Mild Pretreatments to Increase Fructose Consumption in Saccharomyces cerevisiae Wine Yeast Strains
Abstract
1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Culture Conditions
2.2. Pretreatments Application
2.3. Fermentation Trials
2.4. Analytical Determinations
2.5. Mathematical Modelling of Glucose and Fructose Consumption
- -
- Linear equation [7]:
- -
- Exponential function model [13]:
- -
- Sigmoidal or modified Gompertz function model [22]:
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Díaz-Hellín, P.; Naranjo, V.; Úbeda, J.; Briones, A. Saccharomyces cerevisiae and metabolic activators: HXT3 gene expression and fructose/glucose discrepancy in sluggish fermentation conditions. World J. Microbiol. Biotechnol. 2016, 32, 1–18. [Google Scholar] [CrossRef]
- Berry, D.B.; Gasch, A.P. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol. Biol. Cell 2008, 19, 4580–4587. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Maeda, Y.; Ikeda, A.; Sakurai, H. Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae. Eukaryot. Cell 2008, 7, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Piper, P.W.; Ortiz-Calderon, C.; Holyoak, C.; Coote, P.; Cole, M. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H+-ATPase. Cell Stress Chaperones 1997, 2, 12–24. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons, Ltd.: New York, NY, USA, 2016. [Google Scholar]
- Perez, M.; Luyten, K.; Michel, R.; Riou, C.; Blondin, B. Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: Both low- and high-affinity Hxt transporters are expressed. FEMS Yeast Res. 2005, 5, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Berthels, N.J.; Cordero Otero, R.R.; Bauer, F.F.; Thevelein, J.M.; Pretorius, I.S. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 2004, 4, 683–689. [Google Scholar] [CrossRef]
- Fleet, G.H. The Microbiology of Alcoholic Beverages. In Microbiology of Fermented Foods; Brian, J.B.W., Ed.; Springer Nature: Basingstoke, UK, 1998. [Google Scholar]
- Berthels, N.J.; Cordero Otero, R.R.; Bauer, F.F.; Pretorius, I.S.; Thevelein, J.M. Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Appl. Microbiol. Biotechnol. 2008, 77, 1083–1091. [Google Scholar] [CrossRef]
- Kayikci, Ö.; Nielsen, J. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 2015, 15, fov068. [Google Scholar] [CrossRef]
- Gafner, J.; Schütz, M. Impact of glucose-fructose-ratio on stuck fermentations: Practical experiences to restart stuck fermentations. Wein-Wissenschaft 1996, 51, 214–218. [Google Scholar]
- Zinnai, A.; Venturi, F.; Sanmartin, C.; Quartacci, M.F.; Andrich, G. Kinetics of d-glucose and d-fructose conversion during the alcoholic fermentation promoted by Saccharomyces cerevisiae. J. Biosci. Bioeng. 2013, 115, 43–49. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Bautista-Gallego, J.; Durán-Quintana, M.C.; Garrido-Fernández, A. Effects of ascorbic acid, sodium metabisulfite and sodium chloride on freshness retention and microbial growth during the storage of Manzanilla-Aloreña cracked table olives. LWT Food Sci. Technol. 2008, 41, 551–560. [Google Scholar] [CrossRef]
