Identifying the Food Sources of Selected Minerals for the Adult European Population among Rice and Rice Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Digestion
2.3. Analysis of Studied Elements Contents
2.4. Method Validation
2.5. Assessment Whether Tested Products Could Be Regarded as a Source of Studied Nutrients
2.6. Estimation of the Risk of Adverse Health Effects
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD-FAO Agricultural Outlook (Edition 2020), OECD Agriculture Statistics (Database). Available online: https://doi.org/10.1787/4919645f-en (accessed on 25 May 2021).
- Arendt, E.K.; Zannini, E. Cereal Grains for the Food and Beverage Industries (Woodhead Publishing Series in Food Science, Technology and Nutrition); Woodhead Publishing: Cambridge, UK, 2013; pp. 113–154. [Google Scholar]
- Juliano, B.O. Rice Chemistry and Quality; Island Publishing House: Science City of Muñoz, Philippines, 2003; pp. 25–49. [Google Scholar]
- Ito, V.C.; Lacerda, L.G. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chem. 2019, 301, 125304. [Google Scholar] [CrossRef]
- Koch, W.; Czop, M.; Nawrocka, A.; Wiącek, D. Contribution of major groups of food products to the daily intake of selected elements—results from analytical determinations supported by chemometric analysis. Nutrients 2020, 12, 3412. [Google Scholar] [CrossRef] [PubMed]
- Głąbska, D.; Włodarek, D.; Kołota, A.; Czekajło, A.; Drozdzowska, B.; Pluskiewicz, W. Assessment of mineral intake in the diets of Polish postmenopausal women in relation to their BMI-the RAC-OST-POL study: Mineral intake in relation to BMI. J. Health Popul. Nutr. 2016, 35, 23. [Google Scholar] [CrossRef] [Green Version]
- Pravina, P.; Sayaji, D.; Avinash, M. Calcium and its role in human body. Int. J. Res. Pharm. Biomed. Sci. 2013, 4, 659–668. [Google Scholar]
- Scheiber, I.; Dringen, R.; Mercer, J.F.B. Interrelations between essential metal ions and human diseases. In Copper: Effects of Deficiency and Overload; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 359–387. [Google Scholar]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [Green Version]
- Avila, D.S.; Puntel, R.L.; Aschner, M. Metal Ions in Life Sciences. In Interrelations between Essential Metal Ions and Human Diseases; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 199–227. [Google Scholar]
- Kieliszek, M.; Błażejak, S. Current knowledge on the importance of selenium in food for living organisms: A review. Molecules 2016, 21, 609. [Google Scholar] [CrossRef] [Green Version]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar]
- European Commission (EC) on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R1169&qid=1614259348662 (accessed on 25 May 2021).
- Oria, M.; Harrison, M.; Stallings, V.A. Dietary Reference Intakes for Sodium and Potassium. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium; National Academies Press (US): Washington, DC, USA, 2019. [Google Scholar]
