COIBar-RFLP Molecular Strategy Discriminates Species and Unveils Commercial Frauds in Fishery Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. DNA Extraction
2.3. COI Barcode Amplification and Sequencing
2.4. COIBar-RFLP
3. Results
3.1. COI Barcode
3.2. COIBar-RFLP Strategy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooks, C.; Parr, L.; Smith, J.M.; Buchanan, D.; Snioch, D.; Hebishy, E. A review of food fraud and food authenticity across the food supply chain, with an examination of the impact of the COVID-19 pandemic and Brexit on food industry. Food Control 2021, 130, 108171. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Ferrito, V. DNA barcoding species identification unveils mislabeling of processed flatfish products in southern Italy markets. Fish. Res. 2015, 164, 153–158. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Guarino, F.; Reina, S.; Messina, A.; De Pinto, V. Geographically widespread swordfish barcode stock identification: A case study of its application. PLoS ONE 2011, 6, e25516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, M.Á.; Jiménez, E.; Pérez-Villarreal, B. Misdescription incidents in sea-food sector. Food Control 2016, 62, 277–283. [Google Scholar] [CrossRef]
- Garcia-Vazquez, E.; Perez, J.; Martinez, J.L.; Pardiñas, A.F.; Lopez, B.; Karaiskou, N.; Triantafyllidis, A. High level of mislabelling in Spanish and Greek hake markets suggests the fraudulent introduction of African species. J. Agric. Food Chem. 2011, 59, 475–480. [Google Scholar] [CrossRef]
- Dufflocq, P.; Larrain, M.A.; Araneda, C. Species substitution and mislabeling in the swordfish (Xiphias gladius) market in Santiago, Chile: Implications in shark conservation. Food Control 2022, 133, 108607. [Google Scholar] [CrossRef]
- Giagkazoglou, Z.; Griffiths, A.M.; Imsiridou, A.; Chatzispyrou, A.; Touloumis, K.; Hebb, J.L.; Mylona, D.; Malamidou, A.K.; Apostolidi, E.D.; Batjakas, I.E.; et al. Flying under the radar: DNA barcoding ray wings in Greece detects protected species and umbrella labelling terms. Food Control 2022, 132, 108517. [Google Scholar] [CrossRef]
- Xiong, X.; Yuan, F.; Huang, M.; Lu, L.; Xiong, X.; Wen, J. DNA Barcoding revealed mislabeling and potential health concerns with roasted fish products sold across China. J. Food Prot. 2019, 82, 1200–1209. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Copat, C.; Ferrito, V.; Grasso, A.; Ferrante, M. Heavy metal content and molecular species identification in canned tuna: Insights into human food safety. Mol. Med. Rep. 2017, 15, 3430–3437. [Google Scholar] [CrossRef] [Green Version]
- Nijman, V.; Stein, F.M. Meta-analyses of molecular seafood studies identify the global distribuition of legal and illegal trade in CITES-regulated European eels. Curr. Res. Food Sci. 2022, 5, 191–195. [Google Scholar]
- Ferrito, V.; Raffa, A.; Rossitto, L.; Federico, C.; Saccone, S.; Pappalardo, A.M. Swordfish or shark slice? A rapid response by COIBar–RFLP. Foods 2019, 8, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visciano, P.; Schirone, M. Food frauds: Global incidents and misleading situations. Trends Food Sci. Technol. 2021, 114, 424–442. [Google Scholar] [CrossRef]
- Kotsanopoulos, K.; Exadactylos, A.; Gkafas, G.; Martsikalis, P.; Parlapani, F.; Boziaris, I.; Arvanitoyannis, I. The use of molecular markers in the verification of fish and seafood authenticity and the detection of adulteration. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1584–1654. [Google Scholar] [CrossRef]
