Characterization of Quality Properties in Spoiled Mianning Ham
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Sampling
2.2. Physical and Chemical Index Measurements
2.3. High-Throughput Sequencing
2.4. Determination of Flavor Compounds
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Index Analyses
3.2. Bacterial Diversity Analysis
3.3. Fungal Diversity Analysis
3.4. Flavor Compound Analysis
3.5. Analysis of Microbial Association with Key Flavor Substances
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montoro-García, S.; Zafrilla-Rentero, M.P.; Celdrán-de Haro, F.M.; Piñero-de Armas, J.J.; Toldrá, F.; Tejada-Portero, L.; Abellán-Alemán, J. Effects of dry-cured ham rich in bioactive peptides on cardiovascular health: A randomized controlled trial. J. Funct. Foods 2017, 38, 160–167. [Google Scholar] [CrossRef]
- Martínez-Onandi, N.; Rivas Cañedo, A.; Picon, A.; Nuñez, M. Influence of physicochemical parameters and high pressure processing on the volatile compounds of Serrano dry-cured ham after prolonged refrigerated storage. Meat Sci. 2016, 122, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Krvavica, M.; Lasić, D.; Kljusurić, J.G.; Đugum, J.; Janović, Š.; Milovac, S.; Bošnir, J. Chemical characteristics of croatian traditional Istarski pršut (PDO) produced from two different pig genotypes. Molecules 2021, 26, 4140. [Google Scholar] [CrossRef] [PubMed]
- Petričević, S.; Marušić Radovčić, N.; Lukić, K.; Listeš, E.; Medić, H. Differentiation of dry-cured hams from different processing methods by means of volatile compounds, physico-chemical and sensory analysis. Meat Sci. 2018, 137, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, C.; Sirtori, F.; Škrlep, M.; Piasentier, E.; Calamai, L.; Franci, O.; Čandek-Potokar, M. The effect of ripening time on the chemical, textural, volatile and sensorial traits of Bicep femoris and Semimembranosus muscles of the Slovenian dry-cured ham. Meat Sci. 2015, 100, 58–68. [Google Scholar] [CrossRef]
- Battilani, P.; Pietri, V.A.; Giorni, P.; Formenti, S.; Bertuzzi, T.; Toscani, T.; Virgili, R.; Kozakiewicz, Z. Penicillium populations in dry-cured ham manufacturing plants. J. Food Prot. 2007, 70, 975–980. [Google Scholar] [CrossRef]
- Paarup, T.; Nieto, J.C.; Peláez, C.; Reguera, J.I. Microbiological and physico-chemical characterisation of deep spoilage in spanish dry-cured hams and characterisation of isolated enterobacteriaceae with regard to salt and temperature tolerance. Eur. Food Res. Technol. 1999, 209, 366–371. [Google Scholar] [CrossRef]
- Rivas-Cañedo, A.; Martínez-Onandi, N.; Gaya, P.; Nuñez, M.; Picon, A. Effect of high-pressure processing and chemical composition on lipid oxidation, aminopeptidase activity and free amino acids of Serrano dry-cured ham. Meat Sci. 2021, 172, 108349. [Google Scholar] [CrossRef]
- Comi, G.; Manzano, M.; Brichese, R.; Iacumin, L. New cause of spoilage in san daniele dry cured ham. J. Food Saf. 2015, 34, 263–269. [Google Scholar] [CrossRef]
- Martín, A.; Benito, M.J.; Hernández, A.; Pérez-Nevado, F.; Córdoba, J.J.; Córdoba, M.G. Characterisation of microbial deep spoilage in iberian dry-cured ham. Meat Sci. 2008, 78, 475–484. [Google Scholar] [CrossRef]
- Comi, G.; Iacumin, L. Ecology of moulds during the pre-ripening and ripening of San Daniele dry cured ham. Food Res. Intern. 2013, 54, 1113–1119. [Google Scholar] [CrossRef]
- Armenteros, M.; Aristoy, M.C.; Barat, J.M.; Toldrá, F. Biochemical and sensory changes in dry-cured ham salted with partial replacements of NaCl by other chloride salts. Meat Sci. 2012, 90, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Olmo, A.D.; Calzada, J.; Gaya, P.; Nuñez, M. Proteolysis and flavor characteristics of Serrano ham processed under different ripening temperature conditions. J. Food Sci. 2015, 80, C2404–C2412. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.; Córdoba, J.J.; Núñez, F.; Benito, M.J.; Asensio, M.A. Contribution of a selected fungal population to proteolysis ondry-cured ham. Int. J. Food Microbiol. 2004, 94, 55–66. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhang, Y.L.; Ren, H.Y.; Zhang, Y. Comparison of bacterial diversity profiles and microbial safety assessment of salami, Chinese dry-cured sausage and Chinese smoked-cured sausage by high-throughput sequencing. LWT-Food Sci. Technol. 2018, 90, 108–115. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- GB 5009.44-2016 [S]; National Standard for Food Safety Determination of Chloride in Food. National Health and Family Planning Commission; China Standard Press: Beijing, China, 2022; pp. 8–9.
