Impact of Extreme Weather Disasters on China’s Barley Industry under the Background of Trade Friction—Based on the Partial Equilibrium Model
Abstract
:1. Introduction
2. Import Structure and Disaster Occurrence
2.1. Descriptive Analysis of China’s Barley Import Pattern
2.2. Natural Disasters in France and Canada
3. Materials and Methods
3.1. Method
3.1.1. Superimposed Epoch Analysis
3.1.2. Partial Equilibrium Model
Settings
- Production Equations. The yield of crops is determined by the yield per unit area and harvested area. The yield per unit area of barley is related to the productive factor and the level of growing techniques. Growing techniques are generally stable in the short term. The harvested area of barley is mainly determined by the comparative effectiveness of barley and other crops. If growing barley can bring more benefits, the harvested area of barley will increase.
- Demand Equations. Barley is mainly demanded for feed and processing. Both of these demands are influenced by barley prices and domestic income levels. The equation for the demands of barley is as follows:
- Trade Equations. This study uses the barley yield of exporting countries to represent their export capacity, and uses China’s barley import price and domestic price to reflect China’s import demand. It is considered that there is uncertainty in international trade, and the significant increase or decrease of China’s barley import in individual years will affect the parameter estimation, so the influence can be eliminated by setting dummy variables. At the same time, China’s barley import countries are divided into Australia, France, Canada, and other countries. The equations for the China’s barley import are as follows:
- Price Linkage Equations. There is a correlation between China’s barley import price and the domestic price. China’s barley import price is mainly affected by the exchange rate and corn price. The equations can be given as:
- Market Clearing. Since China has been in a state of net import for a long time, it is assumed that the market will reach the clearing state when the sum of domestic output and import is equal to domestic consumption. This can be given as:
Parameter Estimation
3.2. Data
3.3. Scenario Settings
4. Results and Discussion
4.1. The Impact of Drought and Floods on Barley Production in France and Canada
4.2. Estimation Results
4.3. Comparison of the Simulated Results with the Actual Situation
5. Conclusions and Policy Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. 2021 Global Report on Food Crisis; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- Sun, Z.; Zhang, D. Impact of Trade Openness on Food Security: Evidence from Panel Data for Central Asian Countries. Foods 2021, 10, 3021. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Tanaka, T. Food import dependency and national food security: A price transmission analysis for the wheat sector. Foods 2021, 10, 1715. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Ramankutty, N.; Mueller, N.D.; West, P.C.; Foley, J.A. Recent patterns of crop yield growth and Stagnation. Nat. Commun. 2012, 3, 1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, T.; von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Ali, S.; Liu, Y.; Ishaq, M.; Shah, T.; Ilyas, A.; Din, I.U. Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan. Foods 2017, 6, 39. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Nevo, E.; Fu, Y.B.; Pavlicek, T.; Khalifa, S.; Tavasi, M.; Beilies, A. Evolution of wild cereal during 28 years of global warming in Israel. Proc. Natl. Acad. Sci. USA 2012, 109, 3412–3415. [Google Scholar] [CrossRef] [Green Version]
- Newton, A.C.; Flavell, A.J.; George, T.S.; Leat, P.; Mullholland, B.; Ramsay, L.; Revoredo-Giha, C.; Russell, J.; Steffenson, B.J.; Swanston, J.S.; et al. Crops that feed the world 4.Barley: A resilient crop? Strengths and weaknesses in the context of food security. Food Secur. 2011, 3, 141–178. [Google Scholar] [CrossRef]
- Yawson, D.O.; Mulholland, B.J.; Ball, T.; Adu, M.O.; Mohan, S.; White, P.J. Effect of climate and agricultural land use changes on UK feed barley production and food security to the 2050s. Land 2017, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Beillouin, D.; Jeuffroy, M.H.; Gauffreteau, A. Characterization of spatial and temporalcombinations of climatic factors affecting yields: Anempirical model applied to the French barley belt. Agric. For. Meteorol. 2018, 262, 402–411. [Google Scholar] [CrossRef]