- Báleš, V.; Timár, P.; Baláž, J.; Timár, P. Wine fermentation kinetic model verification and simulation of refrigeration malfunction during wine fermentation. Acta Chim. Slovaca 2016, 9, 58–61. [Google Scholar] [CrossRef]
- Boulton, R. The prediction of fermentation behavior by a kinetic model. Am. J. Enol. Vitic. 1980, 31, 40–45. [Google Scholar]
- Caro, I.; Pérez, L.; Cantero, D. Development of a kinetic model for the alcoholic fermentation of must. Biotechnol. Bioeng. 1991, 38, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Coleman, M.C.; Fish, R.; Block, D.E. Temperature-dependent kinetic model for nitrogen-limited wine fermentations. Appl. Environ. Microbiol. 2007, 73, 5875–5884. [Google Scholar] [CrossRef]
- Wang, D.; Xu, Y.; Hu, J.; Zhao, G. Fermentation kinetics of different sugars by apple wine yeast Saccharomyces cerevisiae. J. Inst. Brew. 2004, 110, 340–346. [Google Scholar] [CrossRef]
- Tronchoni, J.; Gamero, A.; Arroyo-López, F.N.; Barrio, E.; Querol, A. Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation. Int. J. Food Microbiol. 2009, 134, 237–243. [Google Scholar] [CrossRef]
- Baǧder Elmaci, S.; Özçelik, F.; Tokatli, M.; Çakir, I. Technological properties of indigenous wine yeast strains isolated from wine production regions of Turkey. Antonie van Leeuwenhoek 2014, 105, 835–847. [Google Scholar] [CrossRef]
- Musatti, A.; Mapelli, C.; Foschino, R.; Picozzi, C.; Rollini, M. Unconventional bacterial association for dough leavening. Int. J. Food Microbiol. 2016, 237, 28–34. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Pearson, J. Susceptibility testing: Accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J. Appl. Microbiol. 2000, 88, 784–790. [Google Scholar] [CrossRef]
- Bauer, F.F.; Pretorius, I.S. Yeast Stress Response and Fermentation Efficiency: How to Survive the Making of Wine—A Review. South African J. Enol. Vitic. 2000, 21, 27–51. [Google Scholar] [CrossRef]
- Querol, A.; Fernández-Espinar, M.T.; Del Olmo, M.; Barrio, E. Adaptive evolution of wine yeast. Int. J. Food Microbiol. 2003, 86, 3–10. [Google Scholar] [CrossRef]
- Ivorra, C.; Pérez-Ortín, J.E.; Del Olmo, M. lí An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnol. Bioeng. 1999, 64, 698–708. [Google Scholar] [CrossRef]
- Guillaume, C.; Delobel, P.; Sablayrolles, J.M.; Blondin, B. Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: A mutated HXT3 allele enhances fructose fermentation. Appl. Environ. Microbiol. 2007, 73, 2432–2439. [Google Scholar] [CrossRef] [PubMed]
- Liccioli, T.; Chambers, P.J.; Jiranek, V. A novel methodology independent of fermentation rate for assessment of the fructophilic character of wine yeast strains. J. Ind. Microbiol. Biotechnol. 2011, 38, 833–843. [Google Scholar] [CrossRef]
- Viana, T.; Loureiro-Dias, M.C.; Prista, C. Efficient fermentation of an improved synthetic grape must by enological and laboratory strains of Saccharomyces cerevisiae. AMB Express 2014, 4, 1–9. [Google Scholar] [CrossRef]