- GB 5009.181-2016 [S]; National Standard for Food Safety Determination of Malondialdehyde in Food. National Health and Family Planning Commission; China Standard Press: Beijing, China, 2022; pp. 1–2.
- Li, F.Y.; Feng, X.; Zhang, D.N.; Li, C.B.; Xu, X.L.; Zhou, G.H. Physical properties, compositions and volatile profiles of Chinese dry-cured hams from different regions. J. Food Meas. Charact. 2020, 14, 492–504. [Google Scholar] [CrossRef]
- Bai, T.; Li, X.Y.; Hou, B.; Chen, L.; Wang, W. Effects of complex microbial strains on volatile flavor components of Air-dried rabbits. Chin. Condiment. 2018, 43, 38–43. [Google Scholar] [CrossRef]
- Cai, W.; Tang, F.; Guo, Z.; Guo, X.; Zhang, Q.; Zhao, X.; Ning, M.; Shan, C. Effects of pretreatment methods and leaching methods on jujube wine quality detected by electronic senses and HS-SPME-GC-MS. Food Chem. 2020, 330, 127330. [Google Scholar] [CrossRef]
- Blanco, D.; Ariño, A.; Conchello, P.; Perez, C.; Yangüela, J.; Herrera, A. Physico-chemical characterization of “Bone Taint” in Spanish dry-cured hams. J. Food Prot. 1997, 60, 667–672. [Google Scholar] [CrossRef]
- Martínez-Onand, I.N.; Rivas Cañedo, A.; Nuñez, M.; Picon, A. Effect of chemical composition and high pressure processing on the volatile fraction of Serrano dry-cured ham. Meat Sci. 2016, 111, 130–138. [Google Scholar] [CrossRef]
- Danz, R.B.N.; Müller, A.; Gibis, M.; Weiss, A.; Schmidt, H.; Weiss, J. Recent advances in cured raw ham manufacture. Crit. Rev. Food Sci. Nutr. 2018, 58, 610–630. [Google Scholar] [CrossRef]
- Gou, P.; Morales, R.; Serra, X.; Guàrdia, M.D.; Arnau, J. Effect ofa 10-day ageing at 30◦C on the texture ofdry-cured hams processed at temperatures up to 18 °C in relation to raw meat pH and salting time. Meat Sci. 2008, 80, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Alba, M.D.; Montiel, R.; Bravo, D.; Gaya, P.; Medina, M. High pressure treatments on the inactivation of Salmonella Enteritidis and the physicochemical, rheological and color characteristics of sliced vacuum-packaged dry-cured ham. Meat Sci. 2012, 91, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.K.; Cai, F.; Luo, B.S.; Gu, R.H.; Ahmed, S.; Long, C.L. Variation of microbiological and biochemical profiles of Laowo dry-cured ham, an indigenous fermented food, during ripening by GC-TOF-MS and UPLC-QTOF-MS. J. Agric. Food Chem. 2020, 68, 8925–8935. [Google Scholar] [CrossRef]
- Suman, S.P.; Joseph, P. Myoglobin chemistry and meat color. Annu. Rev. Food Sci. Technol. 2012, 4, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Seong, P.N.; Park, K.M.; Kang, S.M.; Kang, G.H.; Cho, S.H.; Park, B.Y.; Ba, H.V. Effect of particular breed on the chemical composition, texture, color, and Sensorial characteristics of dry-cured ham. Asian-Australas J. Anim. Sci. 2014, 27, 1164–1173. [Google Scholar] [CrossRef] [Green Version]
