Eggplant Flour Addition in Cookie: Nutritional Enrichment Alternative for Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Food Acceptance Evaluation
2.3. Eggplant Flour Elaboration
2.4. Cookie Formulations
2.5. Sensory Evaluation
2.6. Physicochemical and Nutritional Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Food Acceptance
3.2. Sensory Analysis
3.3. Physicochemical and Nutritional Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niño-Medina, G.; Urías-Orona, V.; Rangel, M.D.M.; Heredia, J.B. Structure and content of phenolics in eggplant (Solanum melongena)—A review. S. Afr. J. Bot. 2017, 111, 161–169. [Google Scholar] [CrossRef]
- Gurbuz, N.; Uluişik, S.; Frary, A.; Frary, A.; Doğanlar, S. Health benefits and bioactive compounds of eggplant. Food Chem. 2018, 268, 602–610. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Faostat—Production. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 5 June 2020).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Agropecuário 2017—Horticultura. Available online: https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017 (accessed on 5 June 2020).
- Uthumporn, U.; Woo, W.L.; Tajul, A.; Fazilah, A.Y. Physico-chemical and nutritional evaluation of cookies with different levels of eggplant flour substitution. CyTA J. Food 2015, 13, 220–226. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). FoodData Central—Eggplant, Raw. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/169228/nutrients (accessed on 5 June 2020).
- Scorsatto, M.; Pimentel, A.D.C.; Da Silva, A.J.R.; Sabally, K.; Rosa, G.; De Oliveira, G.M.M. Assessment of Bioactive Compounds, Physicochemical Composition, and In Vitro Antioxidant Activity of Eggplant Flour. Int. J. Cardiovasc. Sci. 2017, 30, 235–242. [Google Scholar] [CrossRef]
- Barros, E.R.S.; Azevedo, D.M.S.; Caldeira, J.O.; Sousa, B.R.; Bittencourt, F.d.O.; Vieira, V.F.; Duarte, S.F.P.; Fogaça, L.C. Sensory Assessment of Cookie Type Biscuits Produced with Eggplant Flour (Solanum Melongena, L.). Int. J. Curr. Res. 2019, 11, 3931–3934. [Google Scholar]
- United States. Per Capita Consumption of Fresh Vegetables in the United States in 2019, by Vegetable Type (in Pounds). Available online: https://www.statista.com/statistics/257345/per-capita-consumption-of-fresh-vegetables-in-the-us-by-type/ (accessed on 5 June 2020).
- Mennella, J.A.; Pepino, M.Y.; Duke, F.F.; Reed, D.R. Age modifies the genotype-phenotype relationship for the bitter receptor TAS2R38. BMC Genet. 2010, 11, 60. [Google Scholar] [CrossRef] [Green Version]
- Cain, J.P.; Silva, V.D.C.; Franco, B.C.; Da Luz, L.A.P.; Dos Santos, E.F.; Novello, D. Oficinas de culinária melhoram a aceitabilidade de alimentos entre crianças de idade escolar. Res. Soc. Dev. 2020, 9, 20942952. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.C.; Bassett, M.N.; Sammán, N.C. Dietary nutritional profile and phenolic compounds consumption in school children of highlands of Argentine Northwest. Food Chem. 2018, 238, 111–116. [Google Scholar] [CrossRef]
- World Health Organization. Healthy Diet. Available online: https://www.who.int/who-documents-detail-redirect/healthy-diet-factsheet394 (accessed on 5 June 2020).