- Cano-Lamadrid, M.; Girona, D.; García-García, E.; Dominguis-Rovira, V.; Domingo, C.; Sendra, E.; Lopez-Lluch, D.; Carbonell-Barrachina, A.A. Distribution of essential and non-essential elements in rice located in a Protected Natural Reserve “Marjal de Pego-Oliva”. J. Food Compos. Anal. 2020, 94, 103654. [Google Scholar] [CrossRef]
- Punshon, T.; Jackson, B.P. Essential micronutrient and toxic trace element concentrations in gluten containing and gluten-free foods. Food Chem. 2018, 252, 258–264. [Google Scholar] [CrossRef]
- Pinto, E.; Almeida, A.; Ferreira, I.M.P.L.V.O. Essential and non-essential/toxic elements in rice available in the Portuguese and Spanish markets. J. Food Compos. Anal. 2016, 48, 81–87. [Google Scholar] [CrossRef]
- Antoine, J.M.R.; Hoo Fung, L.A.; Grant, C.N.; Dennis, H.T.; Lalor, G.C. Dietary intake of minerals and trace elements in rice on the Jamaican market. J. Food Compos. Anal. 2012, 26, 111–121. [Google Scholar] [CrossRef]
- Joy, E.J.M.; Louise Ander, E.; Broadley, M.R.; Young, S.D.; Chilimba, A.D.C.; Hamilton, E.M.; Watts, M.J. Elemental composition of Malawian rice. Environ. Geochem. Health 2017, 39, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Tattibayeva, D.; Nebot, C.; Miranda, J.M.; Cepeda, A.; Mateyev, E.; Erkebaev, M.; Franco, C.M. A study on toxic and essential elements in rice from the Republic of Kazakhstan: Comparing the level of contamination in rice from the European Community. Environ. Geochem. Health 2016, 38, 85–98. [Google Scholar] [CrossRef]
- Rothenberg, S.E.; Mgutshini, N.L.; Bizimis, M.; Johnson Beebout, S.E.; Ramanantsoanirina, A. Retrospective study of methylmercury and other metal(loid)s in Madagascar unpolished rice (Oryza Sativa, L.). Environ. Pollut. 2015, 196, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Kashian, S.; Fathivand, A.A. Estimated daily intake of Fe, Cu, Ca and Zn through common cereals in Tehran, Iran. Food Chem. 2015, 176, 193–196. [Google Scholar] [CrossRef]
- Halder, D.; Saha, J.K.; Biswas, A. Accumulation of essential and non-essential trace elements in rice grain: Possible health impacts on rice consumers in West Bengal, India. Sci. Total Environ. 2019, 706, 135944. [Google Scholar] [CrossRef] [PubMed]
- Adedire, C.O.; Adeyemi, J.A.; Paulelli, A.C.; da Cunha Martins-Junior, A.; Ileke, K.D.; Segura, F.R.; de Oliveira-Souza, V.C.; Batista, B.L.; Barbosa, F., Jr. Toxic and essential elements in Nigerian rice and estimation of dietary intake through rice consumption. Food Addit. Contam. Part B Surveill. 2015, 8, 271–276. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Shaheen, N.; Islam, M.S.; Habibullah-Al-Mamun, M.; Islam, S.; Banu, C.P. Trace elements in two staple cereals (rice and wheat) and associated health risk implications in Bangladesh. Environ. Monit. Assess. 2015, 187, 326. [Google Scholar] [CrossRef]
- Prom-u-thai, C.; Rerkasem, B.; Fukai, S.; Huang, L. Key factors affecting Fe density in Fe-fortified-parboiled rice: Parboiling conditions, storage duration, external Fe-loading rate and genotypic differences. Food Chem. 2010, 123, 628–634. [Google Scholar] [CrossRef]