- Møller, J.K.S.; Adamsen, C.E.; Skibsted, L.H. Spectral characterisation of red pigment in italian-type dry-cured ham. Increasing lipophilicity druing processing and maturation. Eur. Food Res. Technol. 2003, 216, 290–296. [Google Scholar] [CrossRef]
- Lindahl, G.; Lundström, K.; Tornberg, E. Contribution of pigment content, myoglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. Meat Sci. 2001, 59, 141–151. [Google Scholar] [CrossRef]
- Adamsen, C.E.; Møller, J.K.S.; Parolari, G.; Gabba, L.; Skibsted, L.H. Changes in zn-porphyrin and proteinous pigments in italian dry-cured ham during processing and maturation. Meat Sci. 2006, 74, 373–379. [Google Scholar] [CrossRef]
- Chen, W.B.; Li, L.H.; Wang, J.; Dai, Z.Q.; Xu, X.L.; Zhang, J.H. Effect of partial KCl substitution for NaCl on the colour formation of dry cured ham muscle by enhanced high-temperature maturation process. Food Sci. 2017, 38, 77–84. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. Vsearch: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, F.; Chen, J.; Sun, Z.; Fu, L. High-throughput sequencing-based characterization of the predominant microbial community associated with characteristic flavor formation in jinhua ham. Food Microbiol. 2021, 94, 103643. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Z.; Ji, L.; Zhang, J.; Zhao, Z.; Zhang, R.; Bai, T.; Hou, B.; Wang, W. Flavor composition and microbial community structure of Mianning ham. Front. Microbiol. 2021, 11, 623775. [Google Scholar] [CrossRef]
- Mu, Y.; Su, W.; Mu, Y.C. Analysis of microbial diversity and key volatile flavor compounds of Panxian dry-cured ham. Food Res. 2019, 40, 77–85. [Google Scholar] [CrossRef]
- Iacumin, L.; Chiesa, L.; Boscolo, D.; Manzano, M.; Cantoni, C.; Orlic, S.; Comi, G. Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiol. 2009, 26, 65–70. [Google Scholar] [CrossRef]
- Marušić, N.; Vidaček, S.; Janči, T.; Petrak, T.; Medić, H. Determination of volatile compounds and quality parameters of traditional Istrian dry-cured ham. Meat Sci. 2014, 96, 1409–1416. [Google Scholar] [CrossRef]
- Li, W.Q.; Chen, Y.P.; Blank, I.; Li, F.Y.; Li, C.B.; Liu, Y. GC × GC-ToF-MS and GC-IMS based volatile profile characterization of the Chinese dry-cured hams from different regions. Food Res. Int. 2021, 142, 110222. [Google Scholar] [CrossRef]
- Andrés, A.I.; Cava, R.; Ventanas, J.; Muriel, E.; Ruiz, J. Lipid oxidative changes throughout the ripening of dry-cured Iberian hams with different salt contents and pro-cessing conditions. Food Chem. 2004, 84, 375–381. [Google Scholar] [CrossRef]
- García-González, D.L.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T. Relationship between sensory attributes and volatile compounds qualifying dry-cured hams. Meat Sci. 2008, 80, 315–325. [Google Scholar] [CrossRef]