- Mannazzu, I.; Angelozzi, D.; Belviso, S.; Budroni, M.; Farris, G.A.; Goffrini, P.; Lodi, T.; Marzona, M.; Bardi, L. Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: Cell lipid composition, membrane integrity, viability and fermentative activity. Int. J. Food Microbiol. 2008, 121, 84–91. [Google Scholar] [CrossRef]
- Mattar, J.R.; Turk, M.F.; Nonus, M.; Lebovka, N.I.; El Zakhem, H.; Vorobiev, E. S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments. Bioelectrochemistry 2015, 103, 92–97. [Google Scholar] [CrossRef]
- González-Aguilar, G.A.; Ruiz-Cruz, S.; Cruz-Valenzuela, R.; Rodríguez-Félix, A.; Wang, C.Y. Physiological and quality changes of fresh-cut pineapple treated with antibrowning agents. LWT Food Sci. Technol. 2004, 37, 369–376. [Google Scholar] [CrossRef]
- Soto, B. Fermentation Processes; ED-Tech Press: London, UK, 2019; pp. 90–91. [Google Scholar]
- O’Neill, B.; Van Heeswijck, T.; Muhlack, R. Models for predicting wine fermentation kinetics. In Proceedings of the Chemeca 2011: Engineering a Better World, Sydney, Australia, 18–21 September 2011. [Google Scholar]
- Morano, K.A.; Grant, C.M.; Moye-Rowley, W.S. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 2012, 190, 1157–1195. [Google Scholar] [CrossRef]
Yeast Strain | Pretreatment | Time Distance (h) | Glucose (g/L) | Fructose (g/L) | Ethanol (g/L) |
---|---|---|---|---|---|
2 | None (control) | 0–19 | 39.01 ± 6.36 | 18.79 ± 7.09 | 21.65 ± 1.45 |
0–24 | 57.23 ± 4.34 | 28.48 ± 7.46 | 30.65 ± 8.49 | ||
0–48 | 95.08 ± 5.93 | 75.38 ± 13.40 | 66.93 ± 9.93 | ||
Temperature | 0–19 | 10.68 ± 4.42 | 2.30 ± 2.30 | 7.68 ± 7.08 | |
0–24 | 33.33 ± 29.45 | 14.53 ± 12.27 | 18.63 ± 18.63 | ||
0–48 | 89.50 ± 16.26 | 60.18 ± 8.10 | 58.70 ± 0.01 | ||
Ethanol | 0–19 | 60.50 ± 16.05 | 27.53 ± 1.52 | 24.05 ± 10.18 | |
0–24 | 76.63 ± 14.04 | 34.10 ± 1.56 | 34.72 ± 2.14 | ||
0–48 | 127.35 ± 7.00 | 73.93 ± 1.38 | 76.50 ± 1.27 | ||
7 | None (control) | 0–19 | 22.28 ± 2.30 | 14.15 ± 1.98 | 5.33 ± 5.33 |
0–24 | 41.00 ± 15.63 | 20.40 ± 2.19 | 20.20 ± 15.13 | ||
0–48 | 99.75 ± 0.95 | 83.15 ± 15.27 | 92.43 ± 23.43 | ||
Temperature | 0–19 | 31.23 ± 1.03 | 24.35 ± 5.73 | 9.75 ± 2.76 | |
0–24 | 47.35 ± 2.62 | 32.40 ± 6.65 | 26.63 ± 8.03 | ||
0-48 | 103.18 ± 7.81 | 98.15 ± 2.83 | 71.78 ± 9.93 | ||
Ethanol | 0–19 | 32.60 ± 1.34 | 19.53 ± 0.11 | 18.05 ± 3.82 | |
0–24 | 39.40 ± 11.03 | 24.53 ± 9.58 | 26.93 ± 5.34 | ||
0–48 | 77.53 ± 9.86 | 66.73 ± 6.33 | 70.45 ± 19.45 | ||
47 | None (control) | 0–19 | 43.70 ± 2.48 | 17.08 ± 1.10 | 11.65 ± 11.65 |
0–24 | 38.04 ± 18.23 | 29.98 ± 6.19 | 34.95 ± 5.02 | ||
0–48 | 102.18 ± 6.98 | 83.10 ± 18.74 | 76.55 ± 3.96 | ||
Temperature | 0–19 | 20.85 ± 16.12 | 11.14 ± 9.03 | 11.67 ± 6.76 | |
0–24 | 38.04 ± 12.89 | 19.56 ± 11.83 | 22.35 ± 12.23 | ||
0–48 | 91.36 ± 5.96 | 84.24 ± 2.05 | 75.89 ± 3.80 | ||
Ethanol | 0-19 | 60.93 ± 1.31 | 18.58 ± 13.47 | 21.53 ± 21.53 | |
0–24 | 75.45 ± 2.26 | 39.33 ± 1.66 | 47.48 ± 1.52 | ||
0–48 | 110.88 ± 5.27 | 87.68 ± 6.97 | 87.30 ± 3.68 | ||
S122 | None (control) | 0–19 | 32.13 ± 0.74 | 19.30 ± 0.85 | 20.80 ± 0.42 |
