Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Kombucha Beverages
2.2. Antibacterial Activity of the Kombucha Beverages
2.3. Identification of Kombucha Microflora Using by MALDI-TOF MS Biotyper
2.4. The Determination of Kombucha Beverages Polyphenols Profile
2.5. The Determination of the Kombucha Beverages Mineral Content by Atomic Emission Spectroscopy with Inductively Coupled Plasma (ICP-OES)
2.6. The Determination of pH in Kombucha Beverages
2.7. The Determination of Kombucha Alcohol Content
2.8. The Determination of Sugar Content
2.9. Organoleptic Evaluation
- appearance;
- colour;
- aroma;
- taste;
- sweetness;
- acidity.
2.10. Statistical Analysis
3. Results and Discussion
3.1. Determination of the Antibacterial Properties of a Kombucha Beverages
3.2. Identification of Kombucha Microflora Using by MALDI-TOF MS Biotyper
3.3. Identification of Bioactive Compounds Using UPLC-PDA-ESI-MS/MS
3.4. Determination of the Mineral Content by Atomic Emission Spectroscopy with Inductively Coupled Plasma (ICP-OES)
3.5. The Analysis of pH, Augar and Alcohol Content in Kombucha Beverages during Fermentation
3.6. Organoleptic Evaluation Was Performed after 14-Day Fermentation Period in a Group of 15 People
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A review on kombucha tea–microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comp. Rev. Food Sci. Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.F.; Hikal, M.S.; Abou-Taleb, K.A. Biological, chemical and antioxidant activities of different types Kombucha. Ann. Agric. Sci. 2020, 65, 35–41. [Google Scholar] [CrossRef]
- Morales, D. Biological activities of kombucha beverages: The need of clinical evidence. Trends Food Sci. Technol. 2020, 105, 323–333. [Google Scholar] [CrossRef]
- Sinir, G.Ö.; Tamer, C.E.; Suna, S. Kombucha Tea: A Promising Fermented Functional Beverage. Fermented Beverages 2019, 5, 401–432. [Google Scholar]
- Coton, M.; Pawtowski, A.; Taminiau, B.; Burgaud, G.; Deniel, F.; Coulloumme-Labarthe, L.; Fall, A.; Daube, G.; Coton, E. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol. Ecol. 2017, 93, fix048. [Google Scholar] [CrossRef] [PubMed]
- Martínez Leal, J.; Suárez, L.V.; Jayabalan, R.; Oros, J.H.; Escalante-Abutro, A. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA J. Food 2018, 16, 390–399. [Google Scholar] [CrossRef]
- Bortolomedi, B.M.; Paglarini, C.S.; Brod, F.C.A. Bioactive compounds in kombucha: A review of substrate effect and fermentation conditions. Food Chem. 2022, 385, 132719. [Google Scholar] [CrossRef]
- Kapp, J.M.; Sumner, W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- Jakubczyk, K.P.; Piotrowska, G.; Janda, K. Characteristics and biochemical composition of kombucha–fermented tea. Med. Ogólna I Nauk. O Zdrowiu 2020, 26, 94–96. [Google Scholar] [CrossRef]