- Schierhorn, F.; Hofmann, M.; Adrian, I.; Bobojonov, I.; Muller, D. Spatially Varying Impacts of Climate Change on Wheat and Barley Yield in Kazakhstan. J. Air Environ. 2020, 178, 104–164. [Google Scholar] [CrossRef]
- Boyacι-Gündüz, C.; Ibrahim, S.; Wei, O.; Galanakis, C. Transformation of the Food Sector: Security and Resilience during the COVID-19 Pandemic. Foods 2021, 10, 497. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ye, W.; Wang, M.; Yan, X. Climate Change and drought: A risk assessment of crop-yield impacts. Clim. Res. 2009, 39, 31–46. [Google Scholar] [CrossRef]
- Rotter, R.P.; Palosuo, T.; Pirttioja, N.K.; Dubrovsky, M.; Salo, T.; Fronzek, S.; Aikasalo, R.; Trnka, M.; Ristolainen, A.; Carter, T.R. What would happen to barley production in Finland if global warming exceeded 4 °C? A model-based assessment. Eur. J. Agron. 2011, 35, 205–214. [Google Scholar] [CrossRef]
- Bootsam, A.; Gameda, S.; McKenney, D.W. Potential impacts of climate change on corn, soybeans and barley yields in Atlantic Canada. Can. J. Plant Sci. 2005, 85, 345–357. [Google Scholar] [CrossRef]
- Holden, N.M.; Brereton, A.J.; Fealy, R.; Sweeney, J. Possible Change in Irish Climate and Its Impact on Barley and Potato Yields. Agric. For. Meteorol. 2003, 116, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Yawson, D.O.; Ball, T.; Adu, M.O.; Mohan, S.; Mulholland, B.J.; White, P.J. Simulated regional yields of spring barley in the United Kingdom under projected climate change. Climate 2016, 4, 54. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Cui, Q.; Ail, T. The Economic Impacts of Climate Change on Grain Production and Policy Implications: A CGE Model Analysis. In Advances in Spatial and Economic Modeling of Disaster Impacts; Springer: Cham, Switzerland, 2019; pp. 359–373. [Google Scholar] [CrossRef]
- Holden, N.M.; Brereton, A.J. Adaptation of water and nitrogen management of spring barley and potato as a response to possible climate change in Ireland. Agric. Water Manag. 2006, 24, 297–317. [Google Scholar] [CrossRef]
- Yawson, D.O.; Mohan, S.; Armah, F.A.; Ball, T.; Mulholland, B.; Adu, M.O.; White, P.J. Virtual water flows under projected climate, land use and population change:the case of UK feed barley and meet. Heliyon 2020, 6, e03127. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Xiong, W.; Pan, J.; Ali, T.; Cui, Q.; Guan, D.; Meng, J.; Mueller, N.D.; Lin, E.; Davis, S. Decreases in global beer supply due to extreme drought and heat. Nat. Plants 2018, 4, 964–973. [Google Scholar] [CrossRef]
- Brás, T.A.; Jägermeyr, J.; Seixas, J. Exposure of the EU-28 Food Imports to Extreme Weather Disasters in Exporting Countries. Food Secur. 2019, 11, 1373–1393. [Google Scholar] [CrossRef]
- Nelson, G.C.; Valin, H.; Sands, R.D.; Havlik, P.; Ahammad, H.; Deryng, D.; Elliott, J.; Fujimori, S.; Hasegawa, T.; Heyhoe, E.; et al. Climate Change Effects on Agriculture:Economic Responses to Biophysical Shocks. Agric. Sci. 2013, 111, 3274–3279. [Google Scholar] [CrossRef] [Green Version]
- Culas, R.J.; Timsina, K.P. China-Australia Free Trade Agreement: Implications for Australian Agriproducts Trade and Farm Economies; Charles Sturt University: Bathurst, Australia, 2019; pp. 1–18. [Google Scholar] [CrossRef]
- Waldron, S. China’s Tariffs on Australia Barley: Coercion, Protectionism, or Both? Diplomat 2020, 19, 1–7. [Google Scholar]
- D’Odorico, P.; Carr, J.A.; Laio, F.; Luca, R.; Stefano, V. Feeding humanity through global food trade. Earth’s Future 2014, 2, 458–469. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.Z.; Feng, Z.M.; Xiao, C.W.; Lang, T.T.; Du, W.P.; Liu, Y. Risk of global external cereals supply under the background of the COVID-19 pandemic: Based on the perspective of trade network. Foods 2021, 10, 1168. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dai, C. Evolution of Global Food Trade Patterns and Its Implications for Food Security Based on Complex Network Analysis. Foods 2021, 10, 2657. [Google Scholar] [CrossRef] [PubMed]
- Edney, M.J.; MacLeod, A.L.; LaBerge, D.E. Evolution of a quality testing program for improving malting barley in Canada. Plant Sci. 2014, 94, 535–544. [Google Scholar] [CrossRef]
