxi | Camellia oleifera Abel. | Dongxiang County, Fuzhou City, Jiangxi Province | 28°14′53″ N | 116°36′12″ E | 58 |
GZTR | Guizhou Tongren | Camellia oleifera Abel. | Benzhuang Town, Shiqian County, Tongren City, Guizhou Province | 27°32′25″ N | 107°55′41″ E | 508 |
HN | Hunan | Camellia oleifera Abel. | Shaoyang City, Hunan Province | 27°14′22″ N | 111°28′05″ E | 210–291 |
DA | Ding’an Xianghua Youcha | Camellia osmantha | Ding’an County, Hainan Province | 19°40′52″ N | 110°21′33″ E | 42–95 |
WC | Wenchang Xianghua Youcha | Camellia osmantha | Qinglan District, Wenchang City, Hainan Province | 19°32′51″ N | 110°48′02″ E | 9 |
WH | Wuzhishan Honghua Youcha | Camellia chekiangoleosa | Wuzhishan City, Hainan Province | 18°46′29″ N | 109°30′57″ E | 556 |
BT | Baoting Chaxi Gucha | Camellia sinensis (L.) O. Ktze. | Tea Creek Valley, Baoting County, Hainan Province | 18°38′26″ N | 109°42′01″ E | 42–82 |
GZ | Gaozhou Youcha | Camellia gauchowensis | Gaozhou City, Guangdong Province | 21°55′08″ N | 110°51′13″ E | 30–66 |
BB | Bobai Daguo | Camellia gigantocarpa Hu et Huang | Bobai County, Yulin City, Guangxi Province | 22°16′24″ N | 109°58′33″ E | 69–89 |
LC | Luchuan | Camellia fangchengensis S.Y. Liang et Y.C. Zheng | Luchuan County, Yulin City, Guangxi Province | 22°19′17″ N | 110°15′51″ E | 101 |
Sample Name | Oil (w/w: %) | Sample Name | Oil (w/w: %) | Sample Name | Oil (w/w: %) | Sample Name | Oil (w/w: %) |
---|---|---|---|---|---|---|---|
QZ0 | 48.19 ± 0.96 ghi | QZP2 | 45.92 ± 0.31 ijkl | CM2 | 47.64 ± 0.69 ghij | JX | 44.14 ± 0.52 lmn |
QZ1 | 52.81 ± 0.82 cd | NC1 | 54.46 ± 1.42 bc | CMDF | 58.96 ± 0.58 a | GZTR | 44.01 ± 0.17 lmn |
QZ2 | 45.21 ± 0.65 klm | NC2 | 46.82 ± 2.15 hijk | QH | 45.46 ± 1.09 jkl | HN | 40.81 ± 1.37 opq |
QZ3 | 45.12 ± 0.89 klm | ND1 | 49.78 ± 2.54 fg | HK | 43.98 ± 1.31 lmn | DA | 46.08 ± 0.71 ijkl |
QZ4 | 51.72 ± 1.66 def | ND3 | 58.77 ± 1.08 a | BWL | 51.52 ± 0.56 def | WC | 48.11 ± 0.43 ghi |
QZ5 | 41.35 ± 0.37 opq | HS1 | 53.74 ± 0.68 bcd | K13 | 40.18 ± 0.61 pq | WH | 41.2 ± 0.33 opq |
QZJ | 47.82 ± 1.29 ghi | HS2 | 53 ± 0.72 cd | CR3 | 44.56 ± 1.29 klmn | BT | 30.22 ± 1.16 r |