- Teixeira, F.; De Lima, K.A.; Silva, V.D.C.; Franco, B.C.; Dos Santos, E.F.; Novello, D. Farinha da casca de berinjela em pão: Análise físico-química e sensorial entre crianças. Cienc. Saude 2018, 11, 128. [Google Scholar] [CrossRef]
- da Rosa, P.A.; Rodrigues, B.M.; dos Santos, N.M.; Candido, C.J.; dos Santos, E.F.; Novello, D. Elaboração de esfihas de frango adicionadas de farinha de casca de berinjela: Análise físico-química e sensorial. Revista Uniabeu 2016, 9, 200–213. [Google Scholar]
- Rodriguez-Jimenez, J.R.; Amaya-Guerra, C.A.; Baez-Gonzalez, J.G.; Aguilera-Gonzalez, C.; Urias-Orona, V.; Nino-Medina, G. Physicochemical, Functional, and Nutraceutical Properties of Eggplant Flours Obtained by Different Drying Methods. Molecules 2018, 23, 3210. [Google Scholar] [CrossRef] [Green Version]
- Mbondo, N.N.; Owino, W.O.; Ambuko, J.; Sila, D.N. Effect of drying methods on the retention of bioactive compounds in African eggplant. Food Sci. Nutr. 2018, 6, 814–823. [Google Scholar] [CrossRef] [Green Version]
- Associação Brasileira das Indústrias de Biscoitos, Massas Alimentícias e Pães & Bolos Industrializados (ABIMAPI). Estatísticas. Available online: https://www.abimapi.com.br/estatisticas-biscoitos.php (accessed on 5 June 2020).
- Martins, A.P.B.; Levy, R.B.; Claro, R.M.; Moubarac, J.C.; Monteiro, C.A.; Martins, A.P.B.; Levy, R.B.; Claro, R.M.; Moubarac, J.C.; Monteiro, C.A. Increased Contribution of Ultra-Processed Food Products in the Brazilian Diet (1987–2009). Revista De Saude Publica 2013, 47, 656–665. [Google Scholar] [CrossRef]
- Chavan, R.S.; Sandeep, K.; Basu, S.; Bhatt, S. Biscuits, Cookies, and Crackers: Chemistry and Manufacture. In Encyclopedia of Food and Health; Academic Press: Amsterdam, The Netherlands, 2016; pp. 437–444. [Google Scholar] [CrossRef]
- Aboshora, W.; Yu, J.; Omar, K.A.; Li, Y.; Hassanin, H.A.M.; Navicha, W.B.; Zhang, L. Preparation of Doum fruit (Hyphaene thebaica) dietary fiber supplemented biscuits: Influence on dough characteristics, biscuits quality, nutritional profile and antioxidant properties. J. Food Sci. Technol. 2019, 56, 1328–1336. [Google Scholar] [CrossRef]
- United States. 2015–2020 Dietary Guidelines for Americans, 8th ed.; Skyhorse Publishing: Washington, DC, USA, 2017. [Google Scholar]
- Brazil. Boas Práticas de Manipulação de Alimentos; SEED-PR: Curitiba, Brazil, 2015. [Google Scholar]
- Kroll, B.J. Evaluating Rating Scales for Sensory Testing with Children. Food Qual. Prefer. 1990, 44, 78–86. [Google Scholar]
- Guimarães, R.R.; Vendramini, A.L.D.A.; dos Santos, A.C.; Leite, S.G.F.; Miguel, M.A.L. Development of probiotic beads similar to fish eggs. J. Funct. Foods 2013, 5, 968–973. [Google Scholar] [CrossRef] [Green Version]
- American Association of Cereal Chemists (AACC). Approved Methods, 10th ed.; AACC International: Saint Paul, MN, USA, 2000. [Google Scholar]
- Konica Minolta. Precise Color Communication: Color Control from Perception to Instrumentation; Konica Minolta: Ramsey, NJ, USA, 2007. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International; AOAC: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Atwater, W.O.; Woods, C.D. The Chemical Composition of American Food Materials; Government Printing Office: Washington, DC, USA, 1896.