- Blanco-Fernandez, C.; Ardura, A.; Masia, P.; Rodriguez, N.; Voces, L.; Fernandez-Raigoso, M.; Roca, A.; Machado-Schiaffino, G.; Dopico, E.; Garcia-Vazquez, E. Fraud in highly appreciated fish detected from DNA in Europe may undermine the Development Goal of sustainable fishing in Africa. Sci. Rep. 2021, 11, 11423. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D.N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B 2005, 360, 1847–1857. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Cuttitta, A.; Sardella, A.; Musco, M.; Maggio, T.; Patti, B.; Mazzola, S.; Ferrito, V. DNA barcoding and COI sequence variation in Mediterranean lanternfishes larvae. Hydrobiologia 2015, 745, 155–167. [Google Scholar] [CrossRef]
- Rocco, L.; Ferrito, V.; Costagliola, D.; Marsilio, A.; Pappalardo, A.M.; Stingo, V.; Tigano, C. Genetic divergence among and within four Italian populations of Aphanius fasciatus (Teleostei, Cyprinodontiformes). Ital. J. Zool. 2007, 74, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, A.M.; Ferrito, V.; Messina, A.; Patarnello, T.; De Pinto, V.; Guarino, F.; Tigano, C. Genetic structure of the killifish Aphanius fasciatus Nardo 1827 (Teleostei, Cyprinodontidae), results of mitochondrial DNA analysis. J. Fish Biol. 2008, 72, 1154–1173. [Google Scholar] [CrossRef]
- Ferrito, V.; Pappalardo, A.M.; Canapa, A.; Barucca, M.; Doadrio, I.; Olmo, E.; Tigano, C. Mitochondrial phylogeography of the killifish Aphanius fasciatus (Teleostei, Cyprinodontidae) reveals highly divergent Mediterranean populations. Mar. Biol. 2013, 160, 3193–3208. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Gonzalez, E.G.; Tigano, C.; Doadrio, I.; Ferrito, V. Comparative pattern of genetic structure in two Mediterranean killifishes (Aphanius fasciatus and A. iberus) inferred from both mitochondrial and nuclear data. J. Fish Biol. 2015, 87, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, A.M.; Federico, C.; Sabella, G.; Saccone, S.; Ferrito, V. A COI nonsynonymous mutation as diagnostic tool for intraspecific discrimination in the European Anchovy Engraulis encrasicolus (Linnaeus). PLoS ONE 2015, 10, e0143297. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, A.M.; Francisco, S.M.; Fruciano, C.; Lima, C.S.; Pulvirenti, V.; Tigano, C.; Robalo, J.I.; Ferrito, V. Mitochondrial and nuclear intraspecific variation in the rusty blenny (Parablennius sanguinolentus, Blenniidae). Hydrobiologia 2017, 802, 141–154. [Google Scholar] [CrossRef]
- Cuttitta, A.; Patti, B.; Maggio, T.; Quinci, E.M.; Pappalardo, A.M.; Ferrito, V.; De Pinto, V.; Torri, M.; Falco, F.; Nicosia, A.; et al. Larval population structure of Engraulis encrasicolus in the Strait of Sicily as revealed by morphometric and genetic analyses. Fish. Ocean. 2015, 24, 135–149. [Google Scholar] [CrossRef]
- Duong, T.; Uy, S.; Chheng, P.; So, N.; Thi Tran, T.; Nguyen, N.T.; Pomeroy, R.; Egna, H. Genetic diversity and structure of striped snakehead (Channa striata) in the Lower Mekong Basin: Implications for aquaculture and fisheries management. Fish. Res. 2019, 218, 166–173. [Google Scholar] [CrossRef]
- Perea, S.; Al Amouri, M.; Gonzalez, E.G.; Alcaraz, L.; Yahyaoui, A.; Doadrio, I. Influence of historical and human factors on genetic structure and diversity patterns in peripheral populations: Implications for the conservation of Moroccan trout. bioRxiv 2020. [Google Scholar] [CrossRef]
- Francisco, S.M.; Castilho, R.; Lima, C.S.; Almada, F.; Rodrigues, F.; Šanda, R.; Vukić, J.; Pappalardo, A.M.; Ferrito, V.; Robalo, J.I. Genetic hypervariability of a Northeastern Atlantic venomous rockfish. PeerJ 2021, 9, e11730. [Google Scholar] [CrossRef]