- Lee, S.E.; Talegawkar, S.A.; Merialdi, M.; Caulfield, L.E. Dietary intakes of women during pregnancy in lowand middle-income countries. Public Health Nutr. 2013, 16, 1340–1353. [Google Scholar] [CrossRef]
- Grygorieva, N.; Povoroznyuk, V.; Romanenko, M.; Synieok, L. Calcium intake in an adult Ukrainian population. Arch. Osteoporos. 2020, 15, 23. [Google Scholar] [CrossRef]
- Romero-Marco, P.; Pérez-Gallardo, L.L. Adequacy of calcium intake in Spanish population according age groups. Arch. Osteoporos. 2020, 15, 161. [Google Scholar] [CrossRef]
- Jo, G.; Todorov, T.I. Distribution of nutrient and toxic elements in brown and polished rice. Food Chem. 2019, 289, 299–307. [Google Scholar] [CrossRef]
- Hensawang, S.; Lee, B.T.; Kimb, K.W.; Chanpiwat, P. Probabilistic assessment of the daily intake of microelements and toxic elements via the consumption of rice with different degrees of polishing. J. Sci. Food Agric. 2020, 100, 4029–4039. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, M.L.; Cámara-Martos, F. Bioaccessibility and total content of iron, zinc, copper, an manganese in rice varieties (Oryza sativa L.): A probabilistic assessment to evaluate their contribution to dietary reference intake. Cereal Chem. 2018, 95, 790–799. [Google Scholar] [CrossRef]
- Babaali, E.; Rahmdel, S.; Berizi, E.; Akhlaghi, M.; Götz, F.; Mazloomi, S.M. Dietary Intakes of Zinc, Copper, Magnesium, Calcium, Phosphorus, and Sodium by the General Adult Population Aged 20–50 Years in Shiraz, Iran: A Total Diet Study Approach. Nutrients 2020, 12, 3370. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Asakura, K.; Sasaki, S.; Hirota, N.; Notsu, A.; Todoriki, H.; Miura, A.; Fukui, M.; Date, C. Estimation of intakes of copper, zinc, and manganese in Japanese adults using 16-day semi-weighed diet records. Asia Pac. J. Clin. Nutr. 2014, 23, 465–472. [Google Scholar]
- de Lourdes Samaniego-Vaesken, M.; Partearroyo, T.; Olza, J.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G. Iron Intake and Dietary Sources in the Spanish Population: Findings from the ANIBES Study. Nutrients 2017, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Skolmowska, D.; Głąbska, D. Analysis of Heme and Non-Heme Iron Intake and Iron Dietary Sources in Adolescent Menstruating Females in a National Polish Sample. Nutrients 2019, 11, 1049. [Google Scholar] [CrossRef] [Green Version]
- Schiefermeier-Mach, N.; Egg, S.; Erler, J.; Hasenegger, V.; Rust, P.; König, J.; Purtscher, A.E. Electrolyte Intake and Major Food Sources of Sodium, Potassium, Calcium and Magnesium among a Population in Western Austria. Nutrients 2020, 12, 1956. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.K.; Bae, Y.J. Dietary Intake and Urinary Excretion of Manganese in Korean Healthy Adults. Biol. Trace Elem. Res. 2020, 196, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Cilloni, S.; Malavolti, M.; Violi, F.; Malagoli, C.; Tesauro, M.; Bottecchi, I.; Ferrari, A.; Vescovi, L.; Vinceti, M. Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community. J. Trace Elem. Med. Biol. 2018, 50, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Waegeneers, N.; Thiry, C.; De Temmerman, L.; Ruttens, A. Predicted dietary intake of selenium by the general adult population in Belgium. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jia, X.F.; Zhang, B.; Wang, Z.H.; Zhang, J.G.; Huang, F.F.; Su, C.; Ouyang, Y.F.; Zhao, J.; Du, W.W.; et al. Dietary Zinc Intake and Its Association with Metabolic Syndrome Indicators among Chinese Adults: An Analysis of the China Nutritional Transition Cohort Survey 2015. Nutrients 2018, 10, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Liu, Y.; Qiu, H. Association between Dietary Zinc Intake and Hyperuricemia among Adults in the United States. Nutrients 2018, 10, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, M.; Tang, A.M.; Fu, Z.; Wang, D.D.; Newberry, S.J. Calcium Intake and Cardiovascular Disease Risk: An Updated Systematic Review and Meta-analysis. Ann. Intern. Med. 2016, 165, 856–866. [Google Scholar] [CrossRef] [Green Version]
- Fassier, P.; Egnell, M.; Pouchieu, C.; Vasson, M.P.; Cohen, P.; Galan, P.; Kesse-Guyot, E.; Latino-Martel, P.; Hercberg, S.; Deschasaux, M.; et al. Quantitative assessment of dietary supplement intake in 77,000 French adults: Impact on nutritional intake inadequacy and excessive intake. Eur. J. Nutr. 2019, 7, 2679–2692. [Google Scholar] [CrossRef] [PubMed]
- Shakur, Y.A.; Tarasuk, V.; Corey, P.; O’Connor, D.L. A comparison of micronutrient inadequacy and risk of high micronutrient intakes among vitamin and mineral supplement users and nonusers in Canada. J. Nutr. 2012, 142, 534–540. [Google Scholar] [CrossRef] [Green Version]
Element | |||||||
---|---|---|---|---|---|---|---|
Parameter | Cu | Mn | Se | Ca | Fe | Mg | Zn |
Wavelength (nm) | 324.8 | 279.5 | 196.0 | 422.7 | 248.3 | 285.2 | 213.9 |
Lamp current (mA) | 7.5 | 7.5 | 14.5 | 7.5 | 12.5 | 7.5 | 6.5 |
Drying (°C) | 80/140 | 80/140 | 70/100 | - | - | - | - |
Ashing (°C) | 600/600 | 750/750 | 600/600 | - | - | - | - |
Atomization (°C) | 2400/2400 | 2300/2300 | 2700/2700 | - | - | - | - |
Cuvette cleaning (°C) | 2500/2500 | 2500/2500 | 2800/2800 | - | - | - | - |
Element | Detection Limit for Method * | Detection Limit for Samples 1 | Recovery for CRM | Precision (%) |
---|---|---|---|---|
Ca | 0.10 mg/L | 9.26 mg/kg | 98.4 | 3.6 |
Cu | 0.65 µg/L | 0.24 mg/kg | 99.2 | 2.1 |
Fe | 0.11 mg/L | 1.29 mg/kg | 98.7 | 2.5 |
Mg | 0.009 mg/L | 3.33 mg/kg | 98.8 | 2.7 |
Mn | 0.14 µg/L | 0.13 mg/kg | 101.2 | 2.4 |
Se | 1.55 µg/L | 57 µg/kg | 97.5 | 4.7 |
Zn | 0.015 mg/L | 1.39 mg/kg | 100.9 | 1.8 |
The Type of the Rice and Rice Product | n | Ca (mg/kg) | Cu (mg/kg) | Fe (mg/kg) | Mg (mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X ± SD (Min–Max) | Me (Q1–Q3) | % of RVI (800 mg) | X ± SD (Min–Max) | Me (Q1–Q3) | % of RVI (1 mg) | X ± SD (Min–Max) | Me (Q1–Q3) | % of RVI (14 mg) | X ± SD (Min–Max) | Me (Q1–Q3) | % of RVI (375 mg) | ||
