Numerical Analysis on Heat Characteristics of the Ventilation Basket for Fresh Tea Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Test
2.2.1. Measurement of the Product’s Resistance
2.2.2. Experimental Verification
2.3. Numerical Method
2.4. Mathematical Model
2.5. Boundary Conditions
2.6. Error Calculation
3. Results and Discussion
3.1. Deriving the Forecasting Coefficients of the Product’s Resistance
3.2. Model Accuracy Analysis
3.3. Effects of Different Ambient Temperature
3.4. Effects of Different Ventilation Duct
3.5. Effects of Different Vent Hole Areas
3.6. Effects of Bulk Density
3.7. Effects of the Stack Plastic Basket
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.Q.; Wang, J.Q.; Chen, J.X.; Wang, F.; Yin, J.F.; Zeng, L.; Shi, J.; Xu, Y.Q. Effect of baking on the flavor stability of green tea beverages. Food Chem. 2020, 331, 127258. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Lai, W.Y.; Xu, A.A.; Jin, J.; Wang, Y.F.; Xu, P. Characterizing relationships among chemicals, sensory attributes and in vitro bioactivities of black tea made from an anthocyanins-enriched tea cultivar. LWT 2020, 132, 109814. [Google Scholar] [CrossRef]
- Zeng, L.T.; Zhou, X.C.; Su, X.G.; Yang, Z.Y. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends Food Sci. Technol. 2020, 106, 242–253. [Google Scholar] [CrossRef]
- Han, Z.X.; Mohammad, M.R.; Liu, G.F.; Gao, M.J.; Li, D.X.; Wu, F.G.; Li, X.B.; Wan, X.C.; Wei, S. Green tea flavour determinants and their changes over manufacturing processes. Food Chem. 2016, 212, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.J.; Jiang, Y.W.; Yuan, H.B.; Yin, J.F.; Zhong, W.B.; Yu, S.P.; Xie, Q.T. Review on the changes of biochemical components and the influencing factors in piling process of yellow tea. J. Tea Sci. 2015, 35, 203–208. [Google Scholar]
- Xu, J.Y.; Wang, M.; Zhao, J.P.; Wang, Y.H.; Tang, Q.; Khan, I.A. Yellow tea (Camellia sinensis L.), a promising Chinese tea: Processing, chemical constituents and health benefits. Food Res. Int. 2018, 107, 567–577. [Google Scholar] [CrossRef]
- Wu, H.L.; Huang, W.J.; Chen, Z.J.; Chen, Z.; Shi, J.F.; Kong, Q.; Sun, S.L.; Jiang, X.H.; Chen, D.; Yan, S.J. GC–MS-based metabolomic study reveals dynamic changes of chemical compositions during black tea processing. Food Res. Int. 2019, 120, 330–338. [Google Scholar] [CrossRef]
- Fan, F.Y.; Shi, M.; Nie, Y.; Zhao, Y.; Ye, J.H.; Liang, Y.R. Differential behaviors of tea catechins under thermal processing: Formation of non-enzymatic oligomers. Food Chem. 2016, 196, 347–354. [Google Scholar] [CrossRef]
- Sexton, T.M.; Steber, C.M.; Cousins, A.B. Leaf temperature impacts canopy water use efficiency independent of changes in leaf level water use efficiency. J. Plant Physiol. 2021, 258–259, 153357. [Google Scholar] [CrossRef]
- Shao, C.Y.; Zhang, C.Y.; Lv, Z.D.; Shen, C.W. Pre-and post-harvest exposure to stress influence quality-related metabolites in fresh tea leaves (Camellia sinensis). Sci. Hortic. 2021, 281, 109984. [Google Scholar] [CrossRef]
- Babu, A.K.; Kumaresan, G.; Raj, V.A.A.; Velraj, R. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sustain. Energy Rev. 2018, 90, 536–556. [Google Scholar] [CrossRef]
- Katsuno, T.; Kasuga, H.; Kusano, Y.; Yaguchi, Y.; Tomomura, M.; Cui, J.L.; Yang, Z.Y.; Baldermann, S.; Nakamura, Y.; Ohnishi, T.; et al. Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process. Food Chem. 2014, 148, 388–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulio, A.Z.; Ose, K.; Chachin, K.; Ueda, Y. Effects of storage temperatures on the postharvest quality of jute leaves (Corchorus olitorius L.). Postharvest Biol. Technol. 2002, 26, 329–338. [Google Scholar] [CrossRef]