- Deng, Y.; Luo, Y.L.; Wang, Y.G.; Zhao, Y.Y. Effect of different drying methods on the myosin structure, amino acid composition, protein digestibility and volatile profile of squid fillets. Food Chem. 2015, 171, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, P.; Kruszewski, B.; Stachelska, M.A.; Szabłowska, E. Development of volatile profile of Kumpiak podlaski dry-cured ham during traditional ripening. Int. J. Food Sci. Technol. 2020, 55, 3630–3638. [Google Scholar] [CrossRef]
- Ramírez, R.; Cava, R. Volatile profiles of dry-cured meat products from three different Iberian x Duroc genotypes. J. Agric. Food Chem. 2007, 55, 1923–1931. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.S.; Vega, J.D. Detectable odor thresholds of selected lipid oxidation compounds in a meat model system. J. Food Sci. 1995, 60, 592–595. [Google Scholar] [CrossRef]
- García, C.; Martín, A.; Timón, M.L.; Córdoba, J.J. Microbial populations and volatile compounds in the ‘bone taint’ spoilage of dry cured ham. Lett. Appl. Microbiol. 2000, 30, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, C.; Oliveira, I.; Silva, J.A.; Martins, C.; Ventanas, J.; García, C. Implementation of multivariate techniques for the selection of volatile compounds as indicators of sensory quality of raw beef. J. Food Sci. Technol. 2015, 52, 3887–3898. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, C.; Sirtori, F.; Calamai, L.; Franci, O. The evolution of volatile compounds profile of “Toscano” dry-cured ham during ripening as revealed by SPME-GC-MS approach. J. Mass Spectrom. 2010, 45, 1056–1064. [Google Scholar] [CrossRef]
- Shi, Y.N.; Li, X.; Huang, A.X. A metabolomics-based approach investigates volatile flavor formation and characteristic compounds of the Dahe black pig dry-cured ham. Meat Sci. 2019, 158, 107904. [Google Scholar] [CrossRef]
- Zhu, C.Z.; Zhao, J.L.; Tian, W.; Liu, Y.X.; Li, M.Y.; Zhao, G.M. Contribution of histidine and lysine to the generation of volatile compounds in Jinhua ham exposed to ripening conditions via Maillard reaction. J. Food Sci. 2018, 83, 46–52. [Google Scholar] [CrossRef]
- Shi, Y.N.; Li, X.; Huang, A.X. Multivariate analysis approach for assessing coated dry-cured ham flavor quality during long-term storage. J. Food Sci. Technol. 2021, 58, 651–659. [Google Scholar] [CrossRef]
- Huan, Y.J.; Zhou, G.H.; Xu, X.L.; Liu, Y.M.; Wang, L.P. Study on the flavor characteristics of Jinhua ham of different grades. Food Sci. 2006, 27, 39–45. [Google Scholar] [CrossRef]
- Cordero, M.R.; Zumalacárregui, J.M. Characterization of micrococcaceae isolated from salt used for Spanish dry-cured ham. Lett. Appl. Microbiol. 2000, 31, 303–306. [Google Scholar] [CrossRef]