- Nguyen, N.K.; Nguyen, P.B.; Nguyen, H.T.; Le, P.H. Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid. LWT Food Sci. Technol. 2015, 64, 1149–1155. [Google Scholar] [CrossRef]
- Yuniarto, A.; Anggadiredja, K.; Aqidah, R.A.N. Antifungal activity of kombucha tea against human pathogenic fungi. Asian J. Pharm. Clin. Res. 2016, 9, 253–255. [Google Scholar] [CrossRef][Green Version]
- Coelho, R.M.D.; Almeida, A.L.D.; Amaral, R.Q.G.D.; Mota, R.N.D.; Sousa, P.H.M.D. Kombucha: Review. Int. J. Gastron. Food Sci. 2020, 22, 100272. [Google Scholar] [CrossRef]
- Chandrakala, S.K.; Lobo, R.O.; Dias, F.O. Kombucha (Bio-Tea): An Elixir for Life? Nutr. Beverages 2019, 12, 591–616. [Google Scholar]
- Godočiková, L.; Ivanišová, E.; Zaguła, G.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A.; Kowalczewski, P.Ł.; Kačániová, M. Antioxidant activities and volatile flavor components of selected single-origin and blend chocolates. Molecules 2020, 25, 3648. [Google Scholar] [CrossRef]
- Tu, Y.Y.; Xia, H.L. Antimicrobial activity of fermented green tea liquid. Int. J. Tea Sci. 2018, 6, 29–35. [Google Scholar]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Taillandier, P. Understanding kombucha tea fermentation: A review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef]
- Cardoso, R.R.; Neto, R.O.; Dos Santos D’Almeida, C.T.; Do Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.; Cameron, L.C.; Ferreira, M.S.; De Barros, F.A. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha tea—A double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef]
- Soares, M.G.; De Lima, M.; Reolon Schmidt, V.C. Technological aspects of kombucha, its applications and the symbiotic culture (SCOBY), and extraction of compounds of interest: A literature review. Trends Food Sci. Technol. 2021, 110, 539–550. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Bhattacharya, S.; Patra, M.M.; Chakravorty, S.; Sarkar, S.; Chakraborty, W.; Koley, H.; Gachhui, R. Antibacterial activity of polyphenolic fraction of Kombucha against Enteric bacterial pathogens. Curr. Microbiol. 2016, 73, 885–896. [Google Scholar] [CrossRef]
- Aung, T.; Eun, J.-B. Impact of time and temperature on the physicochemical, microbiological, and nutraceutical properties of laver kombucha (Porphyra dentata) during fermentation. LWT 2021, 154, 112643. [Google Scholar] [CrossRef]
- Shahbazi, H.; Hashemi Gahruie, H.; Golmakani, M.T.; Eskandari, M.H.; Movahedi, M. Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Sci. Nutr. 2018, 6, 2568–2577. [Google Scholar] [CrossRef]
- Ivanišová, E.; Meňhartová, K.; Terenjeva, M.; Harangozo, Ĺ.; Kántor, A.; Kačániová, M. The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. J. Food Sci. Technol. 2019, 57, 1840–1846. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Sui, Y.; Wu, H.; Zhou, C.; Hu, X.; Zhang, J. Flavour chemical dynamics during fermentation of Kombucha tea Emirates. J. Food Agric. 2018, 30, 732–741. [Google Scholar]
