The Epic of In Vitro Meat Production—A Fiction into Reality
Abstract
:1. Introduction
2. Scope and Key Findings
3. The Timeline and Episodes of In Vitro Meat
4. Animal Welfare
5. Choice of Cell Lines for In Vitro Meat Production
6. Reduction in Zoonotic Diseases
7. Top Five Reasons for the Need of Cultured Meat
7.1. Option of Customizing the Nutrient Profile in In Vitro Meat
7.2. Minimalistic Utilization of Bioresources and Improvement of Ecological Footprint
7.3. Religious Taboos and Acceptance of Cultured Meat
7.4. The “Future Food”
7.5. Rejuvenation of Forest Cover and Legal Feasibility of Exotic Meat
8. Nanotechnology-Based Approaches for Cultured Meat Production
9. 3D Bioprinting of Meat Analogues
10. Challenges and Awareness of Cultured Meat
11. Technical Challenges in Production of Cultured Meat
12. Sensorial and Nutritional Aspects of In Vitro Meat
13. Integrated Approaches for Food Safety Monitoring in Cultured Meat
14. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Marco, M.; Baker, M.L.; Daszak, P.; De Barro, P.; Eskew, E.A.; Godde, C.M.; Harwood, T.D.; Herrero, M.; Hoskins, A.J.; Johnson, E.; et al. Sustainable development must account for pandemic risk. Proc. Natl. Acad. Sci. USA 2020, 117, 3888–3892. [Google Scholar] [CrossRef] [Green Version]
- The Guardian. 2020. Available online: https://www.theguardian.com/environment/2020/dec/02/no-kill-lab-grown-meat-to-go-on-sale-for-first-time (accessed on 23 February 2021).
- Pandurangan, M.; Kim, D.H. A novel approach for in vitro meat production. Appl. Microbiol. Biotechnol. 2015, 99, 5391–5395. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, D.; Tseng, T.W.; Swartz, E. The business of cultured meat. Trends Biotechnol. 2020, 38, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Bonny, S.P.F.; Gardner, G.E.; Pethick, D.W.; Hocquette, J. What is artificial meat and what does it mean for the future of the meat industry? J. Integr. Agric. 2015, 14, 255–263. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef]
- Joshi, V.K.; Kumar, S. Meat analogues: Plant based alternatives to meat products—A review. Int. J. Food Ferment. Technol. 2015, 5, 107–119. [Google Scholar] [CrossRef]
- Gaydhane, M.K.; Mahanta, U.; Sharma, C.S.; Khandelwal, M.; Ramakrishna, S. Cultured meat: State of the art and future. Biomanuf. Rev. 2018, 3, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Yang, H.; Liu, D.; Cai, G.; Li, G.; Mo, J.; Wang, D.; Zhong, C.; Wang, H.; et al. Novel transgenic pigs with enhanced growth and reduced environmental impact. eLife 2018, 7, e34286. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Bhat, H. Prospectus of cultured meat-advancing meat alternatives. J. Food Sci. Technol. 2011, 48, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Chriki, S.; Hocquette, J.F. The myth of cultured meat: A review. Front. Nutr. 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Bhat, Z.F.; Kumar, S.; Fayaz, H. In vitro meat production: Challenges and benefits over conventional meat production. J. Integr. Agric. 2015, 14, 241–248. [Google Scholar] [CrossRef]
- HSUS. An HSUS Report: The Welfare of Animals in the Meat, Egg, and Dairy Industries; Technical Report; Humane Society of the United States: Washington, DC, USA, 2010.
- Gerbens-Leenes, P.W.; Nonhebel, S.; Ivens, W.P.M.F. A method to determine land requirements relating to food consumption patterns. Agric. Ecosyst. Environ. 2002, 90, 47–58. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sá, L.R.M.; Ferreira, A.J.P.; Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Benjaminson, M.A.; Gilchriest, J.A.; Lorenz, M. In vitro edible muscle protein production system (MPPS): Stage 1, fish. Acta Astronaut. 2002, 51, 879–889. [Google Scholar] [CrossRef]
- Catts, O.; Zurr, I. Growing semi-living sculptures: The tissue culture project. Leonardo 2002, 35, 365–370. [Google Scholar] [CrossRef]
- Bryant, C.J. Culture, meat, and cultured meat. J. Anim. Sci. 2020, 98, skaa172. [Google Scholar] [CrossRef] [PubMed]
- Vapnek, J.; Chapman, M. FAO Legislative Study: Legislative and Regulatory Options for Animal Welfare; Technical Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; 33p.