QZ8 | 52.1 ± 0.24 de | HS3 | 49.88 ± 0.82 efg | CR | 42.91 ± 0.58 mno | GZ | 45.04 ± 0.67 klm |
QZ9 | 40.01 ± 0.53 q | FS1 | 45.45 ± 0.54 jkl | XY | 42.42 ± 0.56 nop | BB | 40 ± 0.77 q |
QZP1 | 47.69 ± 0.66 ghij | FS2 | 55.23 ± 0.56 b | GX | 43.85 ± 0.18 lmn | LC | 48.69 ± 0.62 gh |
Sample Name | Oleic Acid (C18:1) | Linoleic Acid (C18:2) | Palmitic Acid (C16:0) | Stearic Acid (C18:0) | Linolenic Acid (C18:3) | Myristic Acid (C14:0) | Arachic Acid (C20:0) | Palmitoleic Acid (C16:1) | Unsaturated Fatty Acid (UFA) |
---|---|---|---|---|---|---|---|---|---|
QZ0 | 80.84 ± 1.88 bcdefg | 5.66 ± 0.37 ijklm | 9.09 ± 0.21 defgh | 3.44 ± 0.23 g | 0.18 ± 0.01 hij | 0.04 ± 0.01 bc | 0.43 ± 0.03 ij | 0.05 ± 0.01 efg | 86.73 ± 2.27 ab |
QZ1 | 70.71 ± 1.66 m | 3.95 ± 0.62 p | 7.94 ± 0.18 fgh | 2.59 ± 0.25 ijklmn | 0.19 ± 0.03 hij | 0.04 ± 0.00 bc | 0.48 ± 0.03 fghij | 0.04 ± 0.01 fg | 74.89 ± 2.32 fg |
QZ2 | 86.23 ± 0.59 a | 2.83 ± 0.12 q | 7.51 ± 0.12 gh | 2.58 ± 0.44 ijklmn | 0.15 ± 0.01 ij | N.D. | 0.48 ± 0.01 fghij | 0.03 ± 0.00 gh | 89.24 ± 0.72 ab |
QZ3 | 83.03 ± 1.48 abcd | 4.69 ± 0.21 no | 8.52 ± 0.06 fgh | 2.71 ± 0.27 ijklm | 0.18 ± 0.01 hij | 0.03 ± 0.01 bc | 0.51 ± 0.03 efghij | 0.05 ± 0.01 efg | 87.95 ± 1.71 ab |
QZ4 | 77.60 ± 0.62 ghij | 8.95 ± 0.51 c | 9.41 ± 0.21 defg | 2.83 ± 0.15 hijk | 0.26 ± 0.04 efghi | 0.03 ± 0.00 bc | 0.52 ± 0.04 efghij | 0.05 ± 0.01 efg | 86.86 ± 1.18 ab |
QZ5 | 80.53 ± 1.50 bcdefgh | 8.07 ± 0.35 d | 8.34 ± 0.18 fgh | 2.11 ± 0.12 no | 0.17 ± 0.02 hij | 0.02 ± 0.01 bc | 0.47 ± 0.03 fghij | 0.04 ± 0.01 fg | 88.81 ± 1.88 ab |
QZJ | 82.24 ± 1.63 bcdef | 7.21 ± 0.16 ef | 7.49 ± 0.18 gh | 1.89 ± 0.09 o | 0.30 ± 0.04 defgh | 0.03 ± 0.01 bc | 0.47 ± 0.02 fghij | 0.09 ± 0.02 abc | 89.84 ± 1.85 a |
QZ8 | 79.78 ± 1.45 cdefghi | 4.62 ± 0.25 no | 11.74 ± 0.19 bcd | 2.87 ± 0.25 hij | 0.23 ± 0.03 efghij | 0.05 ± 0.02 bc | 0.44 ± 0.01 hij | 0.06 ± 0.01 def | 84.69 ± 1.74 bc |
QZ9 | 76.60 ± 1.57 hijk | 10.00 ± 0.19 b | 9.57 ± 0.36 defg | 2.59 ± 0.22 ijklmn | 0.21 ± 0.05 fghij | 0.05 ± 0.01 bc | 0.55 ± 0.03 efgh | 0.07 ± 0.02 cde | 86.88 ± 1.83 ab |