- Lo-Iacono-Ferreira, V.G.; Viñoles-Cebolla, R.; Bastante-Ceca, M.J.; Capuz-Rizo, S.F. Transport of Spanish fruit and vegetables in cardboard boxes: A carbon footprint analysis. J. Clean. Prod. 2020, 244, 118784. [Google Scholar] [CrossRef]
- Abejón, R.; Bala, A.; Vázquez-Rowe, I.; Aldaco, R.; Fullana-i-Palmer, P. When plastic packaging should be preferred: Life cycle analysis of packages for fruit and vegetable distribution in the Spanish peninsular market. Resour. Conserv. Recycl. 2020, 155, 104666. [Google Scholar] [CrossRef]
- Albrecht, S.; Brandstetter, P.; Beck, T.; Fullana-i-Palmer, P.; Grönman, K.; Baitz, M.; Deimling, S.; Sandilands, J.; Fischer, M. An extended life cycle analysis of packaging systems for fruit and vegetable transport in Europe. Int. J. Life Cycle Assess. 2013, 18, 1549–1567. [Google Scholar] [CrossRef]
- Goossens, Y.; Berrens, P.; Custers, K.; Van Hemelryck, S.; Kellens, K.; Geeraerd, A. How origin, packaging and seasonality determine the environmental impact of apples, magnified by food waste and losses. Int. J. Life Cycle Assess. 2019, 24, 667–687. [Google Scholar] [CrossRef]
- Berry, T.M.; Fadiji, T.S.; Defraeye, T.; Opara, U.L. The role of horticultural carton vent hole design on cooling efficiency and compression strength: A multi-parameter approach. Postharvest Biol. Technol. 2017, 124, 62–74. [Google Scholar] [CrossRef]
- Opara, U.; Berry, T.; Delele, M.; Griessel, H. Geometric design characterisation of ventilated multi-scale packaging used in the South African pome fruit industry. Agric. Mech. Asia Afr. Lat. Am. 2015, 46, 34–42. [Google Scholar]
- Wu, W.T.; Cronjé, P.; Verboven, P.; Defraeye, T. Unveiling how ventilated packaging design and cold chain scenarios affect the cooling kinetics and fruit quality for each single citrus fruit in an entire pallet. Food Packag. Shelf Life 2019, 21, 100369. [Google Scholar] [CrossRef]
- Han, J.W.; Zhao, C.J.; Yang, X.T.; Qian, J.P.; Fan, B.L. Computational modeling of airflow and heat transfer in a vented box during cooling: Optimal package design. Appl. Therm. Eng. 2015, 91, 883–893. [Google Scholar] [CrossRef]
- Gong, Y.; Cao, Y.; Zhang, X. Forced-air precooling of apples: Airflow distribution and precooling effectiveness in relation to the gap width between tray edge and box wall. Postharvest Biol. Technol. 2021, 177, 111523. [Google Scholar] [CrossRef]
- Fadiji, T.; Coetzee, C.; Chen, L.; Chukwu, O.; Opara, U.L. Susceptibility of apples to bruising inside ventilated corrugated paperboard packages during simulated transport damage. Postharvest Biol. Technol. 2016, 118, 111–119. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, L.L.; Liu, J.X.; Xu, X.J.; Bao, J.; Zhu, J.R. Performance of a fresh-food storage box based on semiconductor refrigeration. Sustain. Cities Soc. 2019, 49, 101599. [Google Scholar] [CrossRef]
- Mukama, M.; Ambaw, A.; Opara, U.L. Advances in design and performance evaluation of fresh fruit ventilated distribution packaging: A review. Food Packag. Shelf Life 2020, 24, 100472. [Google Scholar] [CrossRef]
- Hoang, D.K.; Lovatt, S.J.; Olatunji, J.R.; Carson, J.K. Validated numerical model of heat transfer in the forced air freezing of bulk packed whole chickens. Int. J. Refrig. 2020, 118, 93–103. [Google Scholar] [CrossRef]
- Guo, J.M.; Wei, X.Y.; Li, B.; Cao, Y.F.; Han, J.W.; Yang, X.T.; Lü, E.L. Characteristic analysis of humidity control in a fresh-keeping container using CFD model. Comput. Electron. Agric. 2020, 179, 105816. [Google Scholar] [CrossRef]
- Gruyters, W.; Defraeye, T.; Verboven, P.; Berry, T.; Ambaw, A.; Opara, U.L.; Nicolai, B. Reusable boxes for a beneficial apple cold chain: A precooling analysis. Int. J. Refrig. 2019, 106, 338–349. [Google Scholar] [CrossRef]
- FLUENT 6.1 User’s Guide; Fluent Inc.: Lebanon, NH, USA, 2003.
