Fingerprinting of Volatile Organic Compounds for the Geographical Discrimination of Rice Samples from Northeast China
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection
2.3. Optimization of the HS-SPME Method
2.4. Sample Preparation
2.5. Extraction of VOCs in Rice Sample
2.6. GC-MS Data Acquisition
2.7. Identification of VOCs in Rice Sample
2.8. Statistical Analysis
2.9. Multivariate Analysis
3. Results and Discussion
3.1. Optimization of the HS-SPME Method
3.1.1. Sample Weight
3.1.2. Extraction Temperature
3.1.3. Extraction Time
3.2. GC-MS Analysis
3.3. Partial Least Square Discriminant Analysis
3.4. Specific VOC Compounds Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ch, R.; Chevallier, O.; Mccarron, P.; Mcgrath, T.F.; Elliott, C.T. Metabolomic Fingerprinting of Volatile Organic Compounds for the Geographical Discrimination of Rice Samples from China, Vietnam and India. Food Chem. 2020, 334, 127553. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.J.; Geng, T.; Chen, Q.; Chen, C.Q. Impacts of Climate Warming on Growth Period and Yield of Rice in Northeast China During Recent Two Decades. Chin. J. Appl. Ecol. 2015, 26, 249–259. [Google Scholar]
- Teye, E.; Amuah, C.L.Y.; Mcgrath, T.; Elliott, C. Innovative and Rapid Analysis for Rice Authenticity Using Hand-Held Nir Spectrometry and Chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 217, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.L.; Mo, C.; Lee, D.K.; Long, N.P.; Kwon, S.W. Non-Destructive Profiling of Volatile Organic Compounds Using Hs-SPME/GC–MS and its Application for the Geographical Discrimination of White Rice. J. Food Drug Anal. 2018, 26, 260. [Google Scholar] [CrossRef]
- Suzuki, Y.; Chikaraishi, Y.; Ogawa, N.O.; Ohkouchi, N.; Korenaga, T. Geographical Origin of Polished Rice Based on Multiple Element and Stable Isotope Analyses. Food Chem. 2008, 109, 470–475. [Google Scholar] [CrossRef]
- Vemireddy, L.R.; Satyavathi, V.V.; Siddiq, E.A.; Nagaraju, J. Review of Methods for the Detection and Quantification of Adulteration of Rice: Basmati as a Case Study. J. Food Sci. Technol. 2014, 52, 3187–3202. [Google Scholar] [CrossRef] [Green Version]
- Kalogiouri, N.P.; Aalizadeh, R.; Thomaidis, N.S. Investigating the Organic and Conventional Production Type of Olive Oil with Target and Suspect Screening by LC-QTOF-MS, a Novel Semi-Quantification Method Using Chemical Similarity and Advanced Chemometrics. Anal. Bioanal. Chem. 2017, 409, 5413–5426. [Google Scholar] [CrossRef]
- Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Valverde-Som, L.; Pérez-Castaño, E.; González-Casado, A. Chromatographic Fingerprinting: An Innovative Approach for Food ‘Identitation’ and Food Authentication—A Tutorial. Anal. Chim. Acta 2016, 909, 9–23. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, J.K.; Prabakaran, M.; Yang, J.H.; Kim, S.H. Authenticity of Rice (Oryza sativa L.) Geographical Origin Based on Analysis of C, N, O and S Stable Isotope Ratios: A Preliminary Case Report in Korea, China and Philippine. J. Sci. Food Agric. 2016, 96, 2433–2439. [Google Scholar] [CrossRef]
- Custodio, M.C.; Cuevas, R.P.; Ynion, J.; Laborte, A.G.; Velasco, M.L.; Demont, M. Rice Quality: How is It Defined by Consumers, Industry, Food Scientists, and Geneticists? Trends Food Sci. Technol. 2019, 92, 122–137. [Google Scholar] [CrossRef]