Basmati | 10 | 193.5 ± 61.9 (133.3–343.9) | 181.9 (151.8–208.3) | 2 | 2.4 ± 0.4 (1.9–3.1) | 2.2 (2.0–2.6) | 24 | 6.5 ± 7.9 (2.4–28.9) | 4.0 (3.4–5.1) | 5 | 379.0 ± 378.6 (143.0–1363.0) | 205.0 (176.0–532.4) | 10 |
Black | 6 | 324.1 ± 156.1 (73.4–443.5) | 405.9 (185.5–430.7) | 4 | 3.4 ± 1.5 (2.4–6.4) | 2.9 (2.6–3.4) | 34 | 16.7 ± 3.2 (12.1–21.7) | 16.9 (15.0–17.7) | 12 | 1167.8 ± 280.5 (997.1–1723.9) | 1034.3 (1030.4–1186.9) | 31 |
Brown | 10 | 325.8 ± 162.2 (65.1–613.8) | 329.2 (268.8–408.6) | 4 | 4.0 ± 3.6 (1.3–13.1) | 2.4 (1.7–5.0) | 40 | 15.9 ± 3.1 (12.7–23.1) | 15.1 (14.0–15.8) | 11 | 1017.0 ± 386.5 (149.3–1468.5) | 964.0 (882.0–1351.5) | 27 |
Parboiled | 10 | 137.5 ± 127.2 (23.7–463.7) | 89.4 (68.8–175.0) | 2 | 2.4 ± 0.5 (1.4–3.3) | 2.5 (2.1–2.7) | 24 | 6.5 ± 6.3 (1.8–22.8) | 3.9 (3.1–6.9) | 5 | 224.9 ± 87.1 (7.1–312.4) | 239.5 (211.9–283.6) | 6 |
Red | 5 | 216.7 ± 227.6 (51.3–545.1) | 66.0 (53.7–367.2) | 2 | 3.7 ± 1.3 (2.3–5.5) | 3.4 (2.8–4.3) | 37 | 11.8 ± 3.2 (8.7–15.5) | 10.0 (9.9–15.1) | 9 | 1241.7 ± 305.6 (1014.6–1754.3) | 1086.0 (1061.5–1292.3) | 33 |
Wild | 5 | 294.6 ± 143.5 (83.7–421.2) | 367.2 (209.6–391.5) | 5 | 12.6 ± 2.4 (10.5–16.6) | 11.7 (11.5–12.8) | 126 | 17.9 ± 3.1 (14.0–21.8) | 17.7 (16.1–20.0) | 13 | 1043.6 ± 155.1 (873.7–1292.3) | 1014.0 (977.7–1060.0) | 28 |
White | 11 | 114.1 ± 72.6 (16.1–278.2) | 88.2 (66.9–150.1) | 1 | 2.4 ± 0.7 (1.4–3.8) | 2.4 (1.7–2.9) | 24 | 4.5 ± 2.9 (1.4–9.9) | 3.7 (2.0–5.2) | 3 | 258.2 ± 101.4 (109.6–423.8) | 234.0 (181.7–371.9) | 7 |
Expanded | 8 | 187.0 ± 118.0 (74.0–406.2) | 170.1 (81.5–256.3) | 2 | 2.9 ± 1.9 (1.7–7.6) | 2.4 (1.8–2.7) | 29 | 4.8 ± 2.7 (2.1–10.6) | 4.4 (2.9–5.6) | 3 | 412.0 ± 138.3 (262.2–703.4) | 415.3 (305.6–444.5) | 11 |
Flakes | 12 | 156.3 ± 94.01 (63.1–362.6) | 129.5 (107.2–158.0) | 2. | 3.3 ± 1.2 (2.1–6.5) | 3.0 (2.6–3.7) | 33 | 5.5 ± 5.9 (1.4–18.2) | 3.3 (3.0–4.2) | 4 | 319.8 ± 318.0 (91.7–1086.2) | 200.1 (137.4–305.7) | 9 |
Flour | 6 | 192.1 ± 132.3 (65.7–426.3) | 185.8 (67.7–221.3) | 2 | 2.4 ± 0.5 (1.7–3.0) | 2.4 (2.2–2.7) | 24 | 8.7 ± 5.1 (4.5–18.1) | 7.4 (4.7–10.3) | 6 | 571.4 ± 416.1 (264.8–1385.1) | 433.6 (333.4–578.2) | 15 |
Pasta | 7 | 276.8 ± 279.5 (73.5–867.0) | 185.6 (85.6–355.2) | 3 | 2.4 ± 0.7 (1.4–3.2) | 2.8 (1.7–2.9) | 24 | 3.9 ± 1.5 (2.1–6.3) | 3.5 (2.4–5.6) | 3 | 125.7 ± 59.5 (81.6–250.4) | 107.7 (86.9–146.7) | 3 |
Waffles | 9 | 402.7 ± 118.2 (134.3–574.7) | 421.6 (379.3–437.7) | 5 | 4.9 ± 3.1 (1.6–12.3) | 4.2 (3.4–5.1) | 49 | 17.8 ± 5.1 (12.5–28.8) | 17.9 (14.0–20.1) | 13 | 1361.9 ± 283.6 (929.4–1811.5) | 1383.0 (1187.4–1544.1) | 36 |
TOTAL | 99 | 226.3 ± 160.6 (16.1–867.0) | 176.1 (85.6–362.6) | - | 3.6 ± 2.8 (1.3–16.6) | 2.7 (2.1–3.4) | - | 9.4 ± 7.0 (1.4–28.8) | 5.9 (3.4–15.1) | - | 618.0 ± 498.4 (7.1–1811.5) | 382.3 (211.9–1030.4) | - |
The Type of the Rice and Rice Product | n | Mn (mg/kg) | Se (µg/kg) | Zn (mg/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
