Carcass and Primal Composition Predictions Using Camera Vision Systems (CVS) and Dual-Energy X-ray Absorptiometry (DXA) Technologies on Mature Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Carcass Sides, Cut-Out, and CVS and DXA Scanning
2.3. Statistical Analyses
3. Results
3.1. Cow Carcass Population
3.2. Primal Weight Estimation
3.3. Overall Carcass Tissue Composition and Yield Estimations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Canfax. Annual Report.Canfax/Canfax Research Services. 2020. Available online: www.canfax.ca (accessed on 25 March 2021).
- Canadian Beef Grading Association (CBGA). 2020. Available online: www.beefgradingagency.ca (accessed on 25 March 2021).
- Roberts, J.; Rodas-González, A.; Juárez, M.; López-Campos, Ó.; Larsen, I.L.; Aalhus, J.L. Muscle profiling of retail characteristics within the Canadian cull cow grades. Can. J. Anim. Sci. 2017, 97, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Aalhus, J.L.; López-Campos, Ó.; Prieto, N.; Rodas-González, A.; Dugan, M.E.R.; Uttaro, B.; Juárez, M. Review: Canadian beef grading—Opportunities to identify carcass and meat quality traits valued by consumers. Can. J. Anim. Sci. 2014, 94, 545–556. [Google Scholar] [CrossRef]
- Scholz, A.M.; Buenger, L.; Kongsro, J.; Baulain, U.; Mitchell, A.D. Non-invasive methods for the determination of body and carcass composition in livestock: Dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited review. Animal 2015, 9, 1250–1264. [Google Scholar] [CrossRef] [Green Version]
- López-Campos, Ó.; Prieto, N.; Juárez, M.; Aalhus, J.L. New technologies available for livestock carcass classification and grading. CAB Rev. 2019, 14, 1–10. [Google Scholar] [CrossRef]
- Woerner, D.R.; Belk, K.E. The History of Instrument Assessment of Beef: A Focus on the Last Ten Years. Cattlemen’s Beef Board and National Cattlemen’s Beef Association. 2008. Available online: www.beefresearch.org/CMDocs/BeefResearch/The%20History%20of%20Instrument%20Assessment%20of%20Beef.pdf (accessed on 25 March 2021).
- Allen, P. Automated Grading of Beef Carcasses. In Improving the Sensory and Nutritional Quality of Fresh Meat; Kerry, J.P., Ledward, D., Eds.; Series in Food Science Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2009; pp. 479–492. [Google Scholar]
- Craigie, C.R.; Navajas, E.A.; Purchas, R.W.; Maltin, C.A.; Buenger, L.; Hoskin, S.O.; Ross, D.W.; Morris, S.T.; Roehe, R. A review of the development and use of video image analysis (VIA) for beef carcass evaluation as an alternative to the current EUROP system and other subjective systems. Meat Sci. 2012, 92, 307–318. [Google Scholar] [CrossRef] [PubMed]
- McEvers, T.J.; Hutcheson, J.P.; Lawrence, T.E. Quantification of Saleable Meat Yield Using Objective Measurements Captured by Video Image Analysis Technology. J. Anim. Sci. 2012, 90, 3294–3300. [Google Scholar] [CrossRef] [PubMed]
- Craigie, C.R.; Ross, D.W.; Maltin, C.A.; Purchas, R.W.; Buenger, L.; Roehe, R.; Morris, S.T. The relationship between video image analysis (VIA), visual classification, and saleable meat yield of sirloin and fillet cuts of beef carcasses differing in breed and gender. Livest. Sci. 2013, 158, 169–178. [Google Scholar] [CrossRef]