- Edelman, P.D.; McFarland, D.C.; Mironov, V.A.; Matheny, J.G. Commentary: In vitro-cultured meat production. Tissue Eng. 2005, 11, 659–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.H.; Yoon, J.W.; Kim, M.; Jeong, J.; Ryu, M.; Park, S.; Jo, C.; Lee, C.K. Optimization of Culture Conditions for Maintaining Pig Muscle Stem Cells In Vitro. Food Sci. Anim. Resour. 2020, 40, 659–667. [Google Scholar] [CrossRef]
- Alexander, R. In vitro meat: A vehicle for the ethical rescaling of the factory farming industry and in vivo testing or an intractable enterprise? Intersect 2011, 4, 42–47. [Google Scholar]
- Bartholet, J. Inside the meat lab. Sci. Am. 2011, 305, 65–69. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Bhat, H. Animal-free meat bio-fabrication. Am. J. Food Technol. 2011, 6, 441–459. [Google Scholar] [CrossRef] [Green Version]
- Wolfson, W. Raising the Steaks. New Sci. 2002, 176, 60–63. [Google Scholar]
- Van Eelen, W.F.; van Kooten, W.J.; Westerhof, W. WO/1999/ 031223: Industrial Production of Meat from In Vitro Cell Cultures. Patent Description. 1999. Available online: http://www.wipo.int/pctdb/en/wo.jsp?wo=1999031223 (accessed on 25 March 2009).
- Zandonella, C. Tissue engineering: The beat goes on. Nature 2003, 421, 884–886. [Google Scholar] [CrossRef] [PubMed]
- Orellana, N.; Sánchez, E.; Benavente, D.; Prieto, P.; Enrione, J.; Acevedo, C.A. A new edible film to produce in vitro meat. Foods 2020, 9, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, M.J.; Levenberg, S.; Kaplan, D.L.; Genovese, N.; Fu, J.; Bryant, C.J.; Negowetti, N.; Verzijden, K.; Moutsatsou, P. Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food 2020, 1, 403–415. [Google Scholar] [CrossRef]
- Siegelbaum, D.J. In Search of a Test-Tube Hamburger. Time. 2008. Available online: http://content.time.com/time/health/article/0,8599,1734630,00.html (accessed on 21 February 2021).
- Collins, C.A.; Zammit, P.S.; Ruiz, A.P.; Morgan, J.E.; Partridge, T.A. Apopulation of myogenic stem cells that survives skeletal muscle aging. Stem Cells 2007, 25, 885–889. [Google Scholar] [CrossRef]
- Mizuno, Y.; Chang, H.; Umeda, K.; Niwa, A.; Iwasa, T.; Awaya, T.; Fukada, S.; Yamamoto, H.; Yamanaka, S.; Nakahata, T.; et al. Generationof skeletal muscle stem/progenitor cells from murine induced pluripotentstem cells. FASEB J. 2010, 24, 2245–2253. [Google Scholar] [CrossRef]
- Christov, C.; Fabrice, C.; Abou-Khalil, R.; Bassez, G.; Vallet, G.; Authier, F.J.; Bassaglia, Y.; Shinin, V.; Tajbakhsh, S.; Chazaud, B.; et al. Muscle satellite cells and endothelial cells: Close neighbors and privileged partners. Mol. Biol. Cell 2007, 18, 1397–1409. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Greenwood, P.L.; Cafe, L.M.; Zhou, G.; Zhang, W.; Dalrymple, B.P. Transcriptome analysis of cattle muscle identifies potential markers for skeletal muscle growth rate and major cell types. BMC Genom. 2015, 16, 177. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Wang, B.; Fu, X.; Yang, Q.; Zhu, M.J. Fetal programming in meat production. Meat Sci. 2015, 109, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Gimble, J.M.; Katz, A.J.; Bunnell, B.A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 2007, 100, 1249–1260. [Google Scholar] [CrossRef]