0–24 | 45.58 ± 0.32 | 28.98 ± 0.74 | 33.38 ± 1.80 | ||
0–48 | 90.05 ± 1.95 | 90.45 ± 1.98 | 80.25 ± 4.45 | ||
Temperature | 0–19 | 4.92 ± 2.58 | 1.15 ± 0.85 | 6.15 ± 2.76 | |
0–24 | 22.48 ± 8.38 | 14.08 ± 6.12 | 13.85 ± 5.80 | ||
0–48 | 80.58 ± 6.89 | 77.73 ± 6.26 | 71.33 ± 1.31 | ||
Ethanol | 0–19 | 48.35 ± 16.48 | 23.50 ± 6.51 | 34.23 ± 8.87 | |
0–24 | 67.33 ± 13.75 | 38.60 ± 2.69 | 40.85 ± 7.50 | ||
0–48 | 105.85 ± 12.37 | 87.93 ± 6.61 | 85.30 ± 0.85 |
Source | Dependent Variable | df | Sum of Square | F |
---|---|---|---|---|
Type of Pretreatment (TP) | Glucose a | 2 | 3986.344 | 36.684 *** |
Fructose b | 2 | 453.384 | 7.247 ** | |
Ethanol c | 2 | 1257.563 | 14.136 *** | |
Type of Strain (TS) | Glucose | 3 | 776.018 | 7.141 ** |
Fructose | 3 | 142.591 | 2.279 | |
Ethanol | 3 | 165.783 | 1.863 | |
TP × TS | Glucose | 6 | 933.023 | 8.586 *** |
Fructose | 6 | 439.423 | 7.024 *** | |
Ethanol | 6 | 130.316 | 1.465 |
Pretreatment | Yeast Strain | Glucose (g/L) | Fructose (g/L) | Ethanol (g/L) |
---|---|---|---|---|
None (control) | 2 | 63.77 abcde* | 40.88 ab | 41.23 a |
7 | 54.34 cdef | 39.23 ab | ||
47 | 69.38 abcd | 43.84 ab | ||
S122 | 55.92 cdef | 46.24 ab | ||
Temperature | 2 | 44.50 ef | 25.67 b | 32.87 a |
7 | 60.58 cde | 51.63 a | ||
47 | 50.08 def | 38.31 ab | ||
S122 | 35.99 f | 30.98 b | ||
Ethanol | 2 | 88.159 a | 45.18 ab | 47.28 b |
7 | 49.84 def | 36.93 ab | ||
47 | 82.42 ab | 48.53 a | ||
S122 | 73.84 abc | 50.01 a |
Strain | Treatment | Linear | Exponential Decay Function | Sigmoid Function | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MBE | χ2 | R2 | RMSE | MBE | χ2 | R2 | RMSE | MBE | χ2 | |||
2 | Control | Glucose | 0.991 | 3.225 | 0.002 | 20.80 | 0.994 | 2.698 | 0 * | 14.56 | 0.994 | 2.505 | 0.0 * | 12.55 |
Temperature | 0.806 | 16.144 | 0.004 | 521.23 | 0.763 | 21.441 | 11.910 | 919.43 | 0.999 | 0.888 | 0 * | 1.58 | ||
Ethanol | 0.981 | 4.169 | 0 * | 34.76 | 0.987 | 3.599 | 0.854 | 0.987 | 0.986 | 3.631 | 0 * | 26.36 | ||
7 | Control | 0.961 | 6.192 | 0.003 | 76.69 | 0.961 | 4 × 105 | 4 × 105 | 3 × 109 | 0.989 | 3.594 | 0 * | 25.83 | |
Temperature | 0.989 | 3.913 | 0.003 | 30.62 | 0.989 | 3.922 | 0 * | 30.77 | 0.993 | 3.303 | 0 * | 21.82 | ||
Ethanol | 0.988 | 3.864 | 0 * | 29.85 | 0.988 | 13.023 | 0 * | 339.19 | 0.991 | 3.290 | 0 * | 21.65 | ||
47 | Control | 0.979 | 5.596 | 0 * | 62.64 | 0.990 | 3.740 | 0 * | 27.98 | 0.998 | 1.664 | 0 * | 5.53 | |
Temperature | 0.965 | 7.001 | 0 * | 98.02 | 0.965 | 7.008 | 0 * | 98.22 | 0.997 | 2.141 | 0 * | 9.17 | ||
Ethanol | 0.948 | 8.701 | 0 * | 151.40 | 0.990 | 3.824 | 0 * | 29.25 | 0.996 | 4.524 | 1.712 | 40.94 | ||
S122 | Control | 0.990 | 3.828 | 0.003 | 29.30 | 0.990 | 3.807 | 0 * | 28.99 | 0.999 | 1.390 | 0 * | 3.86 | |
Temperature | 0.963 | 7.437 | 0.008 | 110.63 | 0.963 | 7.445 | 0 * | 110.86 | 0.996 | 2.313 | 0 * | 10.70 | ||
Ethanol | 0.974 | 6.148 | 0 * | 75.59 | 0.989 | 3.976 | 0 * | 31.62 | 0.997 | 2.252 | 0 * | 10.14 | ||
2 | Control | Fructose | 0.946 | 6.836 | 0 * | 93.47 | 0.946 | 8.140 | 4.411 | 132.52 | 0.977 | 4.462 | 0 * | 39.82 |