- Fulladosa, E.; Garriga, M.; Martín, B.; Guàrdia, M.D.; García-Regueiro, J.A.; Arnau, J. Volatile profile and microbiological characterization of hollow defect in dry-cured ham. Meat Sci. 2010, 86, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Carrapiso, A.I.; Martín, L.; Jurado, A.; García, C. Characterisation of the most odour-active compounds of bone tainted dry-cured Iberian ham. Meat Sci. 2010, 85, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.; Benito, M.J.; Aranda, E.; Ruiz-Moyano, S.; Córdoba, J.J.; Córdoba, M.G. Characterization by volatile compounds of microbial deep spoilage in Iberian dry-cured ham. J. Food Sci. 2010, 75, M360–M365. [Google Scholar] [CrossRef]
- Liu, H.; Huang, J.L.; Hu, Q.K.; Chen, Y.P.; Lai, K.Q.; Xu, J.Q.; Ouyang, G.F.; Liu, Y. Dual-fiber solid-phase microextraction coupled with gas chromatography-mass spectrometry for the analysis of volatile compounds in traditional Chinese dry-cured ham. J. Chromatogr. B Analyt. Technol. Biomed Life Sci. 2020, 1140, 121994. [Google Scholar] [CrossRef]
- Petrova, I.; Aasen, I.M.; Rustad, T.; Eikevik, T.M. Manufacture of dry-cured ham: A review. Part 1. Biochemical changes during the technological process. Eur. Food Res. Technol. 2015, 241, 587–599. [Google Scholar] [CrossRef]
Physicochemical Indexes | FBS | FBQ | ZC |
---|---|---|---|
Moisture content (g/100 g) | 44.7 ± 1.032 a | 39.99 ± 0.146 b | 38.85 ± 0.33 b |
aw | 0.945 ± 0.042 a | 0.88 ± 0.007 b | 0.852 ± 0.006 b |
pH | 6.51 ± 0.15 a | 6.31 ± 0.01 b | 5.93 ± 0.15 c |
Chloride (g/100 g) | 5.18 ± 0.3 a | 6.16 ± 0.17 b | 8.29 ± 0.38 c |
Malondialdehyde (mg/kg) | 1.93 ± 0.15a | 1.55 ± 0.13 b | 0.98 ± 0.94 c |
Color deviation | |||
L* | 47.51 ± 0.82 a | 44.9 ± 0.22 b | 41.76 ± 0.97 c |
a* | 10.04 ± 0.86 a | 12.53 ± 0.37 b | 13.18 ± 0.17 b |
b* | 9.32 ± 0.58 a | 8.25 ± 0.26 b | 7.46 ± 0.22 c |
Samples | Valid Tags | OUT Counts | Observed Species | Chao1 | Shannon | Simpson | Good’s Coverage |
---|---|---|---|---|---|---|---|
FBS | 74237 ± 585 a | 572 ± 40 a | 532.07 ± 37.76 a | 746.43 ± 61.45 a | 0.94 ± 0.65 a | 0.153 ± 0.122 a | 0.999 |
FBQ | 66418 ± 2492 b | 918 ± 219 a | 894.6 ± 220.75 ab | 1121.15 ± 179.79 b | 7.25 ± 0.31 b | 0.983 ± 0.004 b | 0.999 |
ZC | 64536 ± 4107 b | 973 ± 239 a | 960.3 ± 235.73 b | 1111.26 ± 238.53 ab | 7.42 ± 0.46 b | 0.985 ± 0.006 b | 0.999 |
Samples | Reads | ASV Counts | Observed Species | Chao1 | Shannon | Simpson | Good’s Coverage |
---|---|---|---|---|---|---|---|
FBS | 79550 ± 1151 a | 33 ± 8 a | 32.43 ± 7.84 a | 32.64 ± 8 a | 1.09 ± 0.31 a | 0.293 ± 0.123 a | 0.999 |
FBQ | 80481 ± 1600 a | 25 ± 3 a | 25.23 ± 2.93 a | 25.33 ± 3.06 a | 2.74 ± 0.23 b | 0.772 ± 0.046 b | 0.999 |
ZC | 80728 ± 771 a | 12 ± 5 b | 12.07 ± 5 b | 12.07 ± 5 b | 1.69 ± 0.68 ab | 0.464 ± 0.297 ab | 0.999 |
Number | RT | Compound Name | CAS | Absolute Content (μg/kg) | ||
---|---|---|---|---|---|---|
FBS | FBQ | ZC | ||||
Aldehydes | ||||||