- Kim, M.J.; Choi, Y.S.; Yang, S.H.; Hong, H.N.; Cho, S.W.; Cha, S.M.; Pak, J.H.; Kim, C.W.; Kwon, S.W.; Park, C.J. Muscle regeneration by adipose tissue-derived adult stem 138 J Food SciTechnol (Mar–Apr 2011) 48(2):125–140 cells attached to injectable PLGA spheres. Biochem. Biophys. Res. Commun. 2006, 348, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Kano, K.; Kondo, D.; Fukuda, N.; Iribe, Y.; Tanaka, N.; Matsubara, Y.; Sakuma, T.; Satomi, A.; Otaki, M.; et al. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J. Cell Physiol. 2008, 215, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Kazama, T.; Fujie, M.; Endo, T.; Kano, K. Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletalmyocytes in vitro. Biochem. Biophys. Res. Commun. 2008, 377, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Ben-Arye, T.; Shandalov, Y.; Ben-Shaul, S.; Landau, S.; Zagury, Y.; Ianovici, I.; Lavon, N.; Levenberg, S. Textured soy protein scafolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat. Food 2020, 1, 210–220. [Google Scholar] [CrossRef]
- UN. World Population Prospects 2019: Highlights; ST/ESA/SER.A/423. United Nations Department of Economic and Social Affairs (United Nations): New York, NY, USA, 2019. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 27 February 2020).
- EEA. The European Environment: State and Outlook 2015 ASSESSMENT of Global Megatrends; European Environment Agency: Copenhagen, Denmark, 2015. [Google Scholar]
- FAO. World Livestock 2011 Livestock in Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Utthapon, I.; Park, S.; Park, S. Determination of Fat Accumulation Reduction by Edible Fatty Acids and Natural Waxes In Vitro. Food Sci. Anim. Resour. 2019, 39, 430–445. [Google Scholar]
- Mackenzie, J.S.; Smith, D.W. COVID-19: A novel zoonotic disease caused by a coronavirus from China: What we know and what we don’t. Microbiol. Aust. 2020, 41, 45–50. [Google Scholar] [CrossRef]
- Karesh, W.B.; Dobson, A.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.A.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 2012, 380, 1936–1945. [Google Scholar] [CrossRef]
- Espinosa, R.; Tago, D.; Treich, N. Infectious Diseases and Meat Production. Environ. Resour. Econ. 2020, 76, 1019–1044. [Google Scholar] [CrossRef]
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.E.; Delius, B.; DeLeo, G.A.; Remais, J.V.; Riveau, G.; Sokolow, S.H.; Tilman, D. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Daszak, P.; Kilpatrick, A.M.; Burke, D.S. Bushmeat hunting, deforestation, and prediction of zoonotic disease. Emerg. Infect. Dis. 2005, 11, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- La Sala, L.F.; Burgos, J.M.; Blanco, D.E.; Stevens, K.B.; Fernández, A.R.; Capobianco, G.; Pérez, A.M. Spatial modelling for low pathogenicity avian infuenza virus at the interface of wild birds and backyard poultry. Transbound. Emerg. Dis. 2019, 66, 1493–1505. [Google Scholar] [PubMed] [Green Version]
- Dhingra, M.S.; Artois, J.; Dellicour, S.; Lemey, P.; Dauphin, G.; Von Dobschuetz, S.; Van Boeckel, T.P.; Castellan, D.M.; Morzaria, S.; Gilbert, M. Geographical and historical patterns in the emergences of novel highly pathogenic avian infuenza (HPAI) H5 and H7 viruses in poultry. Front. Vet. Sci. 2018, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Levitt, T. Two Billion and Rising: The Global Trade in Live Animals in Eight Charts. Guardian. 2020. Available online: https://www.theguardian.com/environment/2020/jan/20/two-billion-and-rising-the-global-trade-in-liveanimals-in-eight-charts (accessed on 23 July 2020).