- Wang, X.F.; Fan, Z.Y.; Li, B.G.; Liu, E.H. Variable air supply velocity of forced-air precooling of iceberg lettuces: Optimal cooling strategies. Appl. Therm. Eng. 2021, 187, 116484. [Google Scholar] [CrossRef]
- Guo, J.M.; Fang, S.Z.; Zeng, Z.X.; Lu, H.Z.; Lü, E.L. Numerical simulation and experimental verification on humidity field for pipeline humidifying device. Trans. Chin. Soc. Agric. Eng. 2015, 31, 57–64. [Google Scholar]
- Hoang, H.; Duret, S.; Flick, D.; Laguerre, O. Preliminary study of airflow and heat transfer in a cold room filled with apple pallets: Comparison between two modelling approaches and experimental results. Appl. Therm. Eng. 2015, 76, 367–381. [Google Scholar] [CrossRef]
- Chourasia, M.K.; Goswami, T.K. Three dimensional modeling on airflow, heat and mass transfer in partially impermeable enclosure containing agricultural produce during natural convective cooling. Energy Convers. Manag. 2007, 48, 2136–2149. [Google Scholar] [CrossRef]
- Chourasia, M.K.; Goswami, T.K. Simulation of effect of stack dimensions and stacking arrangement on cool-down characteristics of potato in a cold store by computational fluid dynamics. Biosyst. Eng. 2007, 96, 503–515. [Google Scholar] [CrossRef]
- Clarke, H.; Martinez-Herasme, A.; Crookes, R.; Wen, D.S. Experimental study of jet structure and pressurisation upon liquid nitrogen injection into water. Int. J. Multi. Flow 2010, 36, 940–949. [Google Scholar] [CrossRef]
- Ho, S.H.; Rosario, L.; Rahman, M.M. Numerical simulation of temperature and velocity in a refrigerated warehouse. Int. J. Refrig. 2010, 33, 1015–1025. [Google Scholar] [CrossRef]
- Guo, J.M.; Lü, E.L.; Lu, H.Z.; Wang, Y.; Zhao, J.H. Numerical simulation of gas exchange in fresh-keeping transportation containers with a controlled atmosphere. Food Sci. Technol. Res. 2016, 22, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Defraeye, T.; Lambrecht, R.; Tsige, A.A.; Delele, M.A.; Opara, U.L.; Cronjé, P.; Verboven, P.; Nicolai, B. Forced-convective cooling of citrus fruit: Package design. J. Food Eng. 2013, 118, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Tutar, M.; Erdogdu, F.; Toka, B. Computational modeling of airflow patterns and heat transfer prediction through stacked layers’ products in a vented box during cooling. Int. J. Refrig. 2009, 32, 295–306. [Google Scholar] [CrossRef]
- Moureh, J.; Letang, G.; Palvadeau, B.; Boisson, H. Numerical and experimental investigations on the use of mist flow process in refrigerated display cabinets. Int. J. Refrig. 2009, 32, 203–219. [Google Scholar] [CrossRef]
- Li, B.; Guo, J.M.; Xia, J.J.; Wei, X.Y.; Shen, H.; Cao, Y.F.; Lu, H.Z.; Lü, E.L. Temperature distribution in insulated temperature-controlled container by numerical simulation. Energies 2020, 13, 4765. [Google Scholar] [CrossRef]
- Han, J.W.; Zhu, W.Y.; Ji, Z.T. Comparison of veracity and application of different CFD turbulence models for refrigerated transport. Artif. Intell. Agric. 2019, 3, 11–17. [Google Scholar]
- Moureh, J.; Yataghene, M. Large-eddy simulation of an air curtain confining a cavity and subjected to an external lateral flow. Comput. Fluids 2017, 152, 134–156. [Google Scholar] [CrossRef]
- Guo, J.M.; Lü, E.L.; Lu, H.Z.; Fang, S.Z.; Zhao, J.H. Numerical analysis and verification on characteristics of temperature decreasing of litchi fruits with packages. Trans. Chin. Soc. Agric. Mach. 2016, 47, 218–224. [Google Scholar]
- Li, Y. Numerical Analysis and Experimental Research on the Optimization of Forced-Air Precooling Technology for Fruits and Vegetables. Ph.D. Thesis, Shanghai Ocean University, Shanghai, China, 2018. [Google Scholar]
- Redding, G.P.; Yang, A.; Shim, Y.M.; Olatunji, J.; East, A. A review of the use and design of produce simulators for horticultural forced-air cooling studies. J. Food Eng. 2016, 190, 80–93. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H.; Wang, K.; Day, R.; Yuan, Y.P. Thermal performance of a mine refuge chamber with human body heat sources under ventilation. Appl. Therm. Eng. 2019, 162, 114243. [Google Scholar] [CrossRef]