1 | 4.999 | Hexanal | 66-25-1 | 279.607 ± 127.265 | 45.845 ± 13.239 | 169.272 ± 2.965 |
2 | 10.594 | Heptanal | 111-71-7 | 146.683 ± 60.83 | 16.167 ± 1.886 | 23.977 ± 5.092 |
3 | 11.014 | Methional | 3268-49-3 | 21.133 ± 1.372 | 34.471 ± 2.405 | 21.443 ± 6.246 |
4 | 16.376 | Benzaldehyde | 100-52-7 | 95.57 ± 0.38 | 137.969 ± 25.191 | 96.138 ± 1.627 |
5 | 23.802 | Benzeneacetaldehyde | 122-78-1 | 124.554 ± 35.024 | 251.58 ± 19.643 | 66.027 ± 16.365 |
6 | 25.084 | (E)-2-Octenal | 2548-87-0 | 24.828 ± 10.418 | - | - |
7 | 28.103 | Nonanal | 124-19-6 | 165.079 ± 63.923 | 73.304 ± 13.831 | 99.869 ± 14.441 |
8 | 31.274 | (E)-2-Nonenal | 18829-56-6 | 56.445 ± 24.873 | - | - |
9 | 33.769 | Decanal | 112-31-2 | 10.004 ± 2.649 | - | - |
10 | 36.52 | (E)-2-Decenal | 3913-81-3 | 11.632 ± 3.516 | - | 9.229 ± 2.221 |
11 | 58.302 | Pentadecanal | 2765-11-9 | 12.053 ± 4.541 | - | - |
12 | 58.307 | Hexadecanal | 629-80-1 | - | 47.541 ± 0.293 | 35.492 ± 6.473 |
Ketones | ||||||
13 | 9.836 | 2-Heptanone | 110-43-0 | 28.769 ± 5.8 | - | 7.013 ± 0.703 |
14 | 9.848 | 5-Methyl-2-hexanone | 110-12-3 | 0 | - | 11.118 ± 1.198 |
15 | 27.433 | 2-Nonanone | 821-55-6 | 60.126 ± 21.97 | - | 6.974 ± 0.652 |
Alcohol | ||||||
16 | 8.747 | 1-Hexanol | 111-27-3 | - | - | 8.113 ± 0.51 |
17 | 18.451 | 1-Heptanol | 111-70-6 | 16.944 ± 6.027 | - | - |
18 | 19.052 | 1-Octen-3-ol | 3391-86-4 | 48.982 ± 18.461 | 31.173 ± 6.003 | 95.706 ± 19.483 |
19 | 23.341 | 2-ethyl-1-Hexanol | 104-76-7 | - | 16.212 ± 1.925 | - |
20 | 23.341 | 4-ethyl-Octyn-3-ol | 5877-42-9 | 18.561 ± 6.999 | - | 9.933 ± 0.341 |
21 | 23.347 | 1-pentanol | 58175-57-8 | 10.354 ± 0.836 | 18.001 ± 2.605 | 15.836 ± 0.934 |
22 | 26.098 | 2-butyl-1-Octanol | 3913-02-8 | - | 8.523 ± 1.427 | - |
23 | 26.104 | (E)- 2-Decenal -1-ol | 18409-17-1 | - | - | 7.025 ± 0.33 |
24 | 26.11 | trans-2-Undecen-1-ol | 75039-84-8 | 12.257 ± 1.348 | - | - |
25 | 28.68 | 2-butyl-1-Octanol | 3913-02-8 | 7.266 ± 1.7 | 27.012 ± 0.99 | - |
26 | 31.268 | 2-ethyl-1-Decanol | 21078-65-9 | - | 14.638 ± 2.18 | - |
Ester | ||||||
27 | 16.423 | 1-(benzoyloxy)-2,5-Pyrrolidinedione | 23405-15-4 | 165.377 ± 3.105 | - | 83.853 ± 2.164 |
28 | 22.444 | 3,7-dimethyl-, formate-1,6-Octadien-3-ol | 115-99-1 | - | 7.481 ± 1.123 | - |
29 | 24.466 | Butyl isovalerate | 109-19-3 | 8.772 ± 1.387 | 7.813 ± 0.647 | - |
30 | 25.061 | but-2-yn-1-yl Carbonic acid nonyl ester | 1000383-20-5 | - | - | 13.514 ± 0.886 |
31 | 25.125 | Carbonic acid nonyl vinyl ester | 1000383-25-6 | - | 11.018 ± 0.607 | - |
32 | 25.3 | dihydro-4,4-dimethyl-2(3H)-Furanone, | 13861-97-7 | 13.636 ± 2.058 | 8.062 ± 0.896 | - |
33 | 26.285 | Octyl chloroformate | 7452-59-7 | 12.364 ± 1.955 | - | - |
34 | 26.296 | trichloroacetic acid nonyl ester | 65611-32-7 | 27.811 ± 11.905 | - | - |
35 | 33.139 | Hexanoic acid butyl ester | 626-82-4 | - | 13.763 ± 3.279 | - |