X ± SD (Min–Max) | Me (Q1–Q3) | % of RVI (2 mg) | X ± SD (Min–Max) | Me (Q1–Q3) | % of RVI (55 µg/kg) | X ± SD (Min–Max) | Me (Q1–Q3) | % of RVI (10 mg) | ||
Basmati | 10 | 10.3 ± 4.2 (0.9–16.0) | 10.3 (8.7–13.3) | 52 | 303.1 ± 129.0 (213.3–630.7) | 248.1 (222.1–313.8) | 55 | 14.5 ± 1.7 (12.4–17.8) | 14.5 (13.3–15.5) | 14 |
Black | 6 | 27.9 ± 5.4 (22.1–37.7) | 26.9 (24.9–28.9) | 139 | 185.2 ± 25.1 (157.6–229.0) | 176.7 (173.2–197.7) | 34 | 26.0 ± 3.3 (21.5–29.8) | 26.6 (22.8–28.7) | 26 |
Brown | 10 | 24.6 ± 7.2 (11.5–35.7) | 25.1 (22.0–29.3) | 123 | 205.5 ± 98.8 (152.1–472.0) | 168.1 (164.0–172.4) | 37 | 26.0 ± 26.5 (10.4–100.3) | 18.6 (15.4–22.1) | 26 |
Parboiled | 10 | 6.4 ± 4.8 (0.3–15.8) | 4.7 (4.2–7.0) | 32 | 391.8 ± 190.4 (167.6–673.2) | 371.5 (219.3–569.0) | 71 | 6.7 ± 2.9 (2.4–12.9) | 6.0 (5.2–6.8) | 7 |
Red | 5 | 38.2 ± 8.7 (31.4–53.0) | 36.2 (32.7–37.5) | 191 | 194.5 ± 9.8 (180.4–204.3) | 195.6 (189.5–202.6) | 35 | 28.1 ± 7.7 (22.0–39.4) | 23.8 (22.4–33.1) | 28 |
Wild | 5 | 16.1 ± 2.3 (13.9–19.8) | 16.0 (14.4–16.4) | 81 | 173.0 ± 11.1 (153.9–183.1) | 175.9 (175.2–176.9) | 32 | 63.3 ± 17.2 (44.6–85.4) | 62.7 (48.7–74.9) | 63 |
White | 11 | 13.6 ± 4.6 (8.2–22.2) | 13.1 (9.6–16.3) | 68 | 214.2 ± 34.6 (170.7–275.0) | 203.6 (188.9–244.5) | 39 | 16.3 ± 2.0 (13.7–20.3) | 15.9 (14.8–17.3) | 16 |
Expanded | 8 | 13.8 ± 4.1 (8.8–20.1) | 14.0 (9.8–16.7) | 69 | 247.7 ± 92.2 (164.5–463.5) | 229.3 (196.3–251.1) | 45 | 16.4 ± 4.2 (10.7–22.4) | 15.0 (13.6–20.7) | 16 |
Flakes | 12 | 12.7 ± 5.4 (7.8–26.5) | 11.1 (8.8–14.8) | 64 | 196.9 ± 26.7 (171.8–244.5) | 186.8 (179.0–212.2) | 36 | 15.8 ± 4.0 (9.4–22.6) | 15.01 (13.5–18.3) | 16 |
Flour | 6 | 15.7 ± 9.4 (8.2–34.1) | 12.1 (11.4–16.1) | 78 | 381.2 ± 389.0 (188.7–1174.1) | 236.1 (206.2–246.1) | 69 | 15.2 ± 2.4 (12.4–19.0) | 15.2 (12.9–16.6) | 15 |
Pasta | 7 | 7.7 ± 3.8 (4.0–15.8) | 7.4 (5.8–7.6) | 39 | 211.4 ± 26.2 (163.5–234.8) | 219.7 (188.3–232.4) | 38 | 11.3 ± 5.3 (5.5–19.7) | 10.2 (6.5–16.5) | 11 |
Waffles | 9 | 27.4 ± 6.1 (23.8–42.7) | 25.0 (24.0–27.8) | 137 | 181.1 ± 22.2 (150.1–207.2) | 187.6 (155.7–197.3) | 33 | 19.8 ± 4.0 (12.6–26.3) | 20.2 (17.3–22.0) | 20 |
TOTAL | 99 | 16.7 ± 10.0 (0.3–53.0) | 14.1 (8.8–24.0) | - | 242.9 ± 140.4 (150.1–1174.1) | 200.5 (176.9–241.5) | - | 19.5 ± 15.0 (2.4–100.3) | 16.1 (12.9–21.7) | - |
Basmati | Black | Brown | Parboiled | Wild | Flakes | Pasta | Waffles | |
---|---|---|---|---|---|---|---|---|
Black | Mn0.001 | |||||||
Zn0.001 | ||||||||
Brown | Se0.01 | Mn0.001 | Fe0.01 | Fe0.05 | ||||
Se0.05 | Mg0.01 | |||||||
Zn0.01 | Mn0.01 | |||||||
Red | Mn0.01 | Mn0.001 | Mg0.05 | Mg0.001 | ||||
Zn0.05 | Mn0.05 | Mn0.001 | ||||||
Zn0.001 | ||||||||
Wild | Se0.05 | Zn0.001 | Fe0.05 | Mg0.01 | ||||
Zn0.05 | Zn0.01 | |||||||
White | Fe0.05 | Fe0.05 | Se0.05 | Fe0.05 | Ca0.01 | |||
Fe0.01 | ||||||||
Mg0.01 | ||||||||
Flakes | Mg0.05 | Ca0.05 | ||||||
Fe0.01 | ||||||||
Mg0.01 | ||||||||
Pasta | Mg0.001 | Fe0.05 | ||||||
Mn0.01 | Mg0.001 | |||||||
Zn0.001 | Mn0.001 | |||||||