- Heil, K.; Gerl, S.; Schmidhalter, U. Sensitivity of Winter Barley Yield to Climate Variability in a Pleistocene Loess Area. Climate 2021, 9, 112. [Google Scholar] [CrossRef]
- Mukula, J.; Rantanen, O. Climatic risks to the yield and quality of field crops in Finland.VI.barley 1969–1986. Ann. Agric. Fenn. 1989, 28, 29–36. [Google Scholar]
- Rajala, A.; Hakala, K.; Peltonen-Sainio, P. Drought Effect on Grain Number and Grain Weight at Spike and Spikelet Level in Six-Row Spring Barley. J. Agron. Crop Sci. 2010, 197, 103–112. [Google Scholar] [CrossRef]
- Hakala, K.; Jauhiainen, L.; Himanen, S.J.; Rotter, R.; Salo, T.; Kahiluoto, H. Sensitivity of Barely Varieties to Weather in Finland. Agric. Sci. 2012, 150, 145–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakala, K.; Jauhiainen, L.; Rajala, A.A.; Jalli, M.; Kujala, M.; Laine, A. Different responses to weather events may change the cultivation balance of spring barley and oats in the future. Field Crops Res. 2020, 259, 107956. [Google Scholar] [CrossRef]
- Teixeira, E.; Fischer, G.; Van Velthuizen, H.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol. 2013, 170, 206–215. [Google Scholar] [CrossRef]
- Deryng, D.; Conway, D.; Ramankuttty, N.; Price, J.; Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. 2014, 9, 034011. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ari, T.; Boe, J.; Ciais, P.; Lecerf, R.; Van der Velde, M.; Makowski, D. Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nat. Commun. 2018, 9, 1627. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Wanliss, J.; Cornelissen, G.; Halberg, F.; Brown, D.; Washington, B. Superposed Epoch Analysis of Physiological Fluctuations: Possible Spaceweather Connections; Sprinnger: Berlin/Heidelberg, Germany, 2017; pp. 449–457. [Google Scholar] [CrossRef]
- Haurwitz, M.W.; Brier, G.W. A Critique of the Superposed Epoch Analysis Method: Its Application to Solar–Weather Relations. Mon. Weather. Rev. 1981, 109, 2074–2079. [Google Scholar] [CrossRef] [Green Version]
- Kelly, P.M.; Sear, C.B. Climate Impact of Explosive Volcanic Eruptions. Nature 1984, 311, 740–743. [Google Scholar] [CrossRef]
- Esper, J.; Schneider, L.; Krusic, P.J.; Buntgen, U.; Timonen, M.; Sirocko, F.; Zorita, E. Europeansummer Temperature Reponse to Annually Dated Volcanic Eruptions over the Past Nine Centuries; Springer: Berlin/Heidelberg, Germany, 2013; p. 736. [Google Scholar] [CrossRef] [Green Version]
- Levesque, M.; Rigling, A.; Bugmann, H.; Weber, P.; Brang, P. Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agric. For. Meteorol. 2014, 197, 1–12. [Google Scholar] [CrossRef]
- Baisan, C.H.; Swetnam, T. Fire history on a desert mountain range: Rincon MountainWilderness, Arizona, USA. Can. J. For. Res. 1990, 20, 1559–1569. [Google Scholar] [CrossRef]
- Swetnam, T.W. Fire history and climate change in giant Sequoia groves. Science 1993, 262, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gedalof, Z.; Peterson, D.L.; Mantua, N.J. Atmospheric, climatic, and ecological controls onextreme wildfire years in the northwestern United States. Ecol. Appl. 2005, 15, 154–174. [Google Scholar] [CrossRef]
- Hessl, A.E.; Brown, P.; Byambasuren, O.; Cockrell, S.; Leland, C.; Cook, E.; Nachin, B.; Pederson, N.; Saladyga, T.; Suran, B. Fire and climate in Mongolia (1532–2010 common era). Geophys. Res. Lett. 2016, 43, 6519–6527. [Google Scholar] [CrossRef] [Green Version]
- Kipfmueller, K.F.; Schneider, E.A.; Weyenberg, S.A.; Johnson, L.B. Historical drivers of a frequent fire regime in the red pine forests of Voyageurs National Park, MN, USA. For. Ecol. Manag. 2017, 405, 31–43. [Google Scholar] [CrossRef]
- Chinese Academy of Agricultural Sciences. China Agricultural Sector Development Report; Chinese Academy of Agricultural Sciences: Beijing, China, 2018. [Google Scholar]
- Han, X.; Chen, Y.; Wang, X. Impacts of China’s bioethanol policy on the global maize market: A partial equilibrium analysis to 2030. Food Secur. 2022, 14, 147–163. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations, FAOSTAT. Available online: https://www.fao.org/home/en/ (accessed on 6 February 2022).
- UN Comtrade Database. Available online: https://comtrade.un.org (accessed on 8 March 2022).