36 | 33.139 | Hexanoic acid hexyl ester | 6378-65-0 | 16.151 ± 2.407 | - | - |
37 | 41.154 | dihydro-5-pentyl-2(3H)-Furanone | 104-61-0 | - | 15.36 ± 0.714 | - |
38 | 41.154 | Sulfurous acid dodecyl hexyl ester | 1000309-13-4 | 14.005 ± 6.619 | 28.157 ± 2.309 | - |
39 | 41.165 | Sulfurous acid hexyl undecyl ester | 1000309-13-3 | - | - | 8.525 ± 1.204 |
40 | 42.349 | Octanoic acid octyl ester | 2306-88-9 | 14.642 ± 6.373 | - | - |
41 | 42.354 | Butyl caprylate | 589-75-3 | - | 7.843 ± 1.042 | - |
42 | 42.739 | Decanoic acid ethyl ester | 110-38-3 | 21.881 ± 0.557 | 49.82 ± 2.207 | - |
Hydrocarbon | ||||||
43 | 4.218 | 1-chloropentane | 543-59-9 | 25.442 ± 6.271 | - | - |
44 | 17.711 | 3-methylnonane | 5911-04-6 | - | 8.78 ± 1.937 | - |
45 | 22.45 | D-Limonene | 5989-27-5 | - | 7.151 ± 0.585 | - |
46 | 22.84 | (Z)-3-ethyl-2-methyl-1,3-Hexadiene | 74752-97-9 | 8.701 ± 0.808 | - | - |
47 | 24.938 | 2,4-dimethylhexane, | 589-43-5 | - | 10.645 ± 1.818 | - |
48 | 26.425 | (Z)-5-Tridecene | 25524-42-9 | - | - | 15.73 ± 1.38 |
49 | 26.903 | 2-methyl-10-Undecen-1-al | 1000151-82-1 | 7.987 ± 1.179 | - | - |
50 | 27.561 | 6-methyltridecane, | 13287-21-3 | 8.642 ± 1.601 | 18.647 ± 1.711 | - |
51 | 27.894 | 2,6-Dimethylnonane, | 17302-23-7 | 13.654 ± 1.61 | 20.354 ± 0.779 | 15.315 ± 3.717 |
52 | 28.593 | Dodecane | 112-40-3 | - | 16.812 ± 6.018 | - |
53 | 29.252 | 3,5-dimethyloctane, | 15869-93-9 | - | 41.43 ± 0.49 | - |
54 | 29.351 | 3,7-dimethyldecane, | 17312-54-8 | - | 8.943 ± 0.205 | - |
55 | 29.362 | 2,6,10-trimethyldodecane, | 3891-98-3 | 8.398 ± 1.251 | - | - |
56 | 29.432 | 4-methyl-5-propylnonane, | 62185-55-1 | 7.466 ± 0.717 | - | |
57 | 30.412 | 2,3-dimethylundecane | 17312-77-5 | 9.532 ± 0.9 | 8.985 ± 1.709 | - |
58 | 30.691 | 5-propyldecane | 17312-62-8 | 13.326 ± 1.066 | 11.024 ± 2.17 | - |
59 | 31.047 | 5-methylundecane | 1632-70-8 | 20.167 ± 2.22 | 16.785 ± 3.022 | - |
60 | 31.262 | 4,8-dimethyl-1-Nonanol | 33933-80-1 | - | 14.04 ± 1.569 | - |
61 | 31.484 | 2-methylundecane, | 7045-71-8 | - | - | 11.239 ± 3.49 |
62 | 31.828 | 3-methylundecane | 1002-43-3 | 36.408 ± 23.381 | 53.402 ± 9.45 | 7.46 ± 0.401 |
63 | 32.143 | 3,5-dimethyloctane | 15869-93-9 | - | - | 6.604 ± 0.318 |
64 | 32.661 | I-3-Methyl-5-undecene | 74630-67-4 | 21.155 ± 3.753 | 16.169 ± 3.763 | - |
65 | 32.988 | 1-Dodecene | 112-41-4 | 11.547 ± 2.086 | 13.318 ± 1.873 | - |
66 | 33.425 | Dodecane | 112-40-3 | 82.188 ± 45.032 | 121.588 ± 31.205 | 22.564 ± 5.601 |
67 | 33.664 | Hexadecane | 544-76-3 | - | - | 8.381 ± 0.669 |
68 | 33.967 | 2,4-Dimethyl-undecane | 17312-80-0 | - | - | 2.508 ± 4.344 |
69 | 34.148 | 6-methyldodecane | 6044-71-9 | - | - | 7.347 ± 12.726 |
70 | 34.148 | 2,5-dimethylundecane | 17301-22-3 | - | - | 12.346 ± 12.322 |
71 | 34.154 | 2,2′-(Butane-1,4-diyl)bisoxirane | 2426-07-5 | 9.477 ± 2.642 | - | - |