- Roda, G.; Marinello, C.; Grassi, A.; Picozzi, C.; Aldini, G.; Carini, M.; Regazzoni, L. Ripe and raw pu-erh tea: LC–MS profiling, antioxidant capacity and enzyme inhibition activities of aqueous and hydro-alcoholic extracts. Molecules 2019, 24, 473. [Google Scholar] [CrossRef]
- Vargas, B.K.; Fabricio, M.F.; Záchia Ayub, M.A. Health effects and probiotic and prebiotic potential of Kombucha: A bibliometric and systematic review. Food Biosci. 2021, 44, 101332. [Google Scholar] [CrossRef]
- Filippis, F.; Troise, A.D.; Vitaglione, P.; Ercolini, D. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during kombucha tea fermentation. Food Microbiol. 2018, 73, 11–16. [Google Scholar] [CrossRef]
- Vitas, J.S.; Cvetanovic, A.D.; Maškovič, P.Z.; Švarc-Gajič, J.V.; Malbaša, R.V. Chemical composition and biological activity of novel types kombucha beverages with yarrow. J. Funct. Foods 2018, 44, 95–102. [Google Scholar] [CrossRef]
- Massoud, R.; Jafari-Dastjerdeh, R.; Naghavi, N.; Khosravi-Darani, K. All aspects of antioxidant properties of kombucha drink. Biointerface Res. Appl. Chem. 2022, 12, 4018–4027. [Google Scholar]
- Muhialdin, B.J.; Osman, F.A.; Muhamad, R.; Che Wan Sapawi, C.W.N.S.; Anzian, A.; Voon, W.W.Y.; Meor Hussein, A.S. Effects of sugar sources and fermentation time on the properties of tea fungus (kombucha) beverage. Int. Food Res. J. 2019, 26, 481–487. [Google Scholar]
- Villarreal-Soto, S.A.; Bouajila, J.; Pace, M.; Leech, J.; Cotter, P.D.; Souchard, J.P.; Taillandier, P.; Beaufor, S. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int. J. Food Microbiol. 2020, 333, 108778. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Qi, X.; Ren, L.; Qiang, T. Isolation and identification of a bacterial cellulose synthesizing strain from kombucha in different conditions: Gluconacetobacter xylinus ZHCJ618. Food Sci. Biotechnol. 2018, 27, 705–713. [Google Scholar] [CrossRef]
- Antolak, H.; Kręgiel, D. Acetic acid bacteria-taxonomy, ecology, and industrial application. Zywnosc Nauka Technol. Jakosc 2015, 101, 21–35. [Google Scholar] [CrossRef]
- Wang, Y.; Kan, Z.; Thompson, H.J.; Ling, T.; Ho, C.; Li, D.; Wan, X. Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43. J. Agric. Food Chem. 2019, 67, 5423–5436. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Renard, T.; Rollan, S.; Taillandier, P. Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochem. 2019, 83, 44–54. [Google Scholar] [CrossRef]
- Vitas, J.S.; Popovic´, L.M.; Čakarević Malbaša, R.V.; Vukmanović, S.Z. In vitro assessment of bioaccessibility of the antioxidant activity of kombucha beverages after gastric and intestinal digstion. Food Feed. Res. 2020, 47, 33–41. [Google Scholar] [CrossRef]
- Gaggìa, F.; Baffoni, L.; Galiano, M.; Nielsen, D.S.; Jakobsen, R.R.; Castro-Mejía, J.L.; Bosi, S.; Truzzi, F.; Musumeci, F.; Dinelli, G.; et al. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients 2018, 11, 1. [Google Scholar] [CrossRef]