Waffles | Mg0.001 | Ca0.05 | ||||||
Se0.05 | Mg0.001 | |||||||
Se0.05 | ||||||||
Zn0.001 |
Type of Product [Ref.] | n | Element | ||||||
---|---|---|---|---|---|---|---|---|
Ca (mg/kg) | Cu (mg/kg) | Fe (mg/kg) | Mg (mg/kg) | Mn (mg/kg) | Se (µg/kg) | Zn (mg/kg) | ||
Brown Rice | ||||||||
[16] | 9 | Min–Max: 87.1–114 | Min–Max: 1.3–4.6 | Min–Max: 13.3–14.5 | Min–Max: 160–1630 | Min–Max: 7.6–11.8 | - | - |
[17] | 6 | - | X = 3.1 | X = 11.5 | - | X = 28.9 | X = 104 | X = 22.5 |
[18] | 11 | X = 64±9 | X = 1.6 ± 0.4 | X = 14.0 ± 2.1 | X = 1064 ± 87 | X = 21.5 ± 4.4 | X = 30 ± 20 | X = 15.9 ± 2.3 |
[19] | 16 | X = 104 ± 37.9 | X = 3.0 ± 1.1 | X = 20.1 ± 7.8 | X = 1205 ± 335 | X = 26.5 ± 12.2 | X = 131 ± 57 | X = 20.2 ± 2.73 |
[20] | 33 | X = 72.6 ± 32.6 | X = 5.5 ± 5.4 | X = 32 ± 26.1 | X = 1140 ± 214 | X = 20.1 ± 10.5 | X = 41 ± 57 | X = 18.8 ± 4.3 |
(35.6–211.5) | (Min–Max: 2.2–29.1) | (Min–Max: 12.1–119.1) | (Min–Max: 761–1550) | (Min–Max: 12.4–74.4) | (Min–Max: 5–300) | (Min–Max: 13.9–34) | ||
[21] | 51 | - | X = 2.35 | X = 18.6 | - | X = 15.5 | - | X = 21.0 |
(Min–Max: 1.4–3.9) | (Min–Max: 10.0–65.2) | (Min–Max: 8.2–24.2) | (Min–Max: 9.0–29.4) | |||||
[22] | 51 | - | X = 4.4 | - | - | X = 20 | X = 39 | X = 28 |
(Min–Max: 0.9–6.5) | (Min–Max: 10–34) | (Min–Max: 15–80) | (Min–Max: 20–36) | |||||
Our results | 10 | X = 325.8 ± 162.2 | X = 4.0 ± 3.6 | X = 15.9 ± 3.1 | X = 1017.0 ± 386.5 | X = 24.6 ± 7.2 | X = 205.5 ± 98.8 | X = 26.0 ± 26.5 |
(Min–Max: 65.1–613.8) | (Min–Max: 1.3–13.1) | (Min–Max: 12.7–23.1) | (Min–Max: 149.3–1468.5) | (Min–Max: 11.5–35.7) | (Min–Max: 152.1–472.0) | (Min–Max: 10.4–100.3) | ||
White Rice | ||||||||
[17] | 5 | - | X = 2.3 | X = 3.7 | - | X = 7.8 | X = 92 | X = 13.1 |
[18] | 56 | X = 32 ± 18 | X = 1.8 ± 0.6 | X = 6.8 ± 1.5 | X = 225 ± 63 | X = 1.8 ± 0.6 | X = 200 ± 190 | X = 13.5 ± 3.4 |
[19] | 9 | X = 127 ± 141 X = 37.7 ± 9.1 | X = 1.7 ± 0.6 | X = 22.3 ± 37.9 | X = 371 ± 127 | X = 10.5 ± 3.7 | X = 108 ± 66 | X = 15.6 ± 1.9 |
[20] | 21 | (Min–Max: 18.6–63) | X = 3.1 ± 2.0 | X = 7.9 ± 2.9 | X = 259 ± 44 | X = 9.4 ± 1.7 | X = 40 ± 35 | X = 14.7 ± 1.8 |
X = 114.1 ± 72.6 | (Min–Max: 0.9–8.1) | (Min–Max: 3.6–17.3) | (Min–Max: 191–341) | (Min–Max: 7.0–12.7) | (Min–Max: 13–137) | (Min–Max: 12–17.7) | ||
Our results | 11 | (Min–Max: 16.1–278.2) | X = 2.4 ± 0.7 | X = 4.5 ± 2.9 | X = 258.2 ± 101.4 | X = 13.6 ± 4.6 | X = 214.2 ± 34.6 | X = 16.3 ± 2.0 |
(Min–Max: 1.4–3.8) | (Min–Max: 1.4–9.9) | (Min–Max: 109.6–423.8) | (Min–Max: 8.2–22.2) | (Min–Max: 170.7–275.0) | (Min–Max: 13.7–20.3) | |||
Parboiled Rice | ||||||||
[18] | 13 | X = 370 ± 272 | X = 2.0 ± 0.6 | X = 8.6 ± 1.9 | X = 370 ± 272 | X = 5.6 ± 1.3 | X = 100 ± 50 | X = 6.1 ± 1.4 |
Our results | 10 | X = 137.5 ± 127.2 | X = 2.4 ± 0.5 | X = 6.5 ± 6.3 | X = 224.9 ± 87.1 | X = 6.4 ± 4.8 | X = 391.8 ± 190.4 | X = 6.7 ± 2.9 |
(Min–Max: 23.7–463.7) | (Min–Max: 1.4–3.3) | (Min–Max: 1.8–22.8) | (Min–Max: 7.1–312.4) | (Min–Max: 0.3–15.8) | (Min–Max: 167.6–673.2) | (Min–Max: 2.4–12.9) | ||