QZP1 | 82.80 ± 0.88 abcde | 5.50 ± 0.07 jklm | 7.94 ± 0.17 fgh | 2.72 ± 0.08 ijklm | 0.15 ± 0.01 ij | 0.03 ± 0.01 bc | 0.58 ± 0.05 def | 0.04 ± 0.00 fg | 88.49 ± 0.96 ab |
QZP2 | 82.20 ± 2.09 bcdef | 6.38 ± 0.27 gh | 8.28 ± 6.22 fgh | 2.29 ± 0.13 klmno | 0.18 ± 0.03 hij | 0.03 ± 0.00 bc | 0.48 ± 0.04 fghij | 0.04 ± 0.01 fg | 88.8 ± 2.40 ab |
NC1 | 81.29 ± 1.26 bcdefg | 7.13 ± 0.14 f | 8.35 ± 0.14 fghj | 1.77 ± 0.09 o | 0.32 ± 0.06 defg | 0.05 ± 0.01 bc | 0.54 ± 0.01 efghi | 0.11 ± 0.02 a | 88.85 ± 1.48 ab |
NC2 | 78.14 ± 0.32 fghij | 7.92 ± 0.4 d | 10.37 ± 0.15 cdef | 2.62 ± 0.19 ijklmn | 0.17 ± 0.02 hij | 0.04 ± 0.01 bc | 0.49 ± 0.04 efghij | 0.04 ± 0.00 fg | 86.27 ± 0.74 abc |
ND1 | 82.64 ± 1.37 abcde | 3.89 ± 0.14 p | 9.09 ± 0.34 defgh | 3.30 ± 0.12 gh | 0.20 ± 0.03 ghij | 0.03 ± 0.01 bc | 0.51 ± 0.02 efghij | 0.06 ± 0.01 def | 86.79 ± 1.55 ab |
ND3 | 82.77 ± 1.71 abcde | 5.25 ± 0.09 lmn | 8.25 ± 0.19 fgh | 2.60 ± 0.29 ijklmn | 0.22 ± 0.05 efghij | 0.04 ± 0.01 bc | 0.52 ± 0.03 efghij | 0.08 ± 0.02 bcd | 88.32 ± 1.87 ab |
HS1 | 79.58 ± 2.52 defghi | 7.76 ± 0.27 de | 9.55 ± 0.23 defg | 2.24 ± 0.21 lmno | 0.18 ± 0.05 hij | 0.03 ± 0.00 bc | 0.47 ± 0.04 fghij | 0.04 ± 0.00 fg | 87.56 ± 2.84 ab |
HS2 | 80.79 ± 1.68 bcdefg | 6.75 ± 0.29 fg | 8.74 ± 0.32 efgh | 2.90 ± 0.24 hij | 0.16 ± 0.02 ij | 0.03 ± 0.01 bc | 0.44 ± 0.08 hij | 0.04 ± 0.01 fg | 87.74 ± 2.00 ab |
HS3 | 83.73 ± 1.64 abc | 5.12 ± 0.08 mn | 7.61 ± 0.17 gh | 2.53 ± 0.12 jklmn | 0.17 ± 0.02 hij | 0.03 ± 0.01 bc | 0.50 ± 0.07 efghij | 0.04 ± 0.00 fg | 89.06 ± 1.74 ab |
FS1 | 81.09 ± 1.45 bcdefg | 6.10 ± 0.14 hijk | 9.13 ± 0.13 defgh | 2.70 ± 0.24 ijklm | 0.22 ± 0.04 efghij | N.D. | 0.47 ± 0.07 fghij | N.D. | 87.41 ± 1.63 ab |
FS2 | 82.81 ± 2.26 abcde | 4.10 ± 0.09 op | 9.00 ± 0.27 efgh | 3.12 ± 0.11 ghi | 0.22 ± 0.03 efghij | 0.04 ± 0.01 bc | 0.46 ± 0.07 ghij | 0.05 ± 0.01 efg | 87.18 ± 2.39 ab |
CM2 | 81.40 ± 1.81 bcdefg | 5.48 ± 0.35 klm | 9.30 ± 0.12 defg | 2.76 ± 0.12 ijkl | 0.18 ± 0.02 hij | 0.05 ± 0.01 bc | 0.56 ± 0.05 efg | 0.06 ± 0.01 def | 87.12 ± 2.19 ab |