Temperature | 0.795 | 11.521 | 0 * | 265.47 | 0.795 | 14.021 | 7.988 | 393.18 | 0.972 | 4.297 | 0.101 | 36.93 | ||
Ethanol | 0.955 | 4.000 | 0.006 | 32.00 | 0.955 | 6.220 | 0 * | 77.38 | 0.964 | 3.568 | 0 * | 25.46 | ||
7 | Control | 0.946 | 12.152 | 0 * | 295.36 | ND ** | 6 × 104 | 0 * | 7 × 107 | 0.994 | 2.207 | 0.020 | 9.74 | |
Temperature | 0.795 | 20.182 | 11.94 | 814.60 | 0.794 | 19.683 | 11.075 | 774.86 | 0.973 | 5.709 | 0 * | 65.19 | ||
Ethanol | 0.955 | 12.513 | 6.230 | 313.16 | 0.930 | 16.115 | 4.640 | 519.40 | 0.988 | 3.260 | 0 * | 21.25 | ||
47 | Control | 0.966 | 5.504 | 0 * | 60.60 | 0.965 | 5.511 | 0 * | 60.74 | 0.996 | 1.990 | 0 * | 7.92 | |
Temperature | 0.893 | 10.633 | 0.005 | 226.10 | 0.893 | 10.636 | 0 * | 226.27 | 0.995 | 2.266 | 0 * | 10.27 | ||
Ethanol | 0.970 | 5.253 | 0.008 | 55.18 | ND ** | ND ** | 16.484 | 937.79 | 0.988 | 3.353 | 0.032 | 22.48 | ||
S122 | Control | 0.960 | 7.126 | 0 * | 101.56 | 0.959 | 7.133 | 0 * | 101.77 | 0.999 | 1.007 | 0 * | 2.03 | |
Temperature | 0.916 | 10.262 | 0.007 | 210.63 | 0.916 | 10.267 | 0 * | 210.82 | 0.996 | 2.323 | 0 * | 10.79 | ||
Ethanol | 0.976 | 4.700 | 0 * | 44.17 | 0.975 | 4.707 | 0 * | 44.31 | 0.988 | 3.295 | 0 * | 21.71 |
Yeast Code | Treatment | Sugar | Model Equations | t50 (h) | t90 (h) |
---|---|---|---|---|---|
2 | Control | Glucose | 24.60 | 49.22 | |
Temperature | 34.60 | 43.71 | |||
Ethanol | 21.84 | 49.13 | |||
7 | Control | 28.46 | 47.92 | ||
Temperature | 26.40 | 43.32 | |||
Ethanol | 22.60 | 43.51 | |||
47 | Control | 21.67 | 36.39 | ||
Temperature | 25.64 | 33.39 | |||
Ethanol | 18.38 | 34.52 | |||
S122 | Control | 24.27 | 38.16 | ||
Temperature | 28.06 | 39.33 | |||
Ethanol | 20.93 | 35.57 | |||
2 | Control | Fructose | 34.11 | 53.05 | |
Temperature | 42.03 | 54.50 | |||
Ethanol | 41.58 | 74.83 | |||
7 | Control | 36.83 | 54.42 | ||
Temperature | 31.59 | 49.92 | |||
Ethanol | 33.02 | 51.52 | |||
47 | Control | 34.61 | 53.70 | ||
Temperature | 34.81 | 48.44 | |||
Ethanol | 31.69 | 51.88 | |||
S122 | Control | 30.84 | 45.19 | ||
Temperature | 33.67 | 47.19 | |||
Ethanol | 30.26 | 50.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaoglan, H.A.; Ozcelik, F.; Musatti, A.; Rollini, M. Mild Pretreatments to Increase Fructose Consumption in Saccharomyces cerevisiae Wine Yeast Strains. Foods 2021, 10, 1129. https://doi.org/10.3390/foods10051129
Karaoglan HA, Ozcelik F, Musatti A, Rollini M. Mild Pretreatments to Increase Fructose Consumption in Saccharomyces cerevisiae Wine Yeast Strains. Foods. 2021; 10(5):1129. https://doi.org/10.3390/foods10051129
Chicago/Turabian StyleKaraoglan, Hatice Aybuke, Filiz Ozcelik, Alida Musatti, and Manuela Rollini. 2021. "Mild Pretreatments to Increase Fructose Consumption in Saccharomyces cerevisiae Wine Yeast Strains" Foods 10, no. 5: 1129. https://doi.org/10.3390/foods10051129
APA StyleKaraoglan, H. A., Ozcelik, F., Musatti, A., & Rollini, M. (2021). Mild Pretreatments to Increase Fructose Consumption in Saccharomyces cerevisiae Wine Yeast Strains. Foods, 10(5), 1129. https://doi.org/10.3390/foods10051129