A Comparison of Microfluidic-Jet Spray Drying, Two-Fluid Nozzle Spray Drying, and Freeze-Drying for Co-Encapsulating β-Carotene, Lutein, Zeaxanthin, and Fish Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Chemicals
2.2. Preparation of Emulsion
2.3. Co-Encapsulation of Carotenoids and Fish Oil
2.3.1. Two-Fluid Nozzle Spray Drying
2.3.2. Freeze-Drying
2.3.3. Microfluidic-Jet Spray Drying
2.4. Physiochemical Properties of Microcapsules
2.4.1. Water Activity
2.4.2. Density and Flowability
2.4.3. Microencapsulation Efficiency
2.4.4. Droplet Size and Particle Size Distribution
2.5. Morphological Observation on Microcapsules
2.6. Storage Stability of Microcapsules
2.6.1. Determination of EPA and DHA
2.6.2. Characterization of Carotenoids
2.7. In Vitro Digestion of Microcapsules
2.8. Digesta Analysis
2.8.1. Droplet Size
2.8.2. Zeta Potential
2.8.3. Digestion Behaviours
2.9. Statistical Analysis
3. Results and Discussion
3.1. Microstructure of Microcapsules
3.2. Physicochemical Properties of Microcapsules
3.2.1. Water Activity (aw)
3.2.2. Microencapsulation Efficiency (ME)
3.2.3. Density and Flowability
3.2.4. Particle Size
3.3. Storage Stability of Microcapsules
3.4. In Vitro Digestion Behaviours of Microcapsules
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hashemi, N.; Moghaddasi, H.; Rabiei, R.; Asadi, F.; Farahi, A. Eye health information systems in selected countries. J. Ophthalmic Vis. Res. 2018, 13, 333. [Google Scholar] [PubMed]
- World Health Organization. World Report on Vision 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Spiegler, E.; Kim, Y.-K.; Hoyos, B.; Narayanasamy, S.; Jiang, H.; Savio, N.; Curley, R.W.; Harrison, E.H.; Hammerling, U.; Quadro, L. β-apo-10′-carotenoids support normal embryonic development during vitamin A deficiency. Sci. Rep. 2018, 8, 8834. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.N.; Nusrat, T.; Begum, P.; Ahsan, M. Carotenoids and β-carotene in orange fleshed sweet potato: A possible solution to vitamin A deficiency. Food Chem. 2016, 199, 628–631. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Kim, H.; Kwon, O.; Chang, N. Associations between fruits, vegetables, vitamin A, β-carotene and flavonol dietary intake, and age-related macular degeneration in elderly women in Korea: The Fifth Korea National Health and Nutrition Examination Survey. Eur. J. Clin. Nutr. 2018, 72, 161. [Google Scholar] [CrossRef]
- Buscemi, S.; Corleo, D.; Di Pace, F.; Petroni, M.L.; Satriano, A.; Marchesini, G. The effect of lutein on eye and extra-eye health. Nutrients 2018, 10, 1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreillon, J.; Bowden, R.; Shelmadine, B. Fish oil and C-reactive protein. Bioact. Food Diet. Interv. Arthritis Relat. Inflamm. Dis. Bioact. Food Chronic Dis. States 2012, 393. [Google Scholar]
- Wang, H.; Daggy, B.P. The role of fish oil in inflammatory eye diseases. Biomed. Hub. 2017, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawakita, T.; Kawabata, F.; Tsuji, T.; Kawashima, M.; Shimmura, S.; Tsubota, K. Effects of dietary supplementation with fish oil on dry eye syndrome subjects: Randomized controlled trial. Biomed. Res. 2013, 34, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Cakiner-Egilmez, T. Omega 3 fatty acids and the eye. Insight 2008, 33, 20–27. [Google Scholar] [PubMed]