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005; p. 10490. [Google Scholar] [CrossRef]
- Benassi, M.T.; Antunes, A.J. A Comparison of Metaphosphoric and Oxalic Acids as Extractants Solutions for the Determination of Vitamin C in Selected Vegetables. Arch. Biol. Technol. 1988, 31, 507–513. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1–13. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- R CORE TEAM. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Hanson, K.L.; Garner, J.; Connor, L.M.; Pitts, S.B.J.; McGuirt, J.; Harris, R.; Kolodinsky, J.; Wang, W.; Sitaker, M.; Ammerman, A.; et al. Fruit and Vegetable Preferences and Practices May Hinder Participation in Community-Supported Agriculture Among Low-Income Rural Families. J. Nutr. Educ. Behav. 2019, 51, 57–67. [Google Scholar] [CrossRef]
- Drewnowski, A.; Gomez-Carneros, C. Bitter taste, phytonutrients, and the consumer: A review. Am. J. Clin. Nutr. 2000, 72, 1424–1435. [Google Scholar] [CrossRef]
- Vecchio, R.; Cavallo, C.; Cicia, G.; Del Giudice, T. Are (All) Consumers Averse to Bitter Taste? Nutrients 2019, 11, 323. [Google Scholar] [CrossRef] [Green Version]
- Brasil, D.L.; Belo, T.A.R.; Zambelli, R.A.; Pontes, D.F.; Silva, M.L. Desenvolvimento de Pães Tipo Forma Adicionado de Farinha de Berinjela. In Anais do XX Congresso Brasileiro de Engenharia Química; Associação Brasileira de Engenharia Química—ABEQ: Florianópolis, Brazil, 2014; pp. 1–8. [Google Scholar]
- Chung, L.M.Y.; Fong, S.S.M.; Chung, J.W.Y. Identification on Sensory Attributes and Children’s Ratings of Fruits and Vegetables with and without Appearance Modification: A Pilot Study. J. Child Adolesc. Behav. 2016, 4, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Mauro, A.K.; da Silva, V.L.M.; Freitas, M.C.J. Caracterização física, química e sensorial de cookies confeccionados com farinha de talo de couve (FTC) e farinha de talo de espinafre (FTE) ricas em fibra alimentar. Ciênc. Technol. Aliment. 2010, 30, 719–728. [Google Scholar] [CrossRef] [Green Version]
- Noda, Y.; Kneyuki, T.; Igarashi, K.; Mori, A.; Packer, L. Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology 2000, 148, 119–123. [Google Scholar] [CrossRef]
- Valerga, L.; Quintero-Ruiz, N.A.; Concellón, A.; Puppo, M.C. Technological and Nutritional Characterization of Wheat Breads Added with Eggplant Flour: Dependence on the Level of Flour and the Size of Fruit. J. Food Sci. Technol. 2020, 57, 182–190. [Google Scholar] [CrossRef]
- Sociedade Brasileira de Pediatria (SBP). Manual de Alimentação: Orientações Para Alimentação Do Lactente Ao Adolescente Na Escola, Na Gestante, Na Prevenção de Doenças e Segurança Alimentar, 4th ed.; SBP: São Paulo, Brazil, 2018. [Google Scholar]
- Saueressig, A.L.C.; Kaminski, T.A.; Escobar, T.D. Inclusion of Dietary Fiber in Gluten-Free Breads. Braz. J. Food Technol. 2016, 19, e2014045. [Google Scholar] [CrossRef] [Green Version]
- Perez, P.M.P.; Germani, R. Elaboração de biscoitos tipo salgado, com alto teor de fibra alimentar, utilizando farinha de berinjela (Solanum melongena, L.). Ciênc. Tecnol. Aliment. 2007, 27, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Kurek, M.A.; Wyrwisz, J.; Piwińska, M.; Wierzbicka, A. Influence of the wheat flour extraction degree in the quality of bread made with high proportions of β-glucan. Food Sci. Technol. 2015, 35, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Koponen, J.M.; Happonen, A.M.; Mattila, P.H.; Törrönen, A.R. Contents of Anthocyanins and Ellagitannins in Selected Foods Consumed in Finland. J. Agric. Food Chem. 2007, 55, 1612–1619. [Google Scholar] [CrossRef]
- Clerici, M.T.P.S.; de Oliveira, M.E.; Nabeshima, E.H. Qualidade física, química e sensorial de biscoitos tipo cookies elaborados com a substituição parcial da farinha de trigo por farinha desengordurada de gergelim. Braz. J. Food Technol. 2013, 16, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, M.S.J.; Preedy, V.R. Nutritional Composition of Fruit Cultivars; Academic Press: London, UK; San Diego, CA, USA, 2016. [Google Scholar]
- Perez, P.M.P.; Germani, R. Farinha Mista de Trigo e Berinjela: Características Físicas e Químicas. ALICE 2004, 22, 15–24. [Google Scholar] [CrossRef] [Green Version]
- de Souza, V.R.; Pereira, P.A.P.; Queiroz, F.; Borges, S.V.; Deus Souza Carneiro, J. Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chem. 2012, 134, 381–386. [Google Scholar] [CrossRef]
- Brazil. Resolução RDC No 263, de 22 de Setembro de 2005. Regulamento Técnico Para Produtos de Cereais, Amidos, Farinhas e Farelos; Diário Oficial da União–Poder Executivo: Brasília, Brazil, 2005.