- Torri, M.; Pappalardo, A.M.; Ferrito, V.; Giannì, S.; Armeri, G.M.; Patti, C.; Mangiaracina, F.; Biondo, G.; Natale, M.D.; Musco, M.; et al. Signals from the deep-sea: Genetic structure, morphometric analysis and ecological implications of Cyclothone braueri (Pisces, Gonostomatidae) early life stage in the Central Mediterranean Sea. Mar. Environ. Res. 2021, 169, 105379. [Google Scholar] [CrossRef]
- Čekovska, K.; Šanda, R.; Kovačic, M.; Zogaris, S.; Pappalardo, A.M.; Vukić, J. Population genetic diversity of two marine gobies (Gobiidae, Gobiiformes) from the north-eastern Atlantic and the Mediterranean Sea. J. Mar. Sci. Eng. 2020, 8, 792. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Lefebure, T.; Douady, C.J.; Gouy, M.; Gibert, J. Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Mol. Phylogenetics Evol. 2006, 40, 435–447. [Google Scholar] [CrossRef]
- Vitale, D.G.M.; Viscuso, R.; D’Urso, V.; Gibilras, S.; Sardella, A.; Marletta, A.; Pappalardo, A.M. Morphostructural analysis of the male reproductive system and DNA barcoding in Balclutha brevis Lindberg 1954 (Homoptera, Cicadellidae). Micron 2015, 79, 36–45. [Google Scholar] [CrossRef]
- Conti, E.; Mulder, C.; Pappalardo, A.M.; Ferrito, V.; Costa, G. How soil granulometry, temperature and water predict genetic differentiation in namibian Ariadna spiders and explain their behaviour. Ecol. Evol. 2019, 9, 4382–4391. [Google Scholar] [CrossRef] [Green Version]
- Pardo, M.A.; Jimenez, E.; Viðarsson, J.R.; Olafsson, K.; Olafsdottir, G.; Daníelsdottir, A.K.; Perez-Villareal, B. DNA barcoding revealing mislabeling of seafood in European mass caterings. Food Control 2018, 92, 7–16. [Google Scholar] [CrossRef]
- Muttaquin, E.; Abdullah, A.; Nurilmala, M.; Ichsan, M.; Simeone, B.M.; Yulianto, I.; Booth, H. DNA-barcoding as molecular marker for seafood forensics: Species identification of locally consumed shark fish products in the world’s largest shark fishery. IOP Conf. Ser. Earth Environ. Sci. 2019, 278, 012049. [Google Scholar] [CrossRef]
- Ooi, Z.S.; Jahari, P.N.S.; Sim, K.S.; Foo, S.X.; Mohd Zawai, N.N.; Mohd Salleh, F. DNA barcoding of commercial fish products using dual mitochondrial markers exposes evidence for mislabelling and trade of endangered species. IOP Conf. Ser. Earth Environ. Sci. 2021, 736, 012052. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Copat, C.; Raffa, A.; Rossitto, L.; Grasso, A.; Fiore, M.; Ferrante, M.; Ferrito, V. Fish-based baby food concern –from species authentication to exposure risk assessment. Molecules 2020, 25, 3961. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Raffa, A.; Calogero, G.S.; Ferrito, V. Geographic pattern of sushi product misdescription in Italy–a crosstalk between citizen science and DNA barcoding. Foods 2021, 10, 756. [Google Scholar] [CrossRef] [PubMed]
- Filonzi, L.; Vaghi, M.; Argenghi, A.; Rontani, P.M.; Voccia, A.; Nonnis Marzano, F. Efficiency of DNA mini-barcoding to assess mislabeling in commercial fish products in Italy: An overview of the last decade. Foods 2021, 10, 1449. [Google Scholar] [CrossRef]
- Jaser, S.K.K.; Domingues, R.R.; Hilsdorf, A.W.S. Assessing illegal fishing and trade of Atlantic billfish and swordfish by DNA-based identification. Conserv. Genet. Resour. 2021, 13, 183–190. [Google Scholar] [CrossRef]
- Anjali, K.M.; Mandala, A.; Gunalanb, B.; Rubana, L.; Anandajothia, E.; Thineshsanthara, D.; Manojkumara, T.G.; Kandana, S. Identification of six grouper species under the genus Epinephelus (Bloch, 1793) from Indian waters using PCR-RFLP of cytochrome c oxidase I (COI) gene fragment. Food Control 2019, 101, 39–44. [Google Scholar] [CrossRef]
