Effects of Orientations and Regions on Performance of Online Soluble Solids Content Prediction Models Based on Near-Infrared Spectroscopy for Peaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Spectrum Collection
2.3. SSC Measurement
2.4. Spectra Preprocessing
2.5. PLS and Model Evaluation
2.6. Effective Wavelength Selection
3. Results and Discussion
3.1. Original Full Transmittance Spectra and Measured SSC
3.2. Result of Preprocessing
3.3. Results of Comparing Spectrum-Collection Orientations and Regions
3.4. Effective Wavelength Selection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Che, L. Comparative analysis of models for robust and accurate evaluation of soluble solids content in ‘pinggu’ peaches by hyperspectral imaging. Comput. Electron. Agric. 2017, 142, 524–535. [Google Scholar] [CrossRef]
- Arunkumar, M.; Rajendran, A.; Gunasri, S.; Kowsalya, M.; Krithika, C.K. Non-destructive fruit maturity detection methodology—A review. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Ozaki, Y.; Huck, C.W.; Be, K.B. Near-ir spectroscopy and its applications—Sciencedirect. Mol. Laser Spectrosc. 2018, 11–38. [Google Scholar]
- Zheng, W.; Bai, Y.; Luo, H.; Li, Y.; Yang, X.; Zhang, B. Self-adaptive models for predicting soluble solid content of blueberries with biological variability by using near-infrared spectroscopy and chemometrics. Postharvest Biol. Technol. 2020, 169, 111286. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Xu, L.; Xi, T.; Xia, Y.; Fan, S. Comparison and optimization of models for determination of sugar content in pear by portable vis-nir spectroscopy coupled with wavelength selection algorithm. Food Anal. Methods 2018, 12, 12–22. [Google Scholar] [CrossRef]
- Sripaurya, T.; Sengchuai, K.; Booranawong, A.; Chetpattananondh, K. Gros michel banana soluble solids content evaluation and maturity classification using a developed portable 6 channel nir device measurement. Measurement 2021, 173, 108615. [Google Scholar] [CrossRef]
- Saechua, W.; Sharma, S.; Nakawajana, N.; Leepaitoon, K.; Chunsri, R.; Posom, J.; Roeksukrungrueang, C.; Siritechavong, T.; Phanomsophon, T.; Sirisomboon, P.; et al. Integrating vis-swnir spectrometer in a conveyor system for in-line measurement of dry matter content and soluble solids content of durian pulp. Postharvest Biol. Technol. 2021, 181, 111640. [Google Scholar] [CrossRef]
- Xiao, H.; Li, A.; Li, M.; Sun, Y.; Tu, K.; Wang, S.; Pan, L. Quality assessment and discrimination of intact white and red grapes from vitis vinifera l. At five ripening stages by visible and near-infrared spectroscopy. Sci. Hortic. 2018, 233, 99–107. [Google Scholar] [CrossRef]
- Mishra, P.; Woltering, E.; Brouwer, B.; van Hogeveen, E.E. Improving moisture and soluble solids content prediction in pear fruit using near-infrared spectroscopy with variable selection and model updating approach. Postharvest Biol. Technol. 2021, 171, 111348. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Ouyang, A. Nondestructive measurement of soluble solid content of navel orange fruit by visible–nir spectrometric technique with plsr and pca-bpnn. LWT Food Sci. Technol. 2010, 43, 602–607. [Google Scholar] [CrossRef]
- Xia, Y.; Fan, S.; Tian, X.; Huang, W.; Li, J. Multi-factor fusion models for soluble solid content detection in pear (pyrus bretschneideri ‘ya’) using vis/nir online half-transmittance technique. Infrared Phys. Technol. 2020, 110, 103443. [Google Scholar] [CrossRef]
- Xia, Y.; Huang, W.; Fan, S.; Li, J.; Chen, L. Effect of spectral measurement orientation on online prediction of soluble solids content of apple using vis/nir diffuse reflectance. Infrared Phys. Technol. 2019, 97, 467–477. [Google Scholar] [CrossRef]