- Kunze, A.; Bertsch, A.; Giugliano, M.; Renaud, P. Microfluidic hydrogel layers with multiple gradients to stimulate and perfuse three-dimensional neuronal cell cultures. Procedia Chem. 2009, 1, 369–372. [Google Scholar] [CrossRef]
- Kaewkod, T.; Bovonsombut, S.; Tragoolpua, Y. Efficacy of kombucha obtained from green, oolong, and black teas on inhibiton of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 2019, 7, 700. [Google Scholar] [CrossRef]
- Pure, A.E.; Pure, M.E. Antioxidant and antibacterial activity of kombucha beverages prepared using banana peel, common nettles and black tea infusions. Appl. Food Biotechnol. 2016, 3, 125–130. [Google Scholar] [CrossRef]
- Marsh, G.E. Interglacials, Milankovitch cycles, solar activity, and carbon dioxide. J. Climatol. 2014, 2014, 345482. [Google Scholar] [CrossRef]
- Watawana, M.I.; Jayawardena, N.; Ranasinghe, S.J.; Waisundara, V.Y. Evaluation of the effect of different sweetening agents on the polyphenol contents and antioxidant and starch hydrolase inhibitory properties of Kombucha. J. Food Process. Preserv. 2017, 41, e12752. [Google Scholar] [CrossRef]
- Shahidi, F.; Peng, H. Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef]
- Chakravorty, J.; Ghosh, S.; Megu, K.; Jung, C.; Meyer-Rochow, V.B. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. J. Asia-Pac. Entomol. 2016, 19, 711–720. [Google Scholar] [CrossRef]
- Amarasinghe, H.; Weerakkody, N.S.; Waisundaza, V.Y. Evaluation of physicochemical properties and antioxidant activities of kombucha “tea fungus”. Food Sci. Nutr. 2018, 6, 659–665. [Google Scholar] [CrossRef]
- Zubaidah, E.; Ifadah, R.A.; Afgani, C.A. Changes in chemical characteristics of kombucha from various cultivars of snake fruit during fermentation. E&ES 2019, 230, 012098. [Google Scholar]
- Bauer-Petrovska, B.; Petrushevska-Tozi, L. Mineral and water soluble vitamins content in Kombucha drink. Int. J. Food Sci. Tech. 2000, 35, 201–205. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kałduńska, J.; Kochman, J.; Janda, K. Chemical profile and antioxidant activity of the kombucha beverage derived from White, green, black and red tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef]
- Malbaša, R.V.; Loncar, E.S.; Vitas, J.S.; Canadanovic’-Brunet, J.M. Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chem. 2011, 127, 1727–1731. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malini, K.; Sathishkumar, M.; Swaminathan, K.; Yun, S.-E. Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Sci. Biotechnol. 2010, 19, 843–847. [Google Scholar] [CrossRef]
- Neffe-Skocińska, K.; Sionek, B.; Ścibisz, I.; Kołożyn-Krajewska, D. Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CYTA J. Food 2017, 15, 601–607. [Google Scholar] [CrossRef]
No. Trials | The Composition of the Beverage |
---|---|
1 | Black tea + Cane sugar |
2 | Black tea + Coconut sugar |