- Xiong, X.; Yuan, F.; Huang, M.; Cao, M.; Xiong, X. Development of a rapid method for codfish identification in processed fish products based on SYBR Green real-time PCR. Int. J. Food Sci. 2020, 55, 1843–1850. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Ferrito, V. A COIBar-RFLP strategy for the rapid detection of Engraulis encrasicolus in processed anchovy products. Food Control 2015, 57, 385–392. [Google Scholar] [CrossRef]
- Ferrito, V.; Bertolino, V.; Pappalardo, A.M. White fish authentication by COIBar-RFLP: Toward a common strategy for the rapid identification of species in convenience seafood. Food Control 2016, 70, 130–137. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Federico, C.; Saccone, S.; Ferrito, V. Differential flatfish species detection by COIBar-RFLP in processed seafood products. Eur. Food Res. Technol. 2018, 244, 2191–2201. [Google Scholar] [CrossRef]
- Pappalardo, A.M.; Petraccioli, A.; Capriglione, T.; Ferrito, V. From fish eggs to fish name: Caviar species discrimination by COIBar-RFLP, an efficient molecular approach to detect fraud in the caviar trade. Molecules 2019, 24, 2468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, N.V.; Zemlak, T.S.; Hanner, R.H.; Hebert, P.D.N. Universal primer cocktails for fish DNA barcoding. Mol. Ecol. Notes 2007, 7, 544–548. [Google Scholar] [CrossRef]
- Messing, J. New M13 vectors for cloning. Meth. Enzymol. 1983, 101, 20–78. [Google Scholar]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment interactive sequence choice and visualization. Briefings Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.X.; Hewitt, G.M. Nuclear integrations: Challenges for mitochondrial DNA markers. Trends Ecol. Evol. 1996, 11, 247–251. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Filonzi, L.; Chiesa, S.; Vaghi, M.; Nonnis Marzano, F. Molecular barcoding reveals mislabelling of commercial fish products in Italy. Food Res. Int. 2010, 43, 1383–1388. [Google Scholar] [CrossRef]
- Armani, A.; Castigliego, L.; Tinacci, L.; Gianfaldoni, D.; Guidi, A. Molecular characterization of icefish, (Salangidae family), using direct sequencing of mitochondrial cytochrome b gene. Food Control 2011, 22, 888–895. [Google Scholar] [CrossRef]
- Guerriero, G.; Di Finizio, A.; Trocchia, S.; Elnwishy, N.H.; Ciarcia, G. Juvanile blue fish: Species discrimination by PCR-RFLP. Biol. Mar. Mediterr. 2011, 18, 386–387. [Google Scholar]
- Marano, G.; Casavola, N.; Vaccarella, R. Pesca del “bianchetto” in terra di Bari. Quad. Lab. Technol. Pesca Ancona 1981, 3, 101–110. [Google Scholar]
- La Mesa, M.; Arneri, E.; Caputo, V.; Iglesias, M. The transparent goby, Aphia minuta: Review of biology and fisheries of a paedomorphic European fish. Rev. Fish Biol. Fish. 2005, 15, 89–109. [Google Scholar] [CrossRef]
- Sanfilippo, M.; Pulicano, G.; Costa, F.; Manganaro, A. Juvanile fish populations in two areas of the Sicilian coast. Nat. Rerum 2011, 1, 43–50. [Google Scholar]
- Lanteri, L.; Garibaldi, F.; Mannini, A.; Franco, A.; Cappanera, V.; Manaratti, G.; Relini, G. The fishery of Aphia minuta (Risso, 1918) in the ligurian area during the fishing seasons 2011/12 and 2012/13. Biol. Mar. Mediterr. 2014, 21, 277–278. [Google Scholar]
- Armani, A.; Castigliego, L.; Tinacci, L.; Gianfaldoni, D.; Guidi, A. Multiplex conventional and real-time PCR for fish species identification of Bianchetto (juvenile form of Sardina pilchardus), Rossetto (Aphia minuta) and Icefish in fresh, marinated and cooked products. Food Chem. 2012, 133, 184–192. [Google Scholar] [CrossRef]