- Peiris, K.; Dull, G.G.; Leffler, R.G.; Kays, S.J. Spatial variability of soluble solids or dry-matter content within individual fruits, bulbs, or tubers: Implications for the development and use of nir spectrometric techniques. Hortsci. Public Am. Soc. Hortic. Sci. 1999, 34, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Long, L.R.; Walsh, K.B. Limitations to the measurement of intact melon total soluble solids using near infrared spectroscopy. Aust. J. Agric. Res. 2006, 57, 403. [Google Scholar] [CrossRef]
- Pissard, A.; Baeten, V.; Romnée, J.-M.; Dupont, P.; Lateur, M. Classical and nir measurements of the quality and nutritional parameters of apples: A methodological study of intra-fruit variability. Biotechnol. Agron. Soc. Environ. 2012, 16, 294–306. [Google Scholar]
- Li, Y.; Jin, G.; Jiang, X.; Yi, S.; Tian, X. Non-destructive determination of soluble solids content using a multi-region combination model in hybrid citrus. Infrared Phys. Technol. 2020, 104, 103138. [Google Scholar] [CrossRef]
- Tian, X.; Fan, S.; Li, J.; Huang, W.; Chen, L. An optimal zone combination model for on-line nondestructive prediction of soluble solids content of apple based on full-transmittance spectroscopy. Biosyst. Eng. 2020, 197, 64–75. [Google Scholar] [CrossRef]
- Xia, Y.; Fan, S.; Li, J.; Tian, X.; Huang, W.; Chen, L. Optimization and comparison of models for prediction of soluble solids content in apple by online vis/nir transmission coupled with diameter correction method. Chemom. Intell. Lab. Syst. 2020, 201, 104017. [Google Scholar] [CrossRef]
- Jie, D.; Xie, L.; Rao, X.; Ying, Y. Using visible and near infrared diffuse transmittance technique to predict soluble solids content of watermelon in an on-line detection system. Postharvest Biol. Technol. 2014, 90, 1–6. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, W.; Chen, Y.; Wang, X.; Luo, W.; Zhan, B.; Liu, X.; Zhang, H. Online detection of soluble solids content and maturity of tomatoes using vis/nir full transmittance spectra. Chemom. Intell. Lab. Syst. 2021, 210, 104243. [Google Scholar] [CrossRef]
- Nascimento, P.A.M.; de Carvalho, L.C.; Júnior, L.C.C.; Pereira, F.M.V.; de Teixeira, G.H.A. Robust pls models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (nir). Postharvest Biol. Technol. 2016, 111, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Minas, I.S.; Tanou, G.; Molassiotis, A. Environmental and orchard bases of peach fruit quality. Sci. Hortic. 2018, 235, 307–322. [Google Scholar] [CrossRef]
- Minas, I.S.; Blanco-Cipollone, F.; Sterle, D. Accurate non-destructive prediction of peach fruit internal quality and physiological maturity with a single scan using near infrared spectroscopy. Food Chem. 2021, 335, 127626. Available online: https://www.ncbi.nlm.nih.gov/pubmed/32739812 (accessed on 23 February 2022). [CrossRef] [PubMed]
- Liu, Q.; Ma, C.; Wei, K.; Tu, K.; Pan, L. Quantitative determination of sugar profiles in peach fruit during storage by an integrating sphere system. J. Food Compos. Anal. 2021, 98, 103843. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Jiang, X.; Liu, H. Detection of the quality of juicy peach during storage by visible/near infrared spectroscopy. Vib. Spectrosc. 2020, 111, 103152. [Google Scholar] [CrossRef]
- Buratti, S.; Sinelli, N.; Bertone, E.; Venturello, A.; Casiraghi, E.; Geobaldo, F. Discrimination between washed arabica, natural arabica and robusta coffees by using near infrared spectroscopy, electronic nose and electronic tongue analysis. J. Sci. Food Agric. 2015, 95, 2192–2200. Available online: https://www.ncbi.nlm.nih.gov/pubmed/25258213 (accessed on 23 February 2022). [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Li, Q.; Dai, Y.; Sun, J.; Han, Y.; Wang, H. A low-rank strategy for improving the prediction accuracy of partial least square models. Infrared Phys. Technol. 2021, 116, 103798. [Google Scholar] [CrossRef]
- Lavine, B.K.; Rayens, W.S. 3.16—Statistical discriminant analysis. In Comprehensive Chemometrics; Brown, S.D., Tauler, R., Walczak, B., Eds.; Elsevier: Oxford, UK, 2009; pp. 517–540. [Google Scholar]