Wild Rice | ||||||||
[18] | 6 | X = 238 ± 170 | X = 3.3 ± 1.9 | X = 7.8 ± 1.2 | X = 561 ± 170 | X = 5.5 ± 0.8 | X = 120 ± 40 | X = 24.7 ± 4.6 |
Our results | 5 | X = 294.6 ± 143.5 | X = 12.6 ± 2.4 | X = 17.9 ± 3.1 | X = 1043.6 ± 155.1 | X = 16.1 ± 2.3 | X = 173.0 ± 11.1 | X = 63.3 ± 17.2 |
(Min–Max: 83.7–421.2) | (Min–Max: 10.5–16.6) | (Min–Max: 14.0–21.8) | (Min–Max: 873.7–1292.3) | (Min–Max: 13.9–19.8) | (Min–Max: 153.9–183.1) | (Min–Max: 44.6–85.4) | ||
Rice | ||||||||
[23] | 9 * | X= 84.5 | X = 1.1 | X = 20.7 | - | - | - | X = 23.4 |
[24] | 56 | - | X = 3.3 ± 0.9 | X = 39.4 ± 17.6 | - | X = 4.4 ± 1.4 | X = 280 ± 200 | X = 9.8 ± 2.8 |
(min-Max:0.7–6.9) | (Min–Max: 11.8–90.6) | - | (Min–Max: 2.3–8.4) | (Min–Max: 0–630) | (Min–Max: 6.3–20.3) | |||
[25] | 23 | X = 71.5 ± 7.3 | X = 3.7 ± 0.2 | - | - | X = 8.5 ± 0.5 | X = 401 ± 92 | X = 10.2 ± 0.3 |
[26] | 30 | - | X = 2.0 ± 0.5 | - | X = 4.7 ± 0.6 | X = 25.6 ± 10 | X = 13.2 ± 2.1 | |
Our results | X = 226.3 ± 160.6 | X = 3.6 ± 2.8 | X = 9.4 ± 7.0 | X = 618.0 ± 498.4 | X = 16.7 ± 10.0 | X = 242.9 ± 140.4 | X = 19.5 ± 15.0 | |
(rice in total) | (Min–Max: 16.1–867.0) | (Min–Max: 1.3–16.6) | (Min–Max: 1.4–28.8) | (Min–Max: 7.1–1811.5) | (Min–Max: 0.3–53.0) | (Min–Max: 150.1–1174.1) | (Min–Max: 2.4–100.3) | |
Rice Flour | ||||||||
[17] | 4 | - | X = 2.4 | X = 31.2 | - | X = 22.5 | X = 117 | X = 14.9 |
Our results | 6 | X = 192.1 ± 132.3 | X = 2.4 ± 0.5 | X = 8.7 ± 5.1 | X = 571.4 ± 416.1 | X = 15.7 ± 9.4 | X = 381.2 ± 389.0 | X = 15.2 ± 2.4 |
(Min–Max: 65.7–426.3) | (Min–Max: 1.7–3.0) | (Min–Max: 4.5–18.1) | (Min–Max: 264.8–1385.1) | (Min–Max: 8.2–34.1) | (Min–Max: 188.7–1174.1) | (Min–Max: 12.4–19.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecka, J.; Markiewicz-Żukowska, R.; Nowakowski, P.; Puścion-Jakubik, A.; Grabia, M.; Mielech, A.; Soroczyńska, J.; Socha, K. Identifying the Food Sources of Selected Minerals for the Adult European Population among Rice and Rice Products. Foods 2021, 10, 1251. https://doi.org/10.3390/foods10061251
Bielecka J, Markiewicz-Żukowska R, Nowakowski P, Puścion-Jakubik A, Grabia M, Mielech A, Soroczyńska J, Socha K. Identifying the Food Sources of Selected Minerals for the Adult European Population among Rice and Rice Products. Foods. 2021; 10(6):1251. https://doi.org/10.3390/foods10061251
Chicago/Turabian StyleBielecka, Joanna, Renata Markiewicz-Żukowska, Patryk Nowakowski, Anna Puścion-Jakubik, Monika Grabia, Anita Mielech, Jolanta Soroczyńska, and Katarzyna Socha. 2021. "Identifying the Food Sources of Selected Minerals for the Adult European Population among Rice and Rice Products" Foods 10, no. 6: 1251. https://doi.org/10.3390/foods10061251
APA StyleBielecka, J., Markiewicz-Żukowska, R., Nowakowski, P., Puścion-Jakubik, A., Grabia, M., Mielech, A., Soroczyńska, J., & Socha, K. (2021). Identifying the Food Sources of Selected Minerals for the Adult European Population among Rice and Rice Products. Foods, 10(6), 1251. https://doi.org/10.3390/foods10061251