3 | Green tea + Cane sugar |
4 | Green tea + Coconut sugar |
5 | White tea + Cane sugar |
6 | White tea + Coconut sugar |
Element | Measurement Linse (nm) | Recovery by CRM (%) | Recovery by (%) |
---|---|---|---|
Al | 167.079 | 98 | 100 |
Ca | 317.933 | 101 | 99 |
Cu | 324.754 | 98 | 99 |
K | 766.490 | 102 | 98 |
Mg | 279.533 | 102 | 101 |
P | 177.495 | 101 | 99 |
S | 180.731 | 97 | 100 |
Zn | 213.856 | 99 | 97 |
Gram-Negative Bacteria | Gram-Positive Bacteria | Yeasts | ||||||
---|---|---|---|---|---|---|---|---|
Type of Beverage | ST | EC | LM | SA | CG | CA | CK | CT |
Black tea + cane sugar | 1.3 a ± 0.6 | 1.0 a ± 0.0 | 3.0 c ± 0.0 | 1.0 a ± 0.0 | 2.0 b ± 0.0 | 2.0 b ± 0.0 | 6.3 d ± 0.6 | 9.7 e ± 0.6 |
Black tea + coconut sugar | 3.6 c ± 0.6 | 3.0 c ± 0.0 | 3.0 c ± 0.0 | 1.0 a ± 0.0 | 2.0 b ± 0.0 | 3.0 c ± 0.0 | 7.5 d ± 0.6 | 8.4 d ± 0.6 |
Green tea + cane sugar | 9.0 c± 0.2 | 7.0 b± 0.5 | 8.0 c ± 0.1 | 5.3 a ± 0.6 | 7.3 b ± 0.6 | 6.7 b ± 0.0 | 9.7 d ± 0.2 | 6.0 a ± 0.0 |
Green tea + coconut sugar | 4.3 a ± 0.6 | 6.1 b ± 0.1 | 6.0 b ± 0.5 | 7.7 c ± 0.6 | 7.8 c ± 1.0 | 8.3 c ± 0.7 | 4.7 a ± 0.6 | 7.3 c ± 0.3 |
White tea + cane sugar | 5.3 a± 0.6 | 7.7 b ± 0.5 | 8.0 b ± 1.0 | 10.3 c ± 0.6 | 8.0 b ± 1.0 | 10.0 c ± 0.3 | 5.3 a ± 0.6 | 7.7 b ± 0.5 |
White tea + coconut sugar | 5.2 a ± 1.0 | 7.1 b ± 0.0 | 7.5 b ± 0.1 | 11.0 d ± 0.5 | 9.0 c ± 0.4 | 9.0 c ± 0.1 | 5.4 a± 1.0 | 6.5 a ± 0.3 |
Microorganism | Gram Negative | Gram Positive | Black Tea + Cane Sugar | Black Tea + Coconut Sugar | Green Tea + Cane Sugar | Green Tea + Coconut Sugar | White Tea + Cane Sugar | White Tea + Coconut Sugar |
---|---|---|---|---|---|---|---|---|
Gluconacetobacter xylinus | + | − | − | + | − | + | − | + |
Acetobacter xylinum | + | − | + | − | + | − | + | − |
Bacterium gluconicum | + | − | + | − | + | − | + | − |
Gluconobacter oxydans | + | − | + | + | + | + | − | − |
Leuconostoc mesenteroides | − | + | + | + | + | + | − | − |
Propionibacterium spp. | − | + | + | + | − | − | + | + |
Acetobacter nitrogenifigens | + | − | − | − | + | + | + | + |
Gluconacetobacter kombucha | + | − | + | + | + | + | + | + |
Microorganism | Black Tea + Cane Sugar | Black Tea + Coconut Sugar | Green Tea + Cane Sugar | Green Tea + Coconut Sugar | White Tea + Cane Sugar | White Tea + Coconut Sugar |
---|---|---|---|---|---|---|
Saccharomyces cerevisiae | + | + | + | + | + | + |
Candida vini | + | − | + | − | + | − |
Schizosaccharomyces pombe | − | + | − | + | − | + |
Pichia membranefaciens | − | + | − | + | − | + |
Kloeckera apiculate | + | − | + | − | + | − |
Kluyveromyces marxianus | + | + | − | + | − | + |
Pichia kluyveri | + | − | − | − | + | − |
No. | Compound | Rt * (min) | UV–Vis * λmax | [M−H]− m/z * | MS/MS * |
---|---|---|---|---|---|
1 | Neochlorogenic acid | 2.79 | 299, 327 | 353 | 191 |
2 | Chlorogenic acid | 3.55 | 299, 327 | 353 | 191 |
3 | Cryptochlorogenic acid | 3.72 | 299, 327 | 353 | 191 |