- Bhat, F.M.; Riar, C.S. Effect of Amylose, Particle Size and Morphology on the Functionality of Starches of Traditional Rice Cultivars. Int. J. Biol. Macromol. 2016, 92, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mauleon, R.; Hu, Z.; Chebotarov, D.; Tai, S.; Wu, Z.; Li, M.; Zheng, T.; Fuentes, R.R.; Zhang, F.; et al. Genomic Variation in 3,010 Diverse Accessions of Asian Cultivated Rice. Nature 2018, 557, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Beale, D.J.; Pinu, F.R.; Kouremenos, K.A.; Poojary, M.M.; Dias, D.A. Review of Recent Developments in GC–MS Approaches to Metabolomics-Based Research. Metabolomics 2018, 14, 152. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Jing, S.; Zhu, L.; Ma, C.; Song, T.; Wu, J.; Zhao, Q.; Zheng, F.; Zhao, M.; Chen, F. Untargeted and Targeted Metabolomics Strategy for the Classification of Strong Aroma-Type Baijiu (Liquor) According to Geographical Origin Using Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry. Food Chem. 2020, 314, 126098. [Google Scholar] [CrossRef] [PubMed]
- Kalogiouri, N.P.; Manousi, N.; Rosenberg, E.; Zachariadis, G.A.; Paraskevopoulou, A.; Samanidou, V. Exploring the Volatile Metabolome of Conventional and Organic Walnut Oils by Solid-Phase Microextraction and Analysis by GC-MS Combined with Chemometrics. Food Chem. 2021, 363, 130331. [Google Scholar] [CrossRef]
- Lytou, A.E.; Panagou, E.Z.; Nychas, G. Volatilomics for Food Quality and Authentication. Curr. Opin. Food Sci. 2019, 28, 88–95. [Google Scholar] [CrossRef]
- Matsushita, T.; Zhao, J.J.; Igura, N.; Shimoda, M. Authentication of Commercial Spices Based on the Similarities Between Gas Chromatographic Fingerprints. J. Sci. Food Agric. 2017, 98, 2989. [Google Scholar] [CrossRef]
- Jia, X.; Wang, L.; Zheng, C.; Yang, Y.; Wang, X.; Hui, J.; Zhou, Q. Key Odorant Differences in Fragrant Brassica Napus and Brassica Juncea Oils Revealed by Gas Chromatography–Olfactometry, Odor Activity Values, and Aroma Recombination. J. Agric. Food Chem. 2020, 68, 14950–14960. [Google Scholar] [CrossRef]
- Wang, Z.; Su, H.; Bi, X.; Zhang, M. Effect of Fragmentation Degree on Sensory and Texture Attributes of Cooked Rice. J. Food Process Pres. 2019, 43, e13920. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, K.; Zhang, M.; Duan, M.; Tuersuntuoheti, T.; Li, M.; Wang, J.; Ren, X. Effect of Electron Beam Irradiation on Shelf Life, Noodle Quality, and Volatile Compounds of Fresh Millet-Wheat Noodles. J. Food Process Pres. 2021, 45, e16064. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial Least Squares for Discrimination. J. Chemometr. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Westerhuis, J.A.; Hoefsloot, H.; Smit, S.; Vis, D.J.; Dorsten, F. Assessment of Plsda Cross Validation. Metabolomics 2008, 4, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Franklin, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction. By. Math. Intelligencer. 2009, 27, 83–85. [Google Scholar] [CrossRef]
- Yang, C.; Luo, L.; Zhang, H.; Yang, X.; Lv, Y.; Song, H. Common Aroma-Active Components of Propolis from 23 Regions of China. J. Sci. Food Agric. 2010, 90, 1268–1282. [Google Scholar] [CrossRef] [PubMed]
- Boccard, J.; Rutledge, D.N. A Consensus Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) Strategy for Multiblock Omics Data Fusion. Anal Chim. Acta 2013, 769, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Asimi, S.; Zhang, M.; Zhou, Q.; Yang, Z. Effects of Fatty Acids on Taste Quality of Cooked Rice. Food Sci. 2019, 40, 8–14. [Google Scholar] [CrossRef]