CMDF | 84.52 ± 2.61 ab | 3.95 ± 0.23 p | 7.94 ± 0.17 fgh | 2.59 ± 0.22 ijklmn | 0.19 ± 0.04 hij | 0.04 ± 0.01 bc | 0.48 ± 0.02 fghij | 0.04 ± 0.00 fg | 88.70 ± 2.88 ab |
QH | 79.21 ± 0.78 defghi | 8.70 ± 0.26 c | 8.98 ± 0.37 efgh | 1.82 ± 0.14 o | 0.34 ± 0.04 de | 0.05 ± 0.02 bc | 0.55 ± 0.03 efgh | 0.09 ± 0.02 abc | 88.34 ± 1.10 ab |
HK | 80.08 ± 1.16 cdefghi | 6.75 ± 0.32 fg | 10.05 ± 0.19 cdefg | 2.20 ± 0.13 mno | 0.16 ± 0.03 ij | 0.04 ± 0.01 bc | 0.51 ± 0.05 efghij | 0.05 ± 0.01 efg | 87.04 ± 1.52 ab |
BWL | 79.89 ± 2.73 cdefghi | 6.14 ± 0.13 ghij | 9.63 ± 0.08 defg | 3.35 ± 0.14 gh | 0.22 ± 0.05 efghij | 0.03 ± 0.01 bc | 0.43 ± 0.04 ij | 0.06 ± 0.01 def | 86.31 ± 2.92 ab |
K13 | 66.34 ± 1.13 n | 5.28 ± 0.22 lmn | 13.54 ± 0.35 b | 8.87 ± 0.44 a | 0.87 ± 0.19 b | 0.62 ± 0.06 a | 0.60 ± 0.04 de | N.D. | 72.49 ± 1.54 g |
CR3 | 73.27 ± 1.33 klm | 5.04 ± 0.22 mn | 11.35 ± 0.36 bcde | 6.90 ± 0.26 b | 1.15 ± 0.12 a | N.D. | 0.67 ± 0.09 cd | N.D. | 79.46 ± 1.67 de |
CR | 71.67 ± 1.62 lm | 7.03 ± 0.26 f | 13.06 ± 0.23 b | 3.99 ± 0.25 f | 0.40 ± 0.06 d | N.D. | 0.91 ± 0.09 b | N.D. | 79.10 ± 1.94 de |
XY | 76.54 ± 2.42 ijk | 5.11 ± 0.25 mn | 9.68 ± 0.93 defg | 6.31 ± 0.14 c | 0.27 ± 0.03 efghi | 0.61 ± 0.07 a | 1.17 ± 0.06 a | N.D. | 81.92 ± 2.65 cd |
GX | 81.53 ± 0.47 bcdefg | 5.25 ± 0.19 lmn | 9.16 ± 0.14 defgh | 3.02 ± 0.11 ghij | 0.21 ± 0.03 fghij | 0.03 ± 0.01 bc | 0.45 ± 0.03 ghij | 0.05 ± 0.01 efg | 87.04 ± 0.70 ab |
JX | 81.63 ± 1.09 bcdefg | 6.15 ± 0.14 ghi | 9.23 ± 0.12 defg | 1.93 ± 0.25 o | 0.28 ± 0.05 efghi | 0.03 ± 0.00 bc | 0.44 ± 0.01 hij | 0.10 ± 0.02 ab | 88.16 ± 1.30 ab |
GZTR | 80.91 ± 1.56 bcdefg | 5.79 ± 0.24 hijkl | 9.14 ± 0.22 defgh | 3.12 ± 0.18 ghi | 0.20 ± 0.02 ghij | 0.03 ± 0.01 bc | 0.47 ± 0.05 fghij | 0.06 ± 0.01 def | 86.96 ± 1.83 ab |
HN | 78.69 ± 2.23 efghi | 7.82 ± 0.44 de | 9.56 ± 0.23 defg | 2.90 ± 0.16 hij | 0.22 ± 0.05 efghij | 0.04 ± 0.01 bc | 0.45 ± 0.04 ghij | 0.05 ± 0.01 efg | 86.78 ± 2.73 ab |
DA | 74.72 ± 2.23 jkl | 10.94 ± 0.21 a | 11.19 ± 0.18 bcde | 1.92 ± 0.27 o | 0.33 ± 0.05 def | 0.06 ± 0.02 b | 0.50 ± 0.06 efghij | 0.08 ± 0.01 bcd | 86.07 ± 2.50 abc |