4 | Catechin | 4.24 | 274 | 289 | 151 |
5 | Gallocatechin 3-O-gallate | 4.33 | 274 | 457 | 305 |
6 | Coumaroyl quinic acid | 4.44 | 299, 311 | 337 | 191 |
7 | Quercetin 3-O-rutinoside-7-O-rhamnoside | 4.74 | 255, 350 | 755 | 609, 301 |
8 | Kaempferol 3-O-rhamnoside-7-O-pentoside | 4.83 | 264, 355 | 563 | 447, 285 |
9 | Kaempferol 3-O-rhamnoside-7-O-pentoside | 4.89 | 264, 355 | 563 | 447, 285 |
10 | Quercetin 3-O-rutinoside-7-O-galactoside | 5.2 | 255, 350 | 771 | 609, 301 |
11 | Kaempferol 3-O-rutinoside | 5.35 | 264, 355 | 593 | 285 |
12 | Quercetin 3-O-rutinoside | 4.46 | 255, 355 | 609 | 301 |
13 | Epicatechin 3-O-gallate | 5.56 | 278 | 441 | 305 |
14 | Procyanidin A1 | 5.88 | 274 | 577 | 289 |
15 | Kaempferol 3-O-rutinoside-7-O-rhamnoside | 5.97 | 264, 350 | 739 | 593, 285 |
16 | Kaempferol 3-O-glucoside-rhamnoside | 6.08 | 264, 355 | 593 | 285 |
17 | Kaempferol 3-O-rhamnoside | 6.39 | 265, 352 | 447 | 285 |
Sample | Day | Al | Ca | Fe | K | Mg | Na | P | S |
---|---|---|---|---|---|---|---|---|---|
Black tea + Cane sugar | 1 | 1.52 e | 3.119 cd | 0.1281 g | 79.01 d | 5.323 h | 5.652 h | 6.637 d | 5.362 c |
±0.033 | ±0.027 | ±0.012 | ±0.68 | ±0.053 | ±0.064 | ±0.08 | ±0.026 | ||
14 | 2.102 f | 8.087 e | 0 d | 69.6 ef | 6.066 g | 3.12 g | 6.448 d | 5.406 cd | |
±0.217 | ±0.047 | ±0.072 | ±0.24 | ±0.4 | ±0.031 | ±0.061 | ±0.003 | ||
Black tea + Coconut sugar | 1 | 1.678 bc | 9.268 f | 0.1032 i | 84.38 g | 6.499 e | 1.859 e | 6.634 d | 9.567 fg |
±0.101 | ±0.062 | ±0.0066 | ±0.46 | ±0.036 | ±0.013 | ±0.024 | ±0.074 | ||
14 | 2.51 d | 10.75 i | 0.0692 i | 95.9 j | 7.428 f | 2.203 f | 8.859 e | 11.16 i | |
±0.105 | ±0.16 | ±0.0269 | ±0.0015 | ±0.1104 | ±0.024 | ±0.051 | ±0.02 | ||
Green tea + Cane sugar | 1 | 1.559 b | 2.119 a | 0.0466 a | 50.28 a | 2.65 a | 0.658 a | 4.201 a | 4.012 a |
±0.128 | ±0.02 | ±0.0002 | ±0.51 | ±0.031 | ±0.011 | ±0.054 | ±0.013 | ||
14 | 2.617 d | 2.525 b | 0.0334 b | 56.05 b | 3.002 bcd | 1.014 bcd | 5.332 b | 4.531 b | |
±0.167 | ±0.056 | ±0.0337 | ±0.84 | ±0.051 | ±0.018 | ±0.037 | ±0.017 | ||
Green tea + Coconut sugar | 1 | 1.918 c | 10.21 g | 0.1393 c | 68.24 c | 4.652 ab | 0.8265 ab | 5.323 b | 9.302 f |
±0.14 | ±0.08 | ±0.0308 | ±0.24 | ±0.069 | ±0.0122 | ±0.062 | ±0.029 | ||
14 | 3.068 e | 11.37 j | 0.1067 e | 75.49 d | 5.143 abc | 0.8538 abc | 6.111 c | 9.997 h | |
±0.236 | ±0.13 | ±0.0446 | ±0.57 | ±0.016 | ±0.0158 | ±0.39 | ±0.051 | ||
White tea + Cane sugar | 1 | 0.874 a | 2.905 c | 0.063 fg | 78.93 e | 5.806 d | 1.225 d | 8.865 e | 5.697 d |
±0.145 | ±0.11 | ±0.0861 | ±0.78 | ±0.04 | ±0.009 | ±0.028 | ±0.028 | ||
14 | 1.572 b | 3.201 d | 0.087 h | 83.85 f | 6.156 cd | 1.148 cd | 10.31 g | 6.108 e | |
±0.129 | ±0.042 | ±0.0301 | ±1.01 | ±0.103 | ±0.016 | ±0.07 | ±0.014 | ||
White tea + Coconut sugar | 1 | 1.04 a | 10.57 hi | 0.1597 f | 78.67 h | 6.647 d | 1.223 d | 9.042 e | 9.686 g |