- Tan, C.; Xue, J.; Lou, X.; Abbas, S.; Guan, Y.; Feng, B.; Zhang, X.; Xia, S. Liposomes as delivery systems for carotenoids: Comparative studies of loading ability, storage stability and in vitro release. Food Funct. 2014, 5, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Voda, A.; Homan, N.; Witek, M.; Duijster, A.; van Dalen, G.; van der Sman, R.; Nijsse, J.; van Vliet, L.; Van As, H.; van Duynhoven, J. The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Res. Int. 2012, 49, 687–693. [Google Scholar] [CrossRef]
- Nail, S.L.; Gatlin, L.A. Freeze-drying: Principles and practice. In Pharmaceutical Dosage Forms-Parenteral Medications; CRC Press: Boca Raton, FL, USA, 2016; pp. 367–396. [Google Scholar]
- Wu, W.D.; Amelia, R.; Hao, N.; Selomulya, C.; Zhao, D.; Chiu, Y.L.; Chen, X.D. Assembly of uniform photoluminescent microcomposites using a novel micro-fluidic-jet-spray-dryer. AlChE J. 2011, 57, 2726–2737. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Selomulya, C. On the spray drying of uniform functional microparticles. Particuology 2015, 22, 1–12. [Google Scholar] [CrossRef]
- Rogers, S.; Fang, Y.; Lin, S.X.Q.; Selomulya, C.; Chen, X.D. A monodisperse spray dryer for milk powder: Modelling the formation of insoluble material. Chem. Eng. Sci. 2012, 71, 75–84. [Google Scholar] [CrossRef]
- Huang, E.; Quek, S.Y.; Fu, N.; Wu, W.D.; Chen, X.D. Co-encapsulation of coenzyme Q10 and vitamin E: A study of microcapsule formation and its relation to structure and functionalities using single droplet drying and micro-fluidic-jet spray drying. J. Food Eng. 2019, 247, 45–55. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, W.; Chen, X.D.; Selomulya, C. Micro-encapsulation and stabilization of DHA containing fish oil in protein-based emulsion through mono-disperse droplet spray dryer. J. Food Eng. 2016, 175, 74–84. [Google Scholar] [CrossRef]
- Rizi, K.; Green, R.J.; Donaldson, M.; Williams, A.C. Production of pH-responsive microparticles by spray drying: Investigation of experimental parameter effects on morphological and release properties. J. Pharm. Sci. 2011, 100, 566–579. [Google Scholar] [CrossRef]
- Carneiro, H.C.; Tonon, R.V.; Grosso, C.R.; Hubinger, M.D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.; Zhao, Q.; Lv, X.; Dong, X.-Y.; Feng, Y.-Q.; Chen, H. Rapid magnetic solid-phase extraction based on monodisperse magnetic single-crystal ferrite nanoparticles for the determination of free fatty acid content in edible oils. J. Agric. Food. Chem. 2012, 61, 76–83. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Li, Q.; Zou, Y.; Shao, J.; Lan, S. Quantification of lutein and zeaxanthin in marigold (tagetes erecta l.) and poultry feed by ultra-performance liquid chromatography and high performance liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 2653–2663. [Google Scholar] [CrossRef]
- Raju, M.; Varakumar, S.; Lakshminarayana, R.; Krishnakantha, T.P.; Baskaran, V. Carotenoid composition and vitamin A activity of medicinally important green leafy vegetables. Food Chem. 2007, 101, 1598–1605. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lueamsaisuk, C.; Lentle, R.; MacGibbon, A.; Matia-Merino, L.; Golding, M. The effect of lactoferrin on physical changes in phospholipid stabilised emulsions during neonatal in vitro gastric digestion: Does synergism of pepsin and lipase promote lipolysis in protein-stabilised emulsions? Food Hydrocoll. 2015, 43, 785–793. [Google Scholar] [CrossRef]