- Ziino, G.; Nalbone, L.; Giarratana, F.; Romano, B.; Cincotta, F.; Panebianco, A. Microplastics in vacuum pack-age of frozen and glazed icefish (Neosalanx spp.) a freshwater fish intended for human consumption. Ital. J. Food Saf. 2021, 10, 9974. [Google Scholar]
- Zhang, J.; Li, M.; Xu, M.; Takita, T.; Wei, F. Molecular phylogeny of icefish Salangidae based on complete mtDNA cytochrome b sequences, with comments on estuarine fish evolution. Biol. J. Linn. Soc. 2007, 91, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Nicolè, S.; Negrisolo, E.; Eccher, G.; Mantovani, R.; Patarnello, T.; Erickson, D.L.; Kress, W.J.; Barcaccia, G. DNA barcoding as a reliable method for the authentication of commercial seafood products. Food Technol. Biotechnol. 2012, 50, 387–398. [Google Scholar]
- Mottola, A.; Marchetti, P.; Bottaro, M.; Di Pinto, A. DNA barcoding for species Identification in prepared fishery products. Albanian J. Agric. Sci. 2014, 13, 447–453. [Google Scholar]
- Di Pinto, A.; Marchetti, P.; Mottola, A.; Bozzo, G.; Bonerba, E.; Ceci, E.; Bottaro, M.; Tantillo, G. Species identification in fish fillet products using DNA barcoding. Fish. Res. 2015, 170, 9–13. [Google Scholar] [CrossRef]
- Meloni, D.; Piras, P.; Mazzette, R. Mislabelling and species substitution in fishery products retailed in Sardinia (Italy), 2009–2014. Ital. J. Food. Saf. 2015, 4, 5363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrini, A.; Tepedino, V.; Borromeo, V.; Secchi, C. Identification of freshwater fish commercially labelled ‘‘perch’’ by isoelectric focusing and two-dimensional electrophoresis. Food Chem. 2006, 96, 163–168. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Yang, D.; Lei, B.; Zhang, X.; Zhang, X. Evaluation of human health risks posed by carcinogenic and non-carcinogenic multiple contaminants associated with consumption of fish from Taihu Lake, China. Food Chem. Toxicol. 2014, 69, 86–93. [Google Scholar] [CrossRef]
- Pan, X.; Ye, J.; Zhang, H.; Tang, J.; Pan, D. Occurrence, removal and bioaccumulation of perfluoroalkyl substances in Lake Chaohu, China. Int. J. Environ. Res. Public Health 2019, 16, 1692. [Google Scholar] [CrossRef] [Green Version]
- Ssbugere, P.; Sillanpää, M.; Kiremire, B.T.; Kasozi, G.N.; Wang, P.; Sojinu, S.O.; Otieno, P.O.; Zhu, N.; Zhu, C.; Zhang, H.; et al. Polychlorinated biphenyls and hexachlorocyclohexanes in sediments and fish species from the Napoleon Gulf of Lake Victoria, Uganda. Sci. Total Environ. 2014, 481, 55–60. [Google Scholar] [CrossRef]
- Aghazadeh, M.; Afghan, A.; Baradarani, M.M. Monitoring of perfluorinated alkylated substances as a new class of global pollutant in Lake Victoria biota and abiota matrices. J. Sci. Geosci. 2016, 4, 1–6. [Google Scholar]
- Wenaty, A.; Fromberg, A.; Mabiki, F.; Chove, B.; Dalsgaard, A.; Mdegela, R. Assessment of health risks associated with organochlorine pesticides levels in processed fish products from Lake Victoria. Afr. J. Food Sci. 2019, 13, 101–110. [Google Scholar]
- Arinaitwe, K.; Koch, A.; Taabu-Munyaho, A.; Marien, K.; Reemtsma, T.; Berger, U. Spatial profiles of perfluoroalkyl substances and mercury in fish from northern Lake Victoria, East Africa. Chemosphere 2020, 260, 127536. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.S.C.; Takemoto, R.M.; Yamaguchi, M.U.; de Matos, L.S.; Pavanelli, G.C. Evaluation of the concentration of heavy metals in fillets of Pangasius hypophthalmus (Sauvage, 1878), panga, imported from Vietnam. Int. J. Dev. Res. 2019, 9, 30181–30186. [Google Scholar]
- Maruf, M.A.; Punom, N.J.; Saha, B.; Moniruzzaman, M.; Suchi, P.D.; Eshik, M.M.E.; Rahman, M.S. Assessment of human health risks associated with heavy metals accumulation in the freshwater fish Pangasianodon hypophthalmus in Bangladesh. Expo. Health 2021, 13, 337–359. [Google Scholar] [CrossRef]