- The International Disaster Database. Available online: https://www.emdat.be (accessed on 5 March 2022).
- Greaves, W. Climate change and security in Canada. Int. J. 2021, 76, 183–203. [Google Scholar] [CrossRef]
- Yevdokimov, Y.; Hetalo, S.; Burina, Y. Econometric evaluation of large weather events due to climate change: Floods in Atlantic Canada. Int. J. Glob. Energy Issues 2021, 7, 275–283. [Google Scholar] [CrossRef]
- Azooz, R.H.; Arshad, M.A. Soil water drying and recharge rates as affected by tillage under continuous barley and barley-canola cropping systems in northwestern Canada. Can. J. Soil Sci. 2000, 81, 45–52. [Google Scholar] [CrossRef] [Green Version]
France | Canada | |||
---|---|---|---|---|
Frequency | Proportion | Frequency | Proportion | |
Flood | 12 | 42.86 | 17 | 28.81 |
Storm | 5 | 17.86 | 20 | 33.89 |
Drought | 7 | 25.00 | 4 | 6.78 |
Extreme Temperature | 4 | 14.29 | 5 | 8.47 |
Wild Fire | 0 | 0 | 10 | 16.95 |
Landslide | 0 | 0 | 1 | 1.69 |
Volcanic Activity | 0 | 0 | 0 | 0 |
Pest | 0 | 0 | 0 | 0 |
Infectious Diseases | 0 | 0 | 2 | 3.39 |
Earthquake | 0 | 0 | 0 | 0 |
Total Disaster | 28 | / | 59 | / |
Variable | Unit | Symbol | Data Sources | |
---|---|---|---|---|
Endogenous variable | Barley production in China | 104 Ton | QCHN | FAOSTAT |
Barley planting area in China | 104 hectare | A | FAOSTAT | |
Barley yield per unit area in China | Ton per hectare | Y | FAOSTAT | |
barley market price in China | USD/Ton | DBP | FAOSTAT | |
Barley consumption in China | 104 Ton | DDCN | FAOSTAT | |
Chinese barley imports | 104 Ton | IMi | Un Comtrade | |
Import barley price | USD/Ton | IBPi | Un Comtrade | |
Exogenous variable | Market prices of other agricultural products in China | USD/Ton | DOPCi | CASM |
China’s per capita GDP | USD | PGDP | NBS | |
China Consumer Price Index | - | CPI | NBS | |
Barley production in other countries | 104 Ton | Qi | FAOSTAT | |
Positive external impact | - | DZ | - | |
Negative external impact | - | DJ | - | |
Exchange rate | - | EXi | World bank | |
corn market price in China | USD/Ton | DCP | FAOSTAT | |
Effect of extreme weather disasters on yield reduction rate of barley | % | Z | - |
Variable | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
DBP | 217.02 | 86.45 | 95.41 | 330.94 |
DDCN | 526.71 | 125.01 | 327.41 | 777.10 |
PGDP | 12,537.51 | 9665.03 | 2362.30 | 32,189.00 |
CPI | 102.77 | 3.58 | 98.60 | 117.10 |
IMa | 138.40 | 80.24 | 64.97 | 324.07 |
IMc | 57.31 | 39.80 | 25.94 | 175.48 |
IMf | 49.26 | 54.33 | 4.17 | 190.45 |
IMo | 31.50 | 29.94 | 7.32 | 133.76 |
Qa | 783.93 | 209.56 | 386.48 | 1350.60 |
Qc | 1039.46 | 237.45 | 711.68 | 1556.20 |
Qf | 1075.58 | 140.77 | 759.03 | 1356.54 |
Qo | 11,179.73 | 839.73 | 9535.19 | 12,510.68 |
IBPa | 230.39 | 68.69 | 134.37 | 455.23 |
IBPc | 247.95 | 77.59 | 148.30 | 439.55 |
IBPf | 225.73 | 77.59 | 113.94 | 452.39 |
IBPo | 239.75 | 77.20 | 148.73 | 439.80 |
EXa | 5.48 | 0.68 | 4.29 | 6.66 |
EXc | 5.85 | 0.68 | 4.87 | 7.11 |
EXf | 8.64 | 1.09 | 6.94 | 10.42 |
EXo | 7.37 | 0.86 | 6.14 | 8.35 |
DCP | 218.65 | 93.81 | 115.94 | 389.09 |
Programs | Country | Impact on Yield | Tariff |
---|---|---|---|
Basic scenario | - | - | Zero tariff on barley imported from Australia; 3% tariff on barley imported from other countries |
Scenario 1 | France | −7.95 | 80.5% tariff on barley imported from Australia; 3% tariff on barley imported from other countries |