- Mexico. Norma Oficial Mexicana, NOM-247-SSA1-2008, Productos y Servicios. Cereales y sus Productos. Cereales, Harinas de Cereales, Sémolas o Semolinas. Alimentos a Base de: Cereales, Semillas Comestibles, de Harinas, Sémolas o Semolinas o sus Mezclas. Productos de Panificación. Disposiciones y Especificaciones Sanitarias y Nutrimentales. Métodos de Prueba. Available online: http://depa.fquim.unam.mx/amyd/archivero/NOMcereales_12434.pdf (accessed on 6 June 2020).
- United States Department of Agriculture (USDA). USDA Commodity Requirements—WF16 Wheat Flour Products for Use in Domestic Programs; USDA: Kansas, MO, USA, 2017.
- Rosell, C.M.; Rojas, J.A.; Benedito de Barber, C. Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocoll. 2001, 15, 75–81. [Google Scholar] [CrossRef]
- Merkiel, S.; Chalcarz, W. Dietary intake in 6-year-old children from southern Poland: Part 2—vitamin and mineral intakes. BMC Pediatr. 2014, 14, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Bundy, D.A.P.; De Silva, N.; Horton, S.; Jamison, D.T.; Patton, G.C. Child and Adolescent Health and Development, 3rd ed.; Disease Control Priorities; World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- United States Department of Agriculture (USDA). FoodData Central—Wheat Flour, White, Bread, Enriched. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/168896/nutrients (accessed on 6 June 2020).
- Brazil. Resolução RDC No 54, de 12 de Novembro de 2012. Regulamento Técnico Mercosul Sobre Informação Nutricional Complementar (Declarações de Propriedades Nutricionais); Diário Oficial da União–Poder Executivo: Brasília, Brazil, 2012.
- Frond, A.D.; Iuhas, C.I.; Stirbu, I.; Leopold, L.; Socaci, S.; Andreea, S.; Ayvaz, H.; Andreea, S.; Mihai, S.; Diaconeasa, Z.; et al. Phytochemical Characterization of Five Edible Purple-Reddish Vegetables: Anthocyanins, Flavonoids, and Phenolic Acid Derivatives. Molecules 2019, 24, 1536. [Google Scholar] [CrossRef] [Green Version]
Parameter | EF0 | EF2.5 | EF5.0 | EF7.5 |
---|---|---|---|---|
Appearance | 6.1 ± 1.08 a | 5.9 ± 1.30 a | 5.7 ± 1.32 a | 5.2 ± 1.78 b |
AI (%) | 87.8 | 84.4 | 81.2 | 74.7 |
Flavor | 6.1 ± 1.23 a | 6.0 ± 1.27 a | 5.7 ± 1.41 a | 5.2 ± 1.87 b |
AI (%) | 87.3 | 85.9 | 81.1 | 74.0 |