- Yang, D.S.; Shewfelt, R.L.; Lee, K.S.; Kays, S.J. Comparison of Odor-Active Compounds from Six Distinctly Different Rice Flavor Types. J. Agric. Food Chem. 2008, 56, 2780–2787. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. Science and Technology of Aroma, Flavor, and Fragrance in Rice; Apple Academic Press Inc.: Palm Bay, FL, USA; Burlington, ON, Canada, 2018. [Google Scholar]
- Zhao, Q.; Xi, J.; Xu, D.; Jin, Y.; Wu, F.; Tong, Q.; Yin, Y.; Xu, X. A Comparative HS-SPME/GC-MS-Based Metabolomics Approach for Discriminating Selected Japonica Rice Varieties from Different Regions of China in Raw and Cooked Form. Food Chem. 2022, 385, 132701. [Google Scholar] [CrossRef]
- Zhi, Z.; Zhang, H.; Tao, Z.; Tamogami, S.; Jie, Y.C. Analysis of Flavor Volatiles of Glutinous Rice During Cooking by Combined Gas Chromatography-Mass Spectrometry with Modified Headspace Solid-Phase Microextraction Method. J. Food Compos. Anal. 2009, 22, 347–353. [Google Scholar] [CrossRef]
- Yajima, I. Volatile Flavor Compounds of Cooked Rice. Agric. Biol. Chem. 1978, 42, 1229–1233. [Google Scholar] [CrossRef]
No. | Compound | CAS | Formulate | VIP | p-Value | FDR |
---|---|---|---|---|---|---|
1 | Tridecane | 629-50-5 | C13H28 | 1.6043 | 5.407 × 10−14 | 1.622 × 10−12 |
2 | Tetradecane | 629-59-4 | C14H30 | 1.5507 | 2.841 × 10−10 | 1.704 × 10−9 |
3 | Hexadecane | 544-76-3 | C16H34 | 1.2049 | 1.505 × 10−5 | 3.763 × 10−5 |
4 | 2,6,10,14-tetramethyl-hexadecane | 638-36-8 | C20H42 | 1.1911 | 6.349 × 10−6 | 1.807 × 10−5 |
5 | Styrene | 100-42-5 | C8H8 | 1.4660 | 1.709 × 10−11 | 1.709 × 10−10 |
6 | 2,6-dimethyl-decane | 13150-81-7 | C12H26 | 1.3412 | 3.378 × 10−5 | 6.334 × 10−5 |
7 | 2-methyl-dodecane | 1560-97-0 | C13H28 | 1.4299 | 2.885 × 10−11 | 2.163 × 10−10 |
8 | 2,6,10-trimethyl-dodecane | 3891-98-3 | C15H32 | 1.1175 | 2.613 × 10−5 | 6.029 × 10−5 |
9 | (E)-2-heptenal | 18829-55-5 | C7H12O | 1.8503 | 1.473 × 10−12 | 2.209 × 10−11 |
10 | Decanal | 112-31-2 | C10H20O | 1.2985 | 3.33 × 10−5 | 6.334 × 10−5 |
11 | Hexanol | 626-93-7 | C6H14O | 1.1383 | 5.386 × 10−6 | 1.795 × 10−5 |
12 | 1-octanol | 111-87-5 | C8H18O | 1.1921 | 0.0001302 | 0.0002297 |
13 | 2-hexyl-1-decanol | 2425-77-6 | C16H34O | 1.0285 | 0.0003811 | 0.0006351 |
14 | Nonanoic acid | 112-05-0 | C9H18O2 | 1.0650 | 0.0087844 | 0.011458 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asimi, S.; Ren, X.; Zhang, M.; Li, S.; Guan, L.; Wang, Z.; Liang, S.; Wang, Z. Fingerprinting of Volatile Organic Compounds for the Geographical Discrimination of Rice Samples from Northeast China. Foods 2022, 11, 1695. https://doi.org/10.3390/foods11121695
Asimi S, Ren X, Zhang M, Li S, Guan L, Wang Z, Liang S, Wang Z. Fingerprinting of Volatile Organic Compounds for the Geographical Discrimination of Rice Samples from Northeast China. Foods. 2022; 11(12):1695. https://doi.org/10.3390/foods11121695
Chicago/Turabian StyleAsimi, Sailimuhan, Xin Ren, Min Zhang, Sixuan Li, Lina Guan, Zhenhua Wang, Shan Liang, and Ziyuan Wang. 2022. "Fingerprinting of Volatile Organic Compounds for the Geographical Discrimination of Rice Samples from Northeast China" Foods 11, no. 12: 1695. https://doi.org/10.3390/foods11121695
APA StyleAsimi, S., Ren, X., Zhang, M., Li, S., Guan, L., Wang, Z., Liang, S., & Wang, Z. (2022). Fingerprinting of Volatile Organic Compounds for the Geographical Discrimination of Rice Samples from Northeast China. Foods, 11(12), 1695. https://doi.org/10.3390/foods11121695