- Cutler, S.J.; Fooks, A.R.; Van der Poel, W.H. Public health threat of new, reemerging, and neglected zoonoses in the industrialized world. Emerg. Infect. Dis. 2010, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Drew, T.W. The emergence and evolution of swine viral diseases: To what extent have husbandry systems and global trade contributed to their distribution and diversity? Rev. Sci. Tech. OIE 2011, 30, 95–106. [Google Scholar] [CrossRef]
- Rostagno, M.H. Can stress in farm animals increase food safety risk? Foodborne Pathog. Dis. 2009, 6, 767–776. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Kamins, A.O.; Rowclife, J.M.; Ntiamoa-Baidu, Y.; Cunningham, A.A.; Wood, J.L.; Restif, O. Characteristics and risk perceptions of Ghanaians potentially exposed to bat-borne zoonoses through bushmeat. EcoHealth 2015, 12, 104–120. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.M.; Zhou, Y.; Newman, C.; Macdonald, D.W. Scaling up pangolin protection in China. Front. Ecol. Environ. 2014, 12, 97–98. [Google Scholar] [CrossRef] [Green Version]
- Luis, A.D.; Hayman, D.T.; O’Shea, T.J.; Cryan, P.M.; Gilbert, A.T.; Pulliam, J.R.; Fooks, A.R. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proc. R Soc. B. Biol. Sci. 2013, 280, 20122753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs, E.P.J. The evolution of One Health: A decade of progress and challenges for the future. Vet. Rec. 2014, 174, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlier, A.; Treich, N. Directly valuing animal welfare in (environmental) economics. Int. Rev. Environ. Resour. Econ. 2020, 14, 113–152. [Google Scholar] [CrossRef]
- Stephens, N.; Di Silvio, L.; Dunsford, I.; Ellis, M.; Glencross, A.; Sexton, A. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 2018, 78, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Treich, N. Cultured Meat: Promises and Challenges. Environ. Resour. Econ 2021, 79, 33–61. [Google Scholar] [CrossRef] [PubMed]
- Burdock, G.A.; Carabin, G.I.; Griffiths, G.C. The importance of GRAS to the functional food and nutraceutical industries. Toxicology 2006, 221, 17–27. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 2018, 564, 249–253. [Google Scholar] [CrossRef] [PubMed]
- FAO. World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- FAO. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Raffel, T.; Romansic, J.; Halstead, N.T.; McMahon, T.A.; Venesky, M.D.; Rohr, J.R. Disease and thermal acclimation in a more variable and unpredictable climate. Nat. Clim. Chang. 2013, 3, 146–151. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, 5324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegrist, M.; Hartmann, C. Perceived naturalness, disgust, trust and food neophobia as predictors of cultured meat acceptance in ten countries. Appetite 2020, 155, 104814. [Google Scholar] [CrossRef]
- Hackett, C.; McClendon, D. Christians Remain World’s Largest Religious Group, but They Are Declining in Europe. Pew Research. 2017. Available online: https://www.pewresearch.org/fact-tank/2017/04/05/christians-remainworlds-largest-religious-group-but-they-are-declining-ineurope/ (accessed on 29 November 2019).