WC | 80.56 ± 1.12 bcdefgh | 5.16 ± 0.15 lmn | 9.72 ± 0.37 defg | 3.53 ± 0.12 fg | 0.23 ± 0.04 efghij | 0.04 ± 0.01 bc | 0.41 ± 0.01 j | 0.06 ± 0.01 def | 86.01 ± 1.32 abc |
WH | 83.1 ± 1.47 abcd | 4.01 ± 0.32 p | 6.55 ± 0.31 h | 5.15 ± 0.19 e | 0.12 ± 0.02 j | 0.02 ± 0.01 bc | 0.52 ± 0.03 efghij | 0.03 ± 0.00 gh | 87.26 ± 1.81 ab |
BT | 1.23 ± 0.07 p | 0.69 ± 0.03 r | 0.44 ± 0.04 i | 0.11 ± 0.01 p | 0.01 ± 0.00 k | 0.01 ± 0.00 c | 0.02 ± 0.00 k | 0.01 ± 0.00 h | 1.94 ± 0.10 h |
GZ | 78.69 ± 1.11 efghi | 7.82 ± 0.29 de | 9.56 ± 0.15 defg | 2.90 ± 0.17 hij | 0.22 ± 0.04 efghij | 0.04 ± 0.01 bc | 0.45 ± 0.02 ghij | 0.05 ± 0.01 efg | 86.78 ± 1.45 ab |
BB | 62.22 ± 0.99 o | 10.85 ± 0.28 a | 17.76 ± 0.54 a | 5.65 ± 0.32 d | 0.86 ± 0.05 b | N.D. | 0.75 ± 0.04 c | N.D. | 73.93 ± 1.32 fg |
LC | 71.21 ± 0.78 lm | 5.63 ± 0.29 ijklm | 12.24 ± 0.23 bc | 6.68 ± 0.33 bc | 0.53 ± 0.03 c | N.D. | 0.74 ± 0.06 c | N.D. | 77.37 ± 1.10 ef |
Oleic Acid | Linoleic Acid | Palmitic Acid | Stearic Acid | |
---|---|---|---|---|
oleic acid | 1 | −0.919 ** | −0.825 ** | 0.294 |
linoleic acid | 1 | 0.606 ** | −0.516 ** | |
palmitic acid | 1 | −0.283 | ||
stearic acid | 1 |
Sample Name | Major Constituent 1 Score | Major Constituent 2 Score | Major Constituent 3 Score | Major Constituent 4 Score | Major Constituent 5 Score | Comprehensive Score | Sort |
---|---|---|---|---|---|---|---|
QZ0 | 0.11 | −0.17 | 0.97 | 0.33 | −0.04 | 0.15 | 17 |
QZ1 | 1.17 | 1.71 | −0.30 | 0.49 | 0.02 | 0.95 | 3 |
QZ2 | 0.41 | −0.73 | 0.70 | 0.34 | 2.80 | 0.36 | 9 |
QZ3 | 0.43 | −0.60 | −0.02 | 0.44 | −1.07 | −0.04 | 19 |
QZ4 | 0.42 | 0.17 | −0.77 | 0.45 | 1.10 | 0.27 | 13 |
QZ5 | −0.11 | −0.37 | 0.77 | −0.42 | −0.85 | −0.16 | 22 |
QZJ | 0.45 | −0.43 | 0.23 | 0.82 | −0.24 | 0.17 | 16 |
QZ8 | 0.50 | 0.23 | 0.04 | 1.06 | −0.06 | 0.37 | 8 |
QZ9 | 0.69 | 0.18 | −0.62 | 0.75 | 0.02 | 0.33 | 11 |
QZP1 | 0.21 | −1.01 | 0.18 | 0.09 | −0.27 | −0.17 | 23 |
QZP2 | −0.24 | −0.49 | 0.20 | −0.12 | 0.29 | −0.19 | 25 |
NC1 | 0.24 | −1.01 | 0.35 | −0.01 | −0.40 | −0.16 | 21 |
NC2 | 0.49 | 0.49 | −1.30 | 0.77 | −0.53 | 0.19 | 15 |
ND1 | −0.18 | −1.15 | −0.32 | −0.60 | −0.82 | −0.56 | 35 |