- Yun, Y.-H.; Li, H.-D.; Deng, B.-C.; Cao, D.-S. An overview of variable selection methods in multivariate analysis of near-infrared spectra. TrAC Trends Anal. Chem. 2019, 113, 102–115. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Fan, S.; Li, J.; Xia, Y.; Huang, W.; Zhao, C. Comparison and optimization of models for ssc on-line determination of intact apple using efficient spectrum optimization and variable selection algorithm. Infrared Phys. Technol. 2019, 102, 102979. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Zhang, H.; Aiguo, O. Nondestructive measurement of internal quality of nanfeng mandarin fruit by charge coupled device near infrared spectroscopy. Comput. Electron. Agric. 2010, 71, S10–S14. [Google Scholar] [CrossRef]
- Jie, D.; Xie, L.; Fu, X.; Rao, X.; Ying, Y. Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique. J. Food Eng. 2013, 118, 387–392. [Google Scholar] [CrossRef]
- Li, L.; Huang, W.; Wang, Z.; Liu, S.; He, X.; Fan, S. Calibration transfer between developed portable vis/nir devices for detection of soluble solids contents in apple. Postharvest Biol. Technol. 2022, 183, 111720. [Google Scholar] [CrossRef]
Data Set | Number of Samples | Min/(%) | Max/(%) | Mean/(%) | Std/(%) |
---|---|---|---|---|---|
Calibration | 100 | 7.40 | 14.50 | 10.70 | 1.54 |
Validation | 50 | 7.40 | 13.5 | 10.53 | 1.47 |
Orientation | Combination | LVs | Rcv | RMSECV | Rc | RMSEC | Rp | RMSEP |
---|---|---|---|---|---|---|---|---|
Vertical | | 7 | 0.88 | 0.70 | 0.93 | 0.55 | 0.89 | 0.69 |
| 7 | 0.88 | 0.71 | 0.93 | 0.56 | 0.90 | 0.65 | |
| 8 | 0.80 | 0.90 | 0.96 | 0.43 | 0.78 | 0.92 | |
Horizontal | | 8 | 0.91 | 0.63 | 0.95 | 0.48 | 0.89 | 0.67 |
| 8 | 0.90 | 0.66 | 0.95 | 0.45 | 0.84 | 0.80 | |
| 8 | 0.81 | 0.87 | 0.95 | 0.48 | 0.74 | 1.02 |
Orientation | Combination | Algorithm | Selected Effective Wavelengths (nm) |
---|---|---|---|
Vertical | | CARS | 655.75, 656.75, 664, 681.25, 711.25, 723.25, 726.5, 729.25, 746.25, 762.75, 839.25, 878.5, 882.25, 885.75, 892, 892.5, 893.75, 902.5, 904, 904.5, 906.75, 910.75, 913.5, 918, 919.5, 927.75, 933, 936.5, 941, 959.75, 966.5, 988.75, 998.75, 999, 1001, 1005, 1006.5, 1017.75 |
SPA | 688.5, 710.75, 724.5, 878.5, 901, 913.75, 929.5, 942.75, 965.5, 1026.25 | ||
Horizontal | | CARS | 728, 746.75, 765.5, 771, 802.75, 831.25, 831.75, 843.75, 854.25, 877, 902, 907.75, 951.75, 975, 988.75, 1011.75, 1025.75, 1026.25 |
SPA | 668, 782.25, 852.75, 874, 900.75, 908.75, 922.25, 935, 984, 1020.25 |
Orientation | Combination | Algorithm | LVs | Rcv | RMSECV | Rc | RMSEC | Rp | RMSEP |
---|---|---|---|---|---|---|---|---|---|
Vertical | | CARS | 12 | 0.97 | 0.35 | 0.99 | 0.21 | 0.86 | 0.80 |
SPA | 8 | 0.88 | 0.70 | 0.90 | 0.64 | 0.90 | 0.65 | ||
Horizontal | | CARS | 10 | 0.96 | 0.44 | 0.97 | 0.36 | 0.88 | 0.71 |
SPA | 7 | 0.88 | 0.70 | 0.90 | 0.63 | 0.86 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Huang, W.; Lin, L.; Fan, S. Effects of Orientations and Regions on Performance of Online Soluble Solids Content Prediction Models Based on Near-Infrared Spectroscopy for Peaches. Foods 2022, 11, 1502. https://doi.org/10.3390/foods11101502
Liu S, Huang W, Lin L, Fan S. Effects of Orientations and Regions on Performance of Online Soluble Solids Content Prediction Models Based on Near-Infrared Spectroscopy for Peaches. Foods. 2022; 11(10):1502. https://doi.org/10.3390/foods11101502
Chicago/Turabian StyleLiu, Sanqing, Wenqian Huang, Lin Lin, and Shuxiang Fan. 2022. "Effects of Orientations and Regions on Performance of Online Soluble Solids Content Prediction Models Based on Near-Infrared Spectroscopy for Peaches" Foods 11, no. 10: 1502. https://doi.org/10.3390/foods11101502
APA StyleLiu, S., Huang, W., Lin, L., & Fan, S. (2022). Effects of Orientations and Regions on Performance of Online Soluble Solids Content Prediction Models Based on Near-Infrared Spectroscopy for Peaches. Foods, 11(10), 1502. https://doi.org/10.3390/foods11101502