- Kenigsberg, J.; Zivotofsky, A. A Jewish religious perspective on cellular agriculture. Front. Sustain. Food Syst. 2020, 3, 128. [Google Scholar] [CrossRef]
- Hamdan, M.N.; Post, M.J.; Ramli, M.A.; Mustafa, A.R. Cultured meat in Islamic perspective. J. Relig. Health 2018, 57, 2193–2206. [Google Scholar] [CrossRef]
- Mattick, C.S.; Wetmore, J.M.; Allenby, B.R. An anticipatory social assessment of factory-grown meat. IEEE Technol. Soc. Mag. 2015, 34, 56–64. [Google Scholar] [CrossRef]
- Drysdale, A.; Ewert, M.; Hanford, A. Life support approaches for Mars missions. Adv. Space Res. 2003, 31, 51–61. [Google Scholar] [CrossRef]
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, D.K.; Das, A.K.; Banerjee, R.; Pateiro, M.; Nanda, P.K.; Gadekar, Y.P.; Lorenzo, J.M. Application of enoki mushroom (Flammulina Velutipes) stem wastes as functional ingredients in processed meat. Foods 2020, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Das, A.K.; Nanda, P.K.; Bandyopadhyay, S.; Banerjee, R.; Biswas, S.; McClements, D.J. Application of nanoemulsion-based approaches for improving the quality and safety of muscle foods: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2677–2700. [Google Scholar] [CrossRef] [PubMed]
- Durfey, C.L.; Swistek, S.E.; Liao, S.F.; Crenshaw, M.A.; Clemente, H.J.; Thirumalai, R.V.; Steadman, C.S.; Ryan, P.L.; Willard, S.T.; Feugang, J.M. Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J. Anim. Sci. Biotechnol. 2019, 10, 1–2. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Kumar, S.; Bhat, H.F. In vitro meat: A future animal-free harvest. Crit. Rev. Food Sci. Nutr. 2017, 4, 782–789. [Google Scholar] [CrossRef]
- Ben-Arye, T.; Levenberg, S. Tissue engineering for clean meat production. Front. Sustain. Food Syst. 2019, 3, 46–65. [Google Scholar] [CrossRef]
- Noor, S.; Radhakrishnan, N.S.; Hussain, K. Newer trends and techniques adopted for manufacturing of In vitro meat through tissue-engineering technology: A review. Int. J. Biotech. Trends Technol. 2016, 19, 14–19. [Google Scholar] [CrossRef]
- Ramachandraiah, K.; Han, S.G.; Chin, K.B. Nanotechnology in meat processing and packaging: Potential applications—A review. Asian-Aust. J. Anim. Sci. 2015, 28, 290–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulshreshtha, N.M.; Shrivastava, D.; Bisen, P.S. Contaminant sensors: Nanotechnology-based contaminant sensors. In Nanobiosensors; Academic Press: Cambridge, MA, USA, 2017; pp. 573–628. [Google Scholar]
- Abinash, V.; Rahul, T.; Antoniraj, M.G.; Moses, J.A.; Anandharamakrishnan, C. Nanotechnology approaches for food fortification. In Food, Medical, and Environmental Applications of Polysaccharides; Elsevier: Amsterdam, The Netherlands, 2021; pp. 161–186. [Google Scholar]
- Sharma, C.; Dhiman, R.; Rokana, N.; Panwar, H. Nanotechnology: An untapped resource for food packaging. Front. Microbiol. 2017, 12, 1735. [Google Scholar] [CrossRef] [Green Version]
- Sikka, T. The “Embodied Multi-Material Layering” of In Vitro Meat. Techné Res. Philos. Technol. 2020. [Google Scholar] [CrossRef]
- Ramachandraiah, K. Potential Development of Sustainable 3D-Printed Meat Analogues: A Review. Sustainability 2021, 13, 938. [Google Scholar] [CrossRef]
- Dick, A.; Bhandari, B.; Prakash, S. 3D printing of meat. Meat Sci. 2019, 153, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Gebler, M.; Uiterkamp, A.J.; Visser, C. A global sustainability perspective on 3D printing technologies. Energy Policy 2014, 1, 158–167. [Google Scholar] [CrossRef]
- MacQueen, L.A.; Alver, C.G.; Chantre, C.O.; Seungkuk, A.; Luca, C.; Gonzalez, G.M.; Blakely, B.O.; Daniel, J.D.; Michael, M.P.; Sarah, E.M.; et al. Muscle tissue engineering in fibrous gelatin: Implications for meat analogs. NPJ Sci. Food 2019, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Hudson, A.R.; Shiwarski, D.J.; Tashman, J.W.; Hinton, T.J.; Yerneni, S.; Bliley, J.M.; Campbell, P.G.; Feinberg, A.W. 3D bioprinting of collagen to rebuild components of the human heart. Science 2019, 365, 482–487. [Google Scholar] [CrossRef] [PubMed]
- McMurtrey, R.J. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Eng. Part C Methods 2016, 22, 221–249. [Google Scholar] [CrossRef] [Green Version]
- Thorrez, L.; DiSano, K.; Shansky, J.; Vandenburgh, H. Engineering of Human Skeletal Muscle with an Autologous Deposited Extracellular Matrix. Front. Physiol. 2018, 20, 1076. [Google Scholar] [CrossRef]
- Beauchamp, M.J.; Nordin, G.P.; Woolley, A.T. Moving from millifluidic to truly microfluidic sub-100-_m cross-section 3D printed devices. Anal. Bioanal. Chem. 2017, 409, 4311–4319. [Google Scholar] [CrossRef]
- Handral, H.K.; Hua Tay, S.; Wan Chan, W.; Choudhury, D. 3D Printing of cultured meat products. Crit. Rev. Food Sci. Nutr. 2020, 1–10. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Bhandari, B.; Wang, Y. 3D printing: Printing precision and application in food sector. Trends Food Sci. Technol. 2017, 69, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Food Navigator. Aleph Farms Prints Lab-Meat in Space. Available online: https://www.foodnavigator.com/Article/2019/10/08/Aleph-Farms-prints-lab-meat-in-space (accessed on 23 February 2021).