- Wu, W.D.; Patel, K.C.; Rogers, S.; Chen, X.D. Monodisperse droplet generators as potential atomizers for spray drying technology. Dry. Technol. 2007, 25, 1907–1916. [Google Scholar] [CrossRef]
- Al-Khattawi, A.; Bayly, A.; Phillips, A.; Wilson, D. The design and scale-up of spray dried particle delivery systems. Expert Opin. Drug Deliv. 2018, 15, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Frascareli, E.C.; Silva, V.M.; Tonon, R.V.; Hubinger, M.D. Determination of critical storage conditions of coffee oil microcapsules by coupling water sorption isotherms and glass transition temperature. Int. J. Food Sci. Technol. 2012, 47, 1044–1054. [Google Scholar] [CrossRef]
- Wang, Y.; Che, L.; Fu, N.; Chen, X.D.; Selomulya, C. Surface formation phenomena of DHA-containing emulsion during convective droplet drying. J. Food Eng. 2015, 150, 50–61. [Google Scholar] [CrossRef]
- Hategekimana, J.; Masamba, K.G.; Ma, J.; Zhong, F. Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydr. Polym. 2015, 124, 172–179. [Google Scholar] [CrossRef]
- Yan, C.; McClements, D.J.; Zou, L.; Liu, W. A stable high internal phase emulsion fabricated with OSA-modified starch: An improvement in β-carotene stability and bioaccessibility. Food Funct. 2019, 10, 5446–5460. [Google Scholar] [CrossRef]
- Santos, D.; Maurício, A.C.; Sencadas, V.; Santos, J.D.; Fernandes, M.H.; Gomes, P.S. Spray Drying: An Overview. In Biomaterials-Physics and Chemistry-New Edition; IntechOpen: London, UK, 2018; pp. 9–15. [Google Scholar]
- Goyal, A.; Sharma, V.; Sihag, M.K.; Tomar, S.; Arora, S.; Sabikhi, L.; Singh, A. Development and physico-chemical characterization of microencapsulated flaxseed oil powder: A functional ingredient for omega-3 fortification. Powder Technol. 2015, 286, 527–537. [Google Scholar] [CrossRef]
- Elversson, J.; Millqvist-Fureby, A. Particle size and density in spray drying—Effects of carbohydrate properties. J. Pharm. Sci. 2005, 94, 2049–2060. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.V.d.B.; Borges, S.V.; Botrel, D.A. Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties. Food Sci. Technol. 2013, 33, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Desobry, S.A.; Netto, F.M.; Labuza, T.P. Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. J. Food Sci. 1997, 62, 1158–1162. [Google Scholar] [CrossRef]
- Arpagaus, C. PLA/PLGA nanoparticles prepared by nano spray drying. J. Pharm. Investig. 2019, 49, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Pénicaud, C.; Achir, N.; Dhuique-Mayer, C.; Dornier, M.; Bohuon, P. Degradation of β-carotene during fruit and vegetable processing or storage: Reaction mechanisms and kinetic aspects: A review. Fruits 2011, 66, 417–440. [Google Scholar] [CrossRef]