- Lovett, B.A.; Firth, E.C.; Plank, L.D.; Symonds, J.E.; Preece, M.A.; Herbert, N.A. Investigating a relationship between body composition and spinal curvature in farmed adult New Zealand king salmon (Oncorhynchus tshawytscha): A novel application of dual-energy X-ray absorptiometry. Aquaculture 2019, 502, 48–55. [Google Scholar] [CrossRef]
- Goncalves, C.A.; Sakomura, N.K.; da Silva, E.P.; Baraldi Artoni, S.M.; Suzuki, R.M.; Gous, R.M. Dual energy X-ray absorptiometry is a valid tool for assessing in vivo body composition of broilers. Anim. Prod. Sci. 2019, 59, 993–1000. [Google Scholar] [CrossRef]
- Hunter, T.E.; Suster, D.; Dunshea, F.R.; Cummins, L.J.; Egan, A.R.; Leury, B.J. Dual energy X-ray absorptiometry (DXA) can be used to predict live animal and whole carcass composition of sheep. Small Rumin. Res. 2011, 100, 143–152. [Google Scholar] [CrossRef]
- Soladoye, O.P.; López-Campos, Ó.; Aalhus, J.L.; Gariepy, C.; Shand, P.; Juárez, M. Accuracy of dual energy X-ray absorptiometry (DXA) in assessing carcass composition from different pig populations. Meat Sci. 2016, 121, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Scholz, A.M.; Nuske, S.; Forster, M. Body composition and bone mineralization measurement in calves of different genetic origin by using dual-energy X-ray absorptiometry. Acta Diabetol. 2003, 40 (Suppl. 1), S91–S94. [Google Scholar] [CrossRef] [PubMed]
- Kipper, M.; Marcoux, M.; Andretta, I.; Pomar, C. Assessing the accuracy of measurements obtained by dual-energy X-ray absorptiometry on pig carcasses and primal cuts. Meat Sci. 2019, 14, 79–87. [Google Scholar] [CrossRef] [PubMed]
- López-Campos, Ó.; Roberts, J.C.; Larsen, I.L.; Prieto, N.; Juárez, M.; Dugan, M.E.R.; Aalhus, J.L. Rapid and non-destructive determination of lean fat and bone content in beef using dual energy X-ray absorptiometry. Meat Sci. 2018, 146, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Canadian Council of Animal Care. Guidelines on: The Care and Use of Farm Animals in Research, Teaching and Testing; Canadian Council on Animal Care: Ottawa, ON, Canada, 2009. [Google Scholar]
- The Safe Food for Canadians and Health of Animals Acts of CFIA Guidelines (A). Available online: https://inspection.canada.ca/food-safety-for-industry/food-specific-requirements-and-guidance/meat-products-and-food-animals/guidelines-humane-care-and-handling/eng/1525374637729/1525374638088 (accessed on 25 March 2021).
- The Safe Food for Canadians and Health of Animals Acts of CFIA Guidelines (B). Available online: https://inspection.canada.ca/food-safety-for-industry/food-specific-requirements-and-guidance/meat-products-and-food-animals/srm/eng/1369768468665/1369768518427 (accessed on 25 March 2021).
- López-Campos, Ó.; Aalhus, J.L.; Prieto, N.; Larsen, I.L.; Juárez, M.; Basarab, J.A. Effects of production system and growth promotants on the physiological maturity scores in steers. Can J. Anim. Sci. 2014, 94, 607–617. [Google Scholar] [CrossRef]
- USDA. Official United States Standards for Grades of Beef Carcasses; Agricultural Marketing Service, United States Department of Agriculture: Washington, DC, USA, 1989. Available online: https://www.ams.usda.gov/grades-standards/carcass-beef-grades-and-standards (accessed on 5 May 2021).
- Jones, S.D.M. Evaluation of the Grade Ruler Approach for the Yield Grading of Beef Carcasses. Published as Appendix 1. Available online: https://cdnsciencepub.com/doi/suppl/10.1139/cjas-2020-0035/suppl_file/cjas-2020-0035suppla.pdf (accessed on 25 March 2021).