Taste | 6.4 ± 1.13 a | 6.1 ± 1.33 a | 5.9 ± 1.44 a | 5.4 ± 1.83 b |
AI (%) | 90.7 | 87.8 | 84.6 | 77.6 |
Texture | 6.0 ± 1.18 a | 5.9 ± 1.28 a | 5.7 ± 1.31 a | 5.3 ± 1.69 b |
AI (%) | 86.1 | 84.4 | 81.4 | 75.2 |
Color | 6.2 ± 1.09 a | 6.0 ± 1.30 a | 5.7 ± 1.32 a | 5.2 ± 1.67 b |
AI (%) | 88.2 | 86.0 | 82.0 | 74.0 |
Overall Acceptance | 4.6 ± 0.69 a | 4.4 ± 0.86 a | 4.3 ± 0.84 a | 4.0 ± 1.26 b |
AI (%) | 92.0 | 88.4 | 86.4 | 79.7 |
Purchase Intention | 4.6 ± 0.72 a | 4.5 ± 0.95 a | 4.2 ± 0.95 a | 3.9 ± 1.30 b |
Parameter | EF0 | EF2.5 | EF5.0 | EF7.5 |
---|---|---|---|---|
Diameter (cm) | 3.7 ± 0.07 b | 3.8 ± 0.08 b | 4.0 ± 0.09 a | 4.0 ± 0.05 a |
Thickness (cm) | 1.1 ± 0.04 a | 1.1 ± 0.05 a | 0.9 ± 0.03 b | 0.9 ± 0.02 b |
Expansion factor | 3.4 ± 0.19 b | 3.6 ± 0.22 b | 4.3 ± 0.20 a | 4.4 ± 0.09 a |
Thermal factor | 0.9 ± 0.00 b | 0.9 ± 0.00 b | 1.0 ± 0.03 a | 1.0 ± 0.00 a |
Hardness (N) | 32.4 ± 2.54 d | 46.9 ± 2.73 c | 64.1 ± 1.96 b | 87.2 ± 3.02 a |
L* | 60.5 ± 0.38 a | 54.1 ± 0.58 b | 54.0 ± 0.53 b | 51.6 ± 0.85 c |
a* | 6.5 ± 0.34 a | 5.6 ± 0.29 b | 5.5 ± 0.33 b | 5.1 ± 0.30 c |
b* | 24.5 ± 0.37 a | 20.9 ± 0.67 b | 20.4 ± 0.64 b | 18.9 ± 0.59 c |
Aw | 0.6 ± 0.01 c | 0.7 ± 0.00 b | 0.7 ± 0.00 b | 0.8 ± 0.00 a |
Parameter | EF | EF0 | EF2.5 | EF5.0 | EF7.5 |
---|---|---|---|---|---|
pH | 4.9 ± 0.01 | 6.8 ± 0.01 a | 6.4 ± 0.01 b | 6.1 ± 0.01 c | 5.9 ± 0.01 d |
TA (g 100 g−1) | 4.1 ± 0.04 | 0.1 ± 0.01 d | 0.2 ± 0.00 c | 0.3 ± 0.02 b | 0.4 ± 0.02 a |
SS (°Brix) | 5.0 ± 0.06 | 1.9 ± 0.03 c | 2.3 ± 0.03 b | 2.5 ± 0.06 a | 2.6 ± 0.03 a |
SS/TA ratio | 1.2 ± 0.01 | 15.3 ± 0.28 a | 11.7 ± 0.09 b | 7.7 ± 0.19 c | 6.6 ± 0.09 d |
Parameter | EF | EF0 | EF2.5 | EF5.0 | EF7.5 |
---|---|---|---|---|---|
Moisture (g 100 g−1) | 5.5 ± 0.05 | 7.7 ± 0.08 c | 9.7 ± 0.04 b | 9.5 ± 0.09 b | 10.5 ± 0.08 a |
Ash (g 100 g−1) | 7.4 ± 0.08 | 0.8 ± 0.01 d | 1.0 ± 0.01 c | 1.2 ± 0.01 b | 1.4 ± 0.02 a |
Protein (g 100 g−1) | 11.4 ± 0.56 | 10.1 ± 0.03 a | 10.4 ± 0.63 a | 10.4 ± 0.01 a | 11.0 ± 0.22 a |
Lipid (g 100 g−1) | 2.1 ± 0.53 | 19.2 ± 0.58 a | 19.3 ± 0.22 a | 19.4 ± 0.32 a | 19.2 ± 0.34 a |
Carbohydrate (g 100 g−1) ** | 39.1 ± 0.00 | 60.8 ± 0.00 a | 57.4 ± 0.00 ab | 56.5 ± 0.00 b | 54.1 ± 0.00 b |