72 | 34.544 | 4-methyldodecane | 6117-97-1 | - | - | 15.106 ± 5.038 |
73 | 35.64 | 3-Methyl-5-propylnonane | 31081-18-2 | - | - | 3.319 ± 5.749 |
74 | 36.176 | 4,6-dimethyldodecane | 61141-72-8 | - | - | 9.475 ± 2.538 |
75 | 36.602 | 4-ethylundecane | 17312-59-3 | - | - | 21.216 ± 6.139 |
76 | 36.602 | Tetradecane | 629-59-4 | - | - | 25.601 ± 0.701 |
77 | 37.773 | 2,6,10-trimethyldodecane | 3891-98-3 | - | - | 7.265 ± 0.894 |
78 | 38.315 | Tridecane | 629-50-5 | 13.195 ± 3.471 | 11.649 ± 2.811 | 10.069 ± 2.712 |
79 | 38.315 | 2,6,11-trimethyldodecane | 31295-56-4 | - | 7.062 ± 1.274 | 9.786 ± 2.34 |
80 | 38.321 | 3-Methyl-5-propylnonane | 31081-18-2 | - | 9.03 ± 1.52 | - |
81 | 40.11 | 7-Methylheptadecane | 20959-33-5 | 10.765 ± 3.115 | 9.399 ± 0.244 | - |
82 | 41.451 | 3-methyltridecane, | 6418-41-3 | 13.815 ± 8.025 | 22.399 ± 7.665 | - |
83 | 42.745 | Tetradecane | 629-59-4 | 44.302 ± 2.749 | 55.442 ± 18.935 | - |
84 | 46.872 | Pentadecane | 629-62-9 | 11.66 ± 3.477 | 11.556 ± 3.388 | 11.346 ± 2.207 |
85 | 50.748 | Hexadecane | 544-76-3 | 7.184 ± 0.668 | 9.361 ± 0.78 | - |
Acids | ||||||
86 | 5.68 | Butanoic acid | 107-92-6 | 266.885 ± 55.439 | 226.173 ± 90.197 | - |
87 | 8.274 | Isovaleric acid | 503-74-2 | 62.521 ± 16.649 | 76.017 ± 0.636 | 8.939 ± 1.256 |
88 | 8.84 | 2-methyl butanoic acid | 116-53-0 | 123.936 ± 28.854 | - | - |
89 | 25.061 | Dichloroacetic acid nonyl ester | 83004-99-3 | - | - | 8.792 ± 0.855 |
90 | 32.661 | 4-methyl-1-acetate-1-Hexanol | 91367-59-8 | 7.596 ± 1.563 | - | - |
91 | 32.854 | Octanoic acid | 124-07-2 | 11.25 ± 1.392 | 15.199 ± 2.66 | 20.041 ± 11.028 |
92 | 41.725 | n-Decanoic acid | 334-48-5 | 8.233 ± 0.986 | 6.412 ± 1.111 | 13.123 ± 0.637 |
other | ||||||
93 | 11.807 | 4,6-dimethylpyrimidine, | 1558-17-4 | 11.571 ± 1.626 | - | - |
94 | 24.927 | tetrahydro-5-methyl-trans-2-Furanmethanol | 54774-28-6 | 7.461 ± 2.111 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wang, W.; Zhang, Y.; Li, M.; Zhang, J.; Ji, L.; Zhao, Z.; Zhang, R.; Chen, L. Characterization of Quality Properties in Spoiled Mianning Ham. Foods 2022, 11, 1713. https://doi.org/10.3390/foods11121713
Zhu Y, Wang W, Zhang Y, Li M, Zhang J, Ji L, Zhao Z, Zhang R, Chen L. Characterization of Quality Properties in Spoiled Mianning Ham. Foods. 2022; 11(12):1713. https://doi.org/10.3390/foods11121713
Chicago/Turabian StyleZhu, Yanli, Wei Wang, Yulin Zhang, Ming Li, Jiamin Zhang, Lili Ji, Zhiping Zhao, Rui Zhang, and Lin Chen. 2022. "Characterization of Quality Properties in Spoiled Mianning Ham" Foods 11, no. 12: 1713. https://doi.org/10.3390/foods11121713
APA StyleZhu, Y., Wang, W., Zhang, Y., Li, M., Zhang, J., Ji, L., Zhao, Z., Zhang, R., & Chen, L. (2022). Characterization of Quality Properties in Spoiled Mianning Ham. Foods, 11(12), 1713. https://doi.org/10.3390/foods11121713