- Newswire, P.R. Aleph Farms and the Technion Reveal World’s First Cultivated Ribeye Steak. Available online: https://www.prnewswire.com/il/news-releases/aleph-farms-and-the-technion-reveal-worlds-first-cultivated-ribeye-steak-301224800.html (accessed on 24 March 2021).
- Baiano, A. 3D printed Foods: A comprehensive review on technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues. Food Rev. Int. 2020, 17, 1–31. [Google Scholar] [CrossRef]
- Prakash, S.; Bhandari, B.R.; Godoi, F.C.; Zhang, M. Future outlook of 3D food printing. In Fundamentals of 3D Food Printing and Applications; Academic Press: Cambridge, MA, USA, 2019; pp. 373–381. [Google Scholar]
- Tomiyama, A.J.; Kawecki, N.S.; Rosenfeld, D.L.; Jay, J.A.; Rajagopal, D.; Rowat, A.C. Bridging the gap between the science of cultured meat and public perceptions. Trends Food Sci. Technol. 2020, 104, 144–152. [Google Scholar] [CrossRef]
- Hopkins, P.D. Cultured meat in western media: The disproportionate coverage of vegetarian reactions, demographic realities, and implications for cultured meat marketing. J. Integr. Agric. 2015, 1, 264–272. [Google Scholar] [CrossRef]
- Wilks, M.; Phillips, C.J. Attitudes to in vitro meat: A survey of potential consumers in the665 United States. PLoS ONE 2017, 12, e0171904. [Google Scholar] [CrossRef] [Green Version]
- Specht, E.A.; Welch, D.R.; Clayton, E.M.; Lagally, C.D. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochem. Eng. J. 2018, 15, 161–168. [Google Scholar] [CrossRef]
- Rolland, N.C.; Markus, C.R.; Post, M.J. Correction: The effect of information content on acceptance of cultured meat in a tasting context. PLoS ONE 2020, 7, e0240630. [Google Scholar]
- Bryant, C.; van Nek, L.; Rolland, N. European markets for cultured meat: A comparison of Germany and France. Foods 2020, 9, 1152. [Google Scholar] [CrossRef]
- Verbeke, W.; Sans, P.; Van Loo, E.J. Challenges and prospects for consumer acceptance of cultured meat. J. Integr. Agric. 2015, 1, 285–294. [Google Scholar] [CrossRef]
- Hocquette, A.; Lambert, C.; Sinquin, C.; Peterolff, L.; Wagner, Z.; Bonny, S.P.; Lebert, A.; Hocquette, J.F. Educated consumers don’t believe artificial meat is the solution to the problems with the meat industry. J. Integr. Agric. 2015, 1, 273–284. [Google Scholar] [CrossRef]
- Post, M.J. Cultured beef: Medical technology to produce food. J. Sci. Food Agric. 2014, 94, 1039–1041. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J. Meat: The Future Series—Alternative Proteins; World Economic Forum: Cologny, Switzerland, 2019. [Google Scholar]
- Bodiou, V.; Moutsatsou, P.; Post, M.J. Microcarriers for upscaling cultured meat production. Front. Nutr. 2020, 20, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhao, X.; Li, X.; Du, G.; Zhou, J.; Chen, J. Challenges and possibilities for bio-manufacturing cultured meat. Trends Food Sci. Technol. 2020, 97, 443–450. [Google Scholar] [CrossRef]
- Specht, L. An Analysis of Culture Medium Costs and Production Volumes for Cultivated Meat; The Good Food Institute: Washington, DC, USA, 2020. [Google Scholar]
- Langelaan, M.L.P.; Boonen, K.J.M.; Polak, R.B.; Frank, P.T.; Post, M.J.; Schaft, D.W.J. Meet the new meat: Tissue engineered skeletal muscle. Trends Food Sci. Technol. 2010, 21, 59–66. [Google Scholar] [CrossRef]