Soluble fiber (g 100 g−1) *** | 7.2 ± 0.18 | 0.3 ± 0.00 d | 0.4 ± 0.00 c | 0.6 ± 0.00 b | 0.8 ± 0.00 a |
Insoluble fiber (g 100 g−1) *** | 27.3 ± 0.13 | 1.1 ± 0.00 d | 1.8 ± 0.00 c | 2.4 ± 0.00 b | 3.0 ± 0.00 a |
Total fiber (g 100 g−1) *** | 34.5 ± 0.05 | 1.4 ± 0.00 d | 2.2 ± 0.00 c | 3.0 ± 0.00 b | 3.8 ± 0.00 a |
Energy value (kcal 100 g−1) | 290.3 ± 0.00 | 458.9 ± 0.00 a | 449.2 ± 0.00 ab | 448.0 ± 0.00 b | 440.6 ± 0.00 b |
Ascorbic acid (mg 100 g−1) | 64.0 ± 0.37 | 0.3 ± 0.00 d | 2.7 ± 0.33 c | 4.2 ± 0.19 b | 5.3 ± 0.10 a |
Anthocyanins (mg C3GE 100 g−1) | 105.7 ± 0.04 | 2.55 ± 0.01 d | 24.0 ± 0.04 c | 26.9 ± 0.08 b | 29.6 ± 0.06 a |
TPC (mg GAE 100 g−1) | 276.4 ± 0.08 | 9.6 ± 0.06 d | 14.8 ± 0.01 c | 22.7 ± 0.04 b | 32.2 ± 0.05 a |
AA (µmol Trolox equivalents 100 g−1) | 19,117.1 ± 0.00 | 1786.3 ± 0.26 d | 1900.6 ± 0.26 c | 19,158 ± 0.26 b | 2144.3 ± 0.53 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, J.M.; Teixeira, F.; Oliveira, M.L.d.; Amaral, L.A.d.; Almeida, T.d.S.F.d.; Souza, G.H.O.d.; Hokama, L.M.; Menegassi, B.; Santos, E.F.d.; Novello, D. Eggplant Flour Addition in Cookie: Nutritional Enrichment Alternative for Children. Foods 2022, 11, 1667. https://doi.org/10.3390/foods11121667
Soares JM, Teixeira F, Oliveira MLd, Amaral LAd, Almeida TdSFd, Souza GHOd, Hokama LM, Menegassi B, Santos EFd, Novello D. Eggplant Flour Addition in Cookie: Nutritional Enrichment Alternative for Children. Foods. 2022; 11(12):1667. https://doi.org/10.3390/foods11121667
Chicago/Turabian StyleSoares, Jaqueline Machado, Flávia Teixeira, Mayra Lopes de Oliveira, Luane Aparecida do Amaral, Tainá da Silva Fleming de Almeida, Gabriel Henrique Oliveira de Souza, Lais Maluf Hokama, Bruna Menegassi, Elisvânia Freitas dos Santos, and Daiana Novello. 2022. "Eggplant Flour Addition in Cookie: Nutritional Enrichment Alternative for Children" Foods 11, no. 12: 1667. https://doi.org/10.3390/foods11121667
APA StyleSoares, J. M., Teixeira, F., Oliveira, M. L. d., Amaral, L. A. d., Almeida, T. d. S. F. d., Souza, G. H. O. d., Hokama, L. M., Menegassi, B., Santos, E. F. d., & Novello, D. (2022). Eggplant Flour Addition in Cookie: Nutritional Enrichment Alternative for Children. Foods, 11(12), 1667. https://doi.org/10.3390/foods11121667