ND3 | 0.03 | −0.95 | −0.20 | 0.01 | −1.54 | −0.40 | 29 |
HS1 | 0.47 | 0.44 | −0.20 | 0.54 | 0.08 | 0.35 | 10 |
HS2 | 0.42 | −1.52 | 2.25 | 0.08 | 2.78 | 0.33 | 12 |
HS3 | 1.14 | 1.04 | 0.10 | 0.85 | −0.59 | 0.80 | 4 |
FS1 | −0.06 | −1.35 | 0.35 | −0.14 | −0.72 | −0.41 | 31 |
FS2 | 0.37 | 1.48 | 0.26 | −1.39 | 0.76 | 0.51 | 6 |
CM2 | −0.36 | −0.10 | 2.75 | −1.57 | −2.16 | −0.18 | 24 |
CMDF | 1.54 | 1.60 | 1.04 | 1.65 | −0.49 | 1.32 | 1 |
QH | 0.91 | 0.73 | −0.08 | 1.02 | −0.92 | 0.58 | 5 |
HK | −0.21 | −0.60 | −0.67 | −0.22 | −0.56 | −0.41 | 30 |
BWL | 0.41 | −0.99 | 1.07 | 0.51 | −0.74 | 0.03 | 18 |
K13 | −2.09 | 0.41 | −0.06 | 0.61 | 1.39 | −0.59 | 36 |
CR3 | −1.59 | 0.62 | 1.43 | −0.69 | −0.55 | −0.44 | 32 |
CR | −2.02 | 1.19 | −0.01 | 0.61 | 1.76 | −0.32 | 28 |
XY | −2.27 | 0.50 | −1.09 | 0.58 | 0.53 | −0.86 | 40 |
GX | −0.09 | −0.33 | −1.29 | −0.06 | 0.23 | −0.28 | 27 |
JX | −0.01 | −0.50 | −0.69 | 0.07 | 0.06 | −0.21 | 26 |
GZTR | −0.40 | −0.93 | −1.64 | −0.58 | 0.78 | −0.61 | 38 |
HN | 0.37 | 0.62 | −1.00 | 0.62 | 0.01 | 0.25 | 14 |
DA | 0.58 | 0.26 | 0.93 | 0.11 | −0.40 | 0.41 | 7 |
WC | 0.13 | −0.82 | 0.87 | 0.09 | −0.08 | −0.05 | 20 |
WH | 0.15 | −0.55 | −1.53 | −4.32 | 0.78 | −0.63 | 39 |
BT | −0.02 | −0.60 | −2.28 | −2.05 | 0.60 | −0.61 | 37 |
GZ | 1.19 | 1.13 | 0.95 | 0.31 | 0.06 | 0.95 | 2 |
BB | −1.76 | 1.45 | −1.50 | 0.35 | −0.32 | −0.54 | 34 |
LC | −1.43 | 0.96 | 0.13 | −1.36 | −0.70 | −0.53 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Yan, H.; Wu, Y.; Wang, Y.; Xia, P. Quality Evaluation of the Oil of Camellia spp. Foods 2022, 11, 2221. https://doi.org/10.3390/foods11152221
Yu J, Yan H, Wu Y, Wang Y, Xia P. Quality Evaluation of the Oil of Camellia spp. Foods. 2022; 11(15):2221. https://doi.org/10.3390/foods11152221
Chicago/Turabian StyleYu, Jing, Heqin Yan, Yougen Wu, Yong Wang, and Pengguo Xia. 2022. "Quality Evaluation of the Oil of Camellia spp." Foods 11, no. 15: 2221. https://doi.org/10.3390/foods11152221
APA StyleYu, J., Yan, H., Wu, Y., Wang, Y., & Xia, P. (2022). Quality Evaluation of the Oil of Camellia spp. Foods, 11(15), 2221. https://doi.org/10.3390/foods11152221