- Wuang, D.; Hsieh, Y.-H.P. The use of imported pangasius fish in local restaurants. Food Control 2016, 65, 136–142. [Google Scholar] [CrossRef]
- Tomm, J.M.; van Do, T.; Jende, C.; Simon, J.C.; Treudler, R.; von Bergen, M.; Averbeck, M. Identification of new potential allergens from Nile Perch (Lates niloticus) and cod (Gadus morhua). J. Investig. Allergol. Clin. Immunol. 2013, 23, 159–167. [Google Scholar]
- Ebo, D.G.; Kuehn, A.; Bridts, C.H.; Hilger, C.; Hentges, F.; Stevens, W.J. Monosensitivity to pangasius and tilapia caused by allergens other than parvalbumin. J. Investig. Allergol. Clin. Immunol. 2010, 20, 84–88. [Google Scholar]
- Ruethers, T.; Taki, A.C.; Khangurha, J.; Roberts, J.; Buddhadasa, S.; Clarke, D.; Hedges, C.E.; Campbell, D.E.; Kamath, S.D.; Lopata, A.L.; et al. Commercial fish ELISA kits have a limited capacity to detect different fish species and their products. J. Sci. Food Agric. 2020, 100, 4353–4363. [Google Scholar] [CrossRef]
- Nehal, N.; Choudhary, B.; Nagpure, A.; Gupta, R.K. DNA barcoding: A modern age tool for detection of adulteration in food. Crit. Rev. Biotech. 2021, 41, 767–791. [Google Scholar] [CrossRef]
- Espiñeira, M.; Vieites, J.M. Genetic system for traceability of goatfishes by FINS methodology and authentication of mullets (Mullus barbatus and Mullus surmuletus) by RT-PCR. Eur. Food Res. Technol. 2015, 240, 423–429. [Google Scholar] [CrossRef]
- Ceruso, M.; Mascolo, C.; De Luca, P.; Venuti, I.; Biffali, E.; Ambrosio, R.L.; Smaldone, G.; Sordino, P.; Pepe, T. Dentex dentex frauds: Establishment of a new DNA barcoding marker. Foods 2021, 10, 580. [Google Scholar] [CrossRef] [PubMed]
- Deconinck, D.; Hostens, K.; Taverniers, I.; Volckaert, F.A.M.; Robbens, J.; Derycke, S. Identification and semi-quantification of Atlantic salmon in processed and mixed seafood products using Droplet Digital PCR (ddPCR). Food Chem. Toxicol. 2021, 154, 112329. [Google Scholar] [CrossRef] [PubMed]
- Piredda, R.; Mottola, A.; Cipriano, G.; Carlucci, R.; Ciccarese, G.; Di Pinto, A. Next Generation Sequencing (NGS) approach applied to species identification in mixed processed seafood products. Food Control 2022, 133, 108590. [Google Scholar] [CrossRef]
- Isaacs, R.B.; Hellberg, R. Authentication of red snapper (Lutjanus campechanus) fillets using a combination of real-time PCR and DNA barcoding. Food Control 2020, 118, 107375. [Google Scholar] [CrossRef]
- Fernandes, T.J.R.; Amaral, J.S.; Mafra, I. DNA Barcode markers applied to seafood authentication: An updated review. Crit. Rev. Food Sci. Nutr. 2021, 61, 3904–3935. [Google Scholar] [CrossRef]
- Chen, C.; Ding, Y.; Wang, Y.; Jiang, Q.; Wang, F.; Lu, C.; Zhang, L.; Zhuet, C. High-Resolution Melting Analysis of COI Sequences distinguishes pufferfish species (Takifugu spp.) in China. J. Agric. Food Chem. 2021, 69, 794–804. [Google Scholar] [CrossRef]
Sample Code | Declared Species | GenBank | Species Matched by BLAST | Matched GenBank | % Identity |
---|---|---|---|---|---|
Accession N° | Accession from BLAST | 100% Coverage | |||
NEO01 | “icefish” (Neosalanx tangkahkeii) | ON242378 | Neosalanx tangkahkeii | OL494212 | 99.23 |
NEO02 | “icefish” (Neosalanx tangkahkeii) | ON242379 | Neosalanx tangkahkeii | KP170510 | 99.20 |
NEO03 | "icefish” (Neosalanx spp.) | ON242380 | Neosalanx tangkahkeii | OL494212 | 98.77 |
NAT01 | “bianchetto” | ON242381 | Aphia minuta | KM077808 | 99.69 |
NAT02 | “bianchetto” | ON242382 | Engraulis encrasicolus | MG740790 | 99.54 |