±0.117 | ±0.041 | ±0.0523 | ±0.55 | ±0.064 | ±0.026 | ±0.033 | ±0.07 | ||
14 | 1.456 b | 10.41 gh | 0.0726 h | 83.64 i | 6.943 ef | 2.109 ef | 9.641 f | 10.09 h | |
±0.16 | ±0.052 | ±0.0637 | ±0.16 | ±0.039 | ±0.004 | ±0.062 | ±0.02 |
Sample | Day | Alcohol (%) | pH | Saccharose [Brix-g/100 mL] |
---|---|---|---|---|
Black tea + Cane sugar | 0 | 0.0 ± 0.00 | 5.87 ± 0.02 | 7.04 ± 0.09 |
1 | 0.3 ± 0.00 | 3.35 ± 0.01 | 6.95 ± 0.35 | |
7 | 3.5 ± 0.50 | 2.60 ± 0.02 | 6.78 ± 0.00 | |
14 | 4.85 ± 0.50 | 2.44 ± 0.02 | 5.64 ± 0.00 | |
Black tea + Coconut sugar | 0 | 0.0 ± 0.00 | 5.54 ± 0.02 | 7.06 ± 0.02 |
1 | 0.4 ± 0.00 | 3.51 ± 0.04 | 6.65 ± 0.25 | |
7 | 3.25 ± 0.00 | 2.63 ± 0.03 | 6.22 ± 0.00 | |
14 | 4.00 ± 0.00 | 2.58 ± 0.02 | 5.59 ± 0.00 | |
Green tea + Cane sugar | 0 | 0.0 ± 0.00 | 5.87 ± 0.03 | 7.13 ± 0.09 |
1 | 0.3 ± 0.50 | 3.54 ± 0.04 | 6.73 ± 0.35 | |
7 | 3.4 ± 0.00 | 2.61 ± 0.03 | 6.35 ± 0.00 | |
14 | 4.00 ± 0.00 | 2.40 ± 0.02 | 5.72 ± 0.00 | |
Green tea + Coconut sugar | 0 | 0.0 ± 0.00 | 5.62 ± 0.04 | 7.11 ± 0.09 |
1 | 0.2 ± 0.00 | 3.75 ± 0.03 | 6.79 ± 0.35 | |
7 | 3.50 ± 0.50 | 2.60 ± 0.02 | 6.46 ± 0.00 | |
14 | 4.95 ± 0.50 | 2.56 ± 0.02 | 5.70 ± 0.00 | |
White tea + Cane sugar | 0 | 0.0 ± 0.00 | 5.64 ± 0.04 | 7.15 ± 0.09 |
1 | 0.4 ± 0.00 | 3.72 ± 0.02 | 6.59 ± 0.35 | |
7 | 3.0 ± 0.00 | 2.81 ± 0.01 | 6.47 ± 0.00 | |
14 | 4.50 ± 0.00 | 2.72 ± 0.02 | 5.64 ± 0.00 | |
White tea + Coconut sugar | 0 | 0.0 ± 0.00 | 5.70 ± 0.09 | 7.17 ± 0.09 |
1 | 0.2 ± 0.50 | 3.25 ± 0.35 | 6.63 ± 0.35 | |
7 | 3.25 ± 0.50 | 2.74 ± 0.09 | 6.29 ± 0.00 | |
14 | 4.75 ± 0.00 | 2.65 ± 0.35 | 5.84 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluz, M.I.; Pietrzyk, K.; Pastuszczak, M.; Kacaniova, M.; Kita, A.; Kapusta, I.; Zaguła, G.; Zagrobelna, E.; Struś, K.; Marciniak-Lukasiak, K.; et al. Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars. Foods 2022, 11, 1523. https://doi.org/10.3390/foods11101523
Kluz MI, Pietrzyk K, Pastuszczak M, Kacaniova M, Kita A, Kapusta I, Zaguła G, Zagrobelna E, Struś K, Marciniak-Lukasiak K, et al. Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars. Foods. 2022; 11(10):1523. https://doi.org/10.3390/foods11101523
Chicago/Turabian StyleKluz, Maciej Ireneusz, Karol Pietrzyk, Miłosz Pastuszczak, Miroslava Kacaniova, Agnieszka Kita, Ireneusz Kapusta, Grzegorz Zaguła, Edyta Zagrobelna, Katarzyna Struś, Katarzyna Marciniak-Lukasiak, and et al. 2022. "Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars" Foods 11, no. 10: 1523. https://doi.org/10.3390/foods11101523
APA StyleKluz, M. I., Pietrzyk, K., Pastuszczak, M., Kacaniova, M., Kita, A., Kapusta, I., Zaguła, G., Zagrobelna, E., Struś, K., Marciniak-Lukasiak, K., Stanek-Tarkowska, J., Timar, A. V., & Puchalski, C. (2022). Microbiological and Physicochemical Composition of Various Types of Homemade Kombucha Beverages Using Alternative Kinds of Sugars. Foods, 11(10), 1523. https://doi.org/10.3390/foods11101523