- Liu, Y.; Rao, Y.; Weigand, B. Heat transfer and pressure loss characteristics in a swirl cooling tube with dimples on the tube inner surface. Int. J. Heat Mass Transf. 2019, 128, 54–65. [Google Scholar] [CrossRef]
- Delele, M.A.; Ngcobo, M.E.K.; Getahun, S.T.; Chen, L.; Mellmann, J.; Opara, U.L. Studying airflow and heat transfer characteristics of a horticultural produce packaging system using a 3-D CFD model. Part II: Effect of package design. Postharvest Biol. Technol. 2013, 86, 546–555. [Google Scholar] [CrossRef]
- Chen, T.; Luo, W.; Gao, D.; Zheng, G.D. Stratification of bulk density and its dynamics in the process of co-composting. Environ. Sci. 2004, 5, 143–147. [Google Scholar]
- Kuptz, D.; Hartmann, H. Prediction of air pressure resistance during the ventilation of wood chips as a function of multiple physical fuel parameters. Biomass Bioenergy 2021, 145, 105948. [Google Scholar] [CrossRef]
- Górnicki, K.; Kaleta, A. Resistance of bulk grain to airflow—A review. Part II: Effect of process parameters. Ann. Wars. Univ. Life Sci. SGGW Land Reclam. 2015, 65, 43–51. [Google Scholar]
- Olatunji, J.R.; Love, R.J.; Shim, Y.M.; East, A.R. An automated random stacking tool for packaged horticultural produce. J. Food Eng. 2020, 284, 110037. [Google Scholar] [CrossRef]
- Defraeye, T.; Cronjé, P.; Verboven, P.; Opara, U.L.; Nicolai, B. Exploring ambient loading of citrus fruit into reefer containers for cooling during marine transport using computational fluid dynamics. Postharvest Biol. Technol. 2015, 108, 91–101. [Google Scholar] [CrossRef]
- Getahun, S.; Ambaw, A.; Delele, M.; Meyer, C.J.; Opara, U.L. Analysis of airflow and heat transfer inside fruit packed refrigerated shipping container: Part II—Evaluation of apple packaging design and vertical flow resistance. J. Food Eng. 2017, 203, 83–94. [Google Scholar] [CrossRef]
Name | Parameter | Numerical Value |
---|---|---|
Air | density/(kg m−3) specific heat/(J kg−1 K−1) heat conductivity coefficient/(W m−1 K−1) dynamic coefficient of viscosity | 1.225 1006 0.0225 1.79 × 10−5 |
Container material [44] | density/(kg m−3) specific heat/(J kg−1 K−1) heat conductivity coefficient/(W m−1 K−1) | 1612 2004.44 0.35 |
Fresh tea leaves | density/(kg m−3) specific heat/(J kg−1 K−1) heat conductivity coefficient/(W m−1 K−1) respiratory heat/(W m−3) | 385 3495 0.493 329.2 |
Plastic [45] | density/(kg m−3) specific heat/(J kg−1 K−1) heat conductivity coefficient/(W m−1 K−1) | 220 1700 0.048 |
Monitor Point | RMSE | MRE (%) |
---|---|---|
TF | 0.613 | 3.639 |
TB | 0.574 | 1.362 |
TL | 1.158 | 4.826 |
TR | 0.926 | 5.410 |
The Number of Sensors | V1 | V2 | V3 | V4 | V5 | V6 |
---|---|---|---|---|---|---|
Simulation (m/s) | 0.38 | 0.38 | 0.35 | 0.28 | 0.21 | 0.16 |
Experiment (m/s) | 0.32 | 0.39 | 0.38 | 0.39 | 0.19 | 0.19 |
Relative error (%) | 18.75 | 2.56 | 8.59 | 29.05 | 10.85 | 16.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Z.; Jiang, Y.; Ma, C.; Chen, J.; Zhang, X.; Lin, J.; Liu, Y.; Guo, J. Numerical Analysis on Heat Characteristics of the Ventilation Basket for Fresh Tea Leaves. Foods 2022, 11, 2178. https://doi.org/10.3390/foods11152178
Zeng Z, Jiang Y, Ma C, Chen J, Zhang X, Lin J, Liu Y, Guo J. Numerical Analysis on Heat Characteristics of the Ventilation Basket for Fresh Tea Leaves. Foods. 2022; 11(15):2178. https://doi.org/10.3390/foods11152178
Chicago/Turabian StyleZeng, Zhixiong, Yihong Jiang, Chengying Ma, Jin Chen, Xiaodan Zhang, Jicheng Lin, Yanhua Liu, and Jiaming Guo. 2022. "Numerical Analysis on Heat Characteristics of the Ventilation Basket for Fresh Tea Leaves" Foods 11, no. 15: 2178. https://doi.org/10.3390/foods11152178
APA StyleZeng, Z., Jiang, Y., Ma, C., Chen, J., Zhang, X., Lin, J., Liu, Y., & Guo, J. (2022). Numerical Analysis on Heat Characteristics of the Ventilation Basket for Fresh Tea Leaves. Foods, 11(15), 2178. https://doi.org/10.3390/foods11152178