- Fratianni, A.; Niro, S.; Messia, M.C.; Cinquanta, L.; Panfili, G.; Albanese, D.; Di Matteo, M. Kinetics of carotenoids degradation and furosine formation in dried apricots (Prunus armeniaca L.). Food Res. Int. 2017, 99, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Fournier, V.; Destaillats, F.; Juanéda, P.; Dionisi, F.; Lambelet, P.; Sébédio, J.L.; Berdeaux, O. Thermal degradation of long-chain polyunsaturated fatty acids during deodorization of fish oil. Eur. J. Lipid Sci. Technol. 2006, 108, 33–42. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Qian, C.; Martín-Belloso, O.; McClements, D. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem. 2013, 141, 1472–1480. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ye, A.; Lee, S.J.; Singh, H. Physicochemical behaviour of WPI-stabilized emulsions in in vitro gastric and intestinal conditions. Colloids Surf. B Biointerfaces 2013, 111, 80–87. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Z.; Zhang, H.; Decker, E.A.; McClements, D.J. Influence of lipid type on gastrointestinal fate of oil-in-water emulsions: In vitro digestion study. Food Res. Int. 2015, 75, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Ye, A.; Horne, D. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog. Lipid Res. 2009, 48, 92–100. [Google Scholar] [CrossRef]
- López-Castejón, M.L.; Bengoechea, C.; Espinosa, S.; Carrera, C. Characterization of prebiotic emulsions stabilized by inulin and β-lactoglobulin. Food Hydrocoll. 2019, 87, 382–393. [Google Scholar] [CrossRef]
- Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technol. 2012, 5, 854–867. [Google Scholar] [CrossRef] [Green Version]
- Bello-Pérez, L.A.; Bello-Flores, C.A.; del Carmen Nunez-Santiago, M.; Coronel-Aguilera, C.P.; Alvarez-Ramirez, J. Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability. Carbohydr. Polym. 2015, 132, 17–24. [Google Scholar] [CrossRef] [PubMed]
Samples | Water Activity | ME (%) | Tapped Density (g/cm3) | Carr Index (%) |
---|---|---|---|---|
SD-W | 0.264 ± 0.002 bc | 84.4 ± 0.1 b | 0.27 ± 0.01 d | 44.6 ± 3.0 a |
SD-O | 0.241 ± 0.010 bcd | 91.7 ± 0.2 a | 0.46 ± 0.02 b | 41.0 ± 3.7 a |
SD-WO | 0.260 ± 0.000 abc | 85.4 ± 1.8 b | 0.32 ± 0.00 cd | 48.4 ± 1.4 a |
FD-W | 0.280 ± 0.008 a | 69.9 ± 4.9 d | 0.32 ± 0.01 cd | 34.1 ± 1.4 b |
FD-O | 0.234 ± 0.028 cd | 77.3 ± 3.8 c | 0.39 ± 0.00 c | 34.0 ± 2.5 b |
FD-WO | 0.236 ± 0.010 cd | 74.3 ± 0.2 cd | 0.33 ± 0.02 cd | 43.1 ± 6.5 a |
MFJSD-W | 0.260 ± 0.001 abc | 94.0 ± 1.5 a | 0.46 ± 0.01 b | 30.0 ± 1.0 b |
MFJSD -O | 0.229 ± 0.006 d | 94.1 ± 0.6 a | 0.65 ± 0.01 a | 19.2 ± 1.0 c |
MFJSD-WO | 0.231 ± 0.004 d | 95.1 ± 0.7 a | 0.37 ± 0.03 c | 16.0 ± 2.7 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Peng, Y.; Wen, J.; Quek, S.Y. A Comparison of Microfluidic-Jet Spray Drying, Two-Fluid Nozzle Spray Drying, and Freeze-Drying for Co-Encapsulating β-Carotene, Lutein, Zeaxanthin, and Fish Oil. Foods 2021, 10, 1522. https://doi.org/10.3390/foods10071522
Zhu Y, Peng Y, Wen J, Quek SY. A Comparison of Microfluidic-Jet Spray Drying, Two-Fluid Nozzle Spray Drying, and Freeze-Drying for Co-Encapsulating β-Carotene, Lutein, Zeaxanthin, and Fish Oil. Foods. 2021; 10(7):1522. https://doi.org/10.3390/foods10071522
Chicago/Turabian StyleZhu, Yongchao, Yaoyao Peng, Jingyuan Wen, and Siew Young Quek. 2021. "A Comparison of Microfluidic-Jet Spray Drying, Two-Fluid Nozzle Spray Drying, and Freeze-Drying for Co-Encapsulating β-Carotene, Lutein, Zeaxanthin, and Fish Oil" Foods 10, no. 7: 1522. https://doi.org/10.3390/foods10071522
APA StyleZhu, Y., Peng, Y., Wen, J., & Quek, S. Y. (2021). A Comparison of Microfluidic-Jet Spray Drying, Two-Fluid Nozzle Spray Drying, and Freeze-Drying for Co-Encapsulating β-Carotene, Lutein, Zeaxanthin, and Fish Oil. Foods, 10(7), 1522. https://doi.org/10.3390/foods10071522