NAT03 | “bianchetto” | ON242383 | Engraulis encrasicolus | MG729571 | 99.54 |
NAT04 | “bianchetto” | ON242384 | Neosalanx tangkahkeii | KP170510 | 99.37 |
NAT05 | “rossetto” | ON242385 | Aphia minuta | KM077808 | 99.54 |
NAT06 | “rossetto” | ON242386 | Aphia minuta | KM077814 | 99.67 |
NAT07 | “bianchetto” | ON242387 | Engraulis encrasicolus | KU056679 | 99.39 |
NAT08 | “bianchetto” | ON242388 | Engraulis encrasicolus | MG729554 | 99.84 |
NAT09 | “bianchetto” | ON242389 | Engraulis encrasicolus | MG729554 | 99.68 |
NAT10 | “bianchetto” | ON242390 | Neosalanx tangkahkeii | KP170510 | 98.89 |
NAT12 | “bianchetto” | ON242391 | Sardina pilchardus | MG729586 | 99.69 |
NAT15 | “bianchetto” | ON242392 | Sardina pilchardus | MG729588 | 99.39 |
NAT16 | “bianchetto” | ON242393 | Sardina pilchardus | EF609451 | 99.08 |
PERS01 | “persico reale” | ON247419 | Lates niloticus | KT193061 | 99.54 |
PERS02 | “persico reale” | ON247420 | Lates niloticus | MN893181 | 99.23 |
PERS03 | “persico del Nilo” | ON247421 | Lates niloticus | MN893181 | 99.54 |
PERS04 | “persico del Nilo” | ON247422 | Lates niloticus | MK216590 | 99.68 |
PERS05 | “persico" | ON247423 | Lates niloticus | MK216590 | 99.35 |
PERS06 | “persico” | ON247424 | Lates niloticus | MN893181 | 99.38 |
PERS07 | “persico reale” | ON247425 | Perca fluviatilis | AP018422 | 99.68 |
PERS08 | “persico” | ON247426 | Lates niloticus | MK216590 | 99.03 |
PERS09 | “persico reale” | ON247427 | Lates niloticus | OL804282 | 99.68 |
PERS10 | “persico reale” | ON247428 | Perca fluviatilis | MG969738 | 99.67 |
PERS11 | “persico del Nilo” | ON247429 | Lates niloticus | MK216590 | 98.87 |
PERS12 | “persico” | ON247430 | Lates niloticus | MK216590 | 99.03 |
PERS14 | “persico reale” | ON247431 | Pangasianodon hypophthalmus | MH119967 | 99.68 |
PERS17 | “persico” | ON247432 | Lates niloticus | MN893181 | 98.62 |
Aphia minuta | Engraulis encrasicolus | Sardina pilchardus | Neosalanx tangkahkeii | Lates niloticus | Perca fluviatilis | Pangasius hypophthalmus | |
---|---|---|---|---|---|---|---|
HindIII | 200/400 | ND | ND | ND | ND | ND | ND |
AluI | 180/100/200 | 205/270/100 | 220/270/150 | 250/250/100 | 220/200/100 | 200/210/140 | 100/450/150 |
MboI | 200/450 | 100/320/330 | 130/180 | 100/430 | 100/480 | 150/450 | ND |
HinfI | 260/150/250 | 260/390 | ND | 190/200/230 | 260/390 | 240/350 | ND |
MspI | 320/290/100 | 300/280 | 280/100 | 180/100/210 | 300/170/150 | 240/350 | 100/300/200/100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappalardo, A.M.; Giuga, M.; Raffa, A.; Nania, M.; Rossitto, L.; Calogero, G.S.; Ferrito, V. COIBar-RFLP Molecular Strategy Discriminates Species and Unveils Commercial Frauds in Fishery Products. Foods 2022, 11, 1569. https://doi.org/10.3390/foods11111569
Pappalardo AM, Giuga M, Raffa A, Nania M, Rossitto L, Calogero GS, Ferrito V. COIBar-RFLP Molecular Strategy Discriminates Species and Unveils Commercial Frauds in Fishery Products. Foods. 2022; 11(11):1569. https://doi.org/10.3390/foods11111569
Chicago/Turabian StylePappalardo, Anna Maria, Marta Giuga, Alessandra Raffa, Marco Nania, Luana Rossitto, Giada Santa Calogero, and Venera Ferrito. 2022. "COIBar-RFLP Molecular Strategy Discriminates Species and Unveils Commercial Frauds in Fishery Products" Foods 11, no. 11: 1569. https://doi.org/10.3390/foods11111569
APA StylePappalardo, A. M., Giuga, M., Raffa, A., Nania, M., Rossitto, L., Calogero, G. S., & Ferrito, V. (2022). COIBar-RFLP Molecular Strategy Discriminates Species and Unveils Commercial Frauds in Fishery Products. Foods, 11(11), 1569. https://doi.org/10.3390/foods11111569