Scenario 2 | Canada | −18.36 | 80.5% tariff on barley imported from Australia; 3% tariff on barley imported from other countries |
Disaster Year | Impact on Yield per Unit Area | Average Impact | Impact on Harvested Area | Average Impact | Impact on Yield | Average Impact | |
---|---|---|---|---|---|---|---|
Drought | 1989–1990 | −1.55 | −8.18 | −0.18 | −0.27 | −0.16 | −8.19 |
2003 | −16.76 | 7.51 | −10.50 | ||||
2018 | −6.23 | −8.14 | −13.90 | ||||
Flood | 1993–1994 | −1.67 | −8.39 | −2.83 | 1.04 | −4.65 | −7.70 |
2001 | −11.70 | 7.38 | −5.27 | ||||
2005 | −1.01 | −2.83 | −3.76 | ||||
2016 | −19.16 | 2.45 | −17.10 |
Disaster Year | Impact on Yield per Unit Area | Average Impact | Impact on Planting Acreage | Average Impact | Impact on Yield | Average Impact | |
---|---|---|---|---|---|---|---|
Drought | 1961 | −35.07 | −16.96 | 4.58 | −3.52 | −32.09 | −20.53 |
1984 | −8.96 | 0.34 | −8.87 | ||||
1988 | −6.84 | −14.66 | −20.62 | ||||
Flood | 1974 | −13.24 | −7.94 | 2.67 | −9.01 | −10.91 | −16.24 |
1988 | −6.84 | −14.66 | −20.62 | ||||
1995 | −1.11 | −2.83 | −4.36 | ||||
1997 | −6.53 | 2.66 | −4.25 | ||||
2002 | −16.93 | −21.80 | −35.10 | ||||
2006 | −0.43 | −15.15 | −15.24 | ||||
2014 | −10.47 | −13.99 | −23.22 |
Source of Import | Basic Scenario | Simulated Scenario | ||
---|---|---|---|---|
Import Quantity (104 Tons) | Import Prices (USD/Ton) | Import Quantity (104 Tons) | Import Prices (USD/Ton) | |
Australia | 157.35 | 232.83 | 91.76 | 429.61 |
Canada | 227.13 | 204.49 | 236.93 | 206.90 |
France | 188.08 | 193.37 | 155.55 | 196.14 |
Other countries | 272.07 | 228.37 | 278.88 | 232.71 |
Scenario | Yield (104 Tons) | Import Quantity (104 Tons) | Consumption (104 Tons) | Domestic Price (USD/Ton) |
---|---|---|---|---|
Basic scenario | 90.12 | 844.62 | 934.74 | 1.99 |
Simulated scenario | 91.24 | 763.11 | 854.35 | 2.07 |
Source of Import | Basic Scenario | Simulated Scenario | ||
---|---|---|---|---|
Import Quantity (104 Tons) | Import Prices (USD/Ton) | Import Quantity (104 Tons) | Import Prices (USD/Ton) | |
Australia | 157.35 | 232.83 | 91.79 | 429.97 |
Canada | 227.13 | 204.49 | 204.30 | 207.00 |
France | 188.08 | 193.37 | 192.13 | 196.25 |
Other countries | 272.07 | 228.37 | 279.14 | 232.87 |
Scenario | Yield (104 Tons) | Import Quantity (104 Tons) | Consumption (104 Tons) | Domestic Price (USD/Ton) |
---|---|---|---|---|
Basic scenario | 90.12 | 844.62 | 934.74 | 1.99 |
Simulated scenario | 91.28 | 767.37 | 858.64 | 2.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Li, X. Impact of Extreme Weather Disasters on China’s Barley Industry under the Background of Trade Friction—Based on the Partial Equilibrium Model. Foods 2022, 11, 1570. https://doi.org/10.3390/foods11111570
Liu J, Li X. Impact of Extreme Weather Disasters on China’s Barley Industry under the Background of Trade Friction—Based on the Partial Equilibrium Model. Foods. 2022; 11(11):1570. https://doi.org/10.3390/foods11111570
Chicago/Turabian StyleLiu, Jingyi, and Xiande Li. 2022. "Impact of Extreme Weather Disasters on China’s Barley Industry under the Background of Trade Friction—Based on the Partial Equilibrium Model" Foods 11, no. 11: 1570. https://doi.org/10.3390/foods11111570
APA StyleLiu, J., & Li, X. (2022). Impact of Extreme Weather Disasters on China’s Barley Industry under the Background of Trade Friction—Based on the Partial Equilibrium Model. Foods, 11(11), 1570. https://doi.org/10.3390/foods11111570