- Gholobova, D.; Decroix, L.; Van Muylder, V.; Desender, L.; Gerard, M.; Carpentier, G. Endothelial network formation within human tissue-engineered skeletal muscle. Tissue Eng. A 2015, 21, 2548–2558. [Google Scholar] [CrossRef] [Green Version]
- Williams, P. Nutritional composition of red meat. Nutr. Diet. 2007, 64, S113–S119. [Google Scholar] [CrossRef] [Green Version]
- Fraeye, I.; Kratka, M.; Vandenburgh, H.; Thorrez, L. Sensorial and Nutritional Aspects of Cultured Meat in Comparison to Traditional Meat: Much to Be Inferred. Front. Nutr. 2020, 24, 35. [Google Scholar] [CrossRef] [Green Version]
- Huff, L.E.; Zhang, W.; Lonergan, S.M. Biochemistry of postmortem muscle—Lessons on mechanisms of meat tenderization. Meat Sci. 2010, 86, 184–195. [Google Scholar] [CrossRef]
- Ertbjerg, P.; Puolanne, E. Muscle structure, sarcomere length and influences on meat quality: A review. Meat Sci. 2017, 132, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Moritz, M.S.M.; Verbruggen, S.E.L.; Post, M.J. Alternatives for large-scale production of cultured beef: A review. J. Integr. Agric. 2015, 14, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Rubio, N.R.; Fish, K.D.; Trimmer, B.A.; Kaplan, D.L. In vitro insect muscle for tissue engineering applications. ACS Biomater. Sci. Eng. 2019, 5, 1071–1082. [Google Scholar] [CrossRef]
- Kadim, I.T.; Mahgoub, O.; Baqir, S.; Faye, B.; Purchas, R. Cultured meat from muscle stem cells: A review of challenges and prospects. J. Integr. Agric. 2015, 14, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.K. Meat. In Springer Handbook of Odor; Buettner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 191–221. [Google Scholar]
- Jiang, J.; Xiong, Y.L. Role of interfacial protein membrane in oxidative stability of vegetable oil substitution emulsions applicable to nutritionally modified sausage. Meat Sci. 2015, 109, 56–65. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, L.; Zhang, X.; Li, X.; Yu, H. De novo lipogenesis and desaturation of fatty acids during adipogenesis in bovine adipose-derived mesenchymal stem cells. Vitr. Cell Dev. Biol. Anim. 2018, 54, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Heil, S.G.; Verhoeven, M.M.A.; van den Heuvel, E.G.H.M.; de Groot, L.C.P.G.M.; Eussen, S.J.P.M. Vitamin B12 intake from animal foods, biomarkers, and health aspects. Front. Nutr. 2019, 6, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djisalov, M.; Knežić, T.; Podunavac, I.; Živojević, K.; Radonic, V.; Knežević, N.Ž.; Bobrinetskiy, I.; Gadjanski, I. Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. Biology 2021, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Mendonça da Silva, J.; Erro, E.; Awan, M.; Chalmers, S.A.; Fuller, B.; Selden, C. Small-Scale Fluidized Bed Bioreactor for Long-Term Dynamic Culture of 3D Cell Constructs and in vitro Testing. Front. Bioeng. Biotechnol. 2020, 8, 895. [Google Scholar] [CrossRef]
- Biechele, P.; Busse, C.; Solle, D.; Scheper, T.; Reardon, K. Sensor systems for bioprocess monitoring. Eng. Life Sci. 2015, 15, 469–488. [Google Scholar] [CrossRef]
- Genzel, Y.; Ritter, J.B.; König, S.; Alt, R.; Reichl, U. Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol. Progr. 2005, 21, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Bäcker, M.; Rakowski, D.; Poghossian, A.; Biselli, M.; Wagner, P.; Schöning, M.J. Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis. J. Biotechnol. 2013, 163, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, M.N.; Ramli, M.A.; Huri, N.M.; Abd Rahman, N.N.; Abdullah, A. Will Muslim consumers replace livestock slaughter with cultured meat in the market? Trends Food Sci. Technol. 2021, 109, 729–732. [Google Scholar] [CrossRef]
- United Nations Environment Programme and International Livestock Research Institute (UNEP). Preventing the Next Pandemic: Zoonotic Diseases and How to Break the Chain of Transmission; United Nations Environment Programme and International Livestock Research Institute: Nairobi, Kenya, 2020. [Google Scholar]
- Sanchez-Sabate, R.; Sabaté, J. Consumer attitudes towards environmental concerns of meat consumption: A systematic review. Int. J. Environ. Res. Public Health 2019, 16, 1220. [Google Scholar] [CrossRef] [Green Version]
- Sha, L.; Xiong, Y.L. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
S. No | Sensor Type | Specifications | |
---|---|---|---|
Temperature sensors | |||
1. | Platinum | Resistance Sensors | −200 to 1000 °C |
2. | Nickel | −60 to 300 °C | |
3. | TSic | +10 to +90 °C | |
4. | IST, Rosemount ™ | Thermocouple | −40 to 750 °C |
5. | Krohne | −40 to 600 °C | |
6. | Pyroscience, Burns | 0 to 50 °C | |
pH sensors | |||
1. | Optical—Pyroscience | pH Sensor Spots | Different ranges available (4–6; 5–7; 6–8; 7–9; total scale) |
2. | pH Flow-Through Cell | ||
3. | pH Sensor Cap for Underwater Devices | ||
4. | Optical—PreSens Sensors | Self-adhesive pH Sensor Spots SP-LG1-SA | 4.5–7 |
5. | Single-Use pH Flow-Through Cell FTC-SU-HP5-S | 5.5–8.5 | |
6. | Profiling pH Microsensor PM-HP5 | 5.5–8.5 | |
7. | Electrochemical | Bioreactor pH Probe | Total scale Accuracy: ±0.1 |
Oxygen sensors | |||
1. | Optical—Mettler Toledo | Optical Dissolved Oxygen Sensors | 8 ppb to 25 ppm with accuracy ±1% |
2. | Optical—PreSens Oxygen Sensors | Self-adhesive Oxygen Sensor Spot SP-PSt3-SA | 0–100% O2 Dissolved O2: 0–45 mg/L Accuracy ±0.4% O2 at 20.9% O2 |
Carbon dioxide sensors | |||
1. | Optical PreSens CO2 Sensors | CO2 Microsensor IMP-CDM1 | range: 0.04–5% CO2 accuracy: ±0.01% at 0.1% CO2, ±0.1% at 1% CO2 |
2. | Potentiometric CO2 Sensor | CO2 Sensor InPro5000i/12/120 | range: 0.145–14.5 psig pCO2 accuracy: ±10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasubramanian, B.; Liu, W.; Pushparaj, K.; Park, S. The Epic of In Vitro Meat Production—A Fiction into Reality. Foods 2021, 10, 1395. https://doi.org/10.3390/foods10061395
Balasubramanian B, Liu W, Pushparaj K, Park S. The Epic of In Vitro Meat Production—A Fiction into Reality. Foods. 2021; 10(6):1395. https://doi.org/10.3390/foods10061395
Chicago/Turabian StyleBalasubramanian, Balamuralikrishnan, Wenchao Liu, Karthika Pushparaj, and Sungkwon Park. 2021. "The Epic of In Vitro Meat Production—A Fiction into Reality" Foods 10, no. 6: 1395. https://doi.org/10.3390/foods10061395