- Segura, J.; Aalhus, J.L.; Prieto, N.; Larsen, I.; Dugan, M.E.R.; López-Campos, Ó. Development and validation of the Canadian retail cut beef yield grades. Can. J. Anim. Sci. 2021, 101, 196–200. [Google Scholar] [CrossRef]
- USDA. Institutional meat purchasing specifications for fresh beef. 2014. Available online: https://www.ams.usda.gov/grades-standards/imps (accessed on 25 March 2021).
- SAS Institute Inc. SAS 9.4 for Windows; SAS Institute Inc: Cary, NC, USA, 2014. [Google Scholar]
- Benchaar, C.; Rivest, J.; Pomar, C.; Chiquette, J. Prediction of methane production from dairy cows using existing mechanistinc models and regression equations. J. Anim. Sci. 1998, 76, 617–627. [Google Scholar] [CrossRef]
- Theil, H. Applied Economic Forecasting; North-Holland Publishing Company: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Mercier, J.; Pomar, C.; Marcoux, M.; Goulet, F.; Thériault, M.; Castonguay, F.W. The use of dual-energy X-ray absorptiometry to estimate the dissected composition of lamb carcasses. Meat Sci. 2006, 73, 249–257. [Google Scholar] [CrossRef]
- Farrow, R.L.; Loneragan, G.H.; Pauli, J.W.; Lawrence, T.E. An exploratory observational study to develop an improved method for quantifying beef carcass salable meat yield. Meat Sci. 2009, 82, 143–150. [Google Scholar] [CrossRef]
- Lu, W.; Tan, J. Analysis of image-based measurements and USDA characteristics as predictors of beef lean yield. Meat Sci. 2004, 66, 483–491. [Google Scholar] [CrossRef]
- Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Coupling of image analysis and tenderness classification to simultaneously evaluate carcass cutability, longissimus area, subprimal cut weights, and tenderness of beef. J. Anim. Sci. 1998, 76, 2631–2640. [Google Scholar] [CrossRef] [Green Version]
- Borggaard, C.; Madsen, N.T.; Thodberg, H.H. In-line image analysis in the slaughter industry, illustrated by Beef Carcass Classification. Meat Sci. 1996, 43 (Suppl. 1), 151–163. [Google Scholar] [CrossRef]
- Pabiou, T.; Fikse, W.F.; Cromie, A.R.; Keane, M.G.; Nasholm, A.; Berry, D.P. Use of digital images to predict carcass cut yields in cattle. Livest. Sci. 2011, 137, 130–140. [Google Scholar] [CrossRef]
- Vote, D.J.; Bowling, M.B.; Cunha, B.C.N.; Belk, K.E.; Tatum, J.D.; Montossi, F.; Smith, G.C. Video image analysis as a potential grading system for Uruguayan beef carcasses. J. Anim. Sci. 2009, 87, 2376–2390. [Google Scholar] [CrossRef] [PubMed]
- Cannell, R.C.; Belk, K.E.; Tatum, J.D.; Wise, J.W.; Chapman, P.L.; Scanga, J.A.; Smith, G.C. Online evaluation of a commercial video image analysis system (Computer Vision System) to predict beef carcass red meat yield and for augmenting the assignment of USDA yield grades. J. Anim. Sci. 2002, 80, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Rius-Vilarrasa, E.; Buenger, L.; Maltin, C.; Matthews, K.R.; Roehe, R. Evaluation of Video Image Analysis (VIA) technology to predict meat yield of sheep carcasses on-line under UK abattoir conditions. Meat Sci. 2009, 82, 94–100. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Güedes, C.M.; Agregan, R.; Sarries, M.V.; Franco, D.; Silva, S.R. Prediction of foal carcass composition and wholesale cut yields by using video image analysis. Animal 2018, 12, 174–182. [Google Scholar] [CrossRef]
- Einarsson, E.; Eythorsdottir, E.; Smith, C.R.; Jonmundsson, J.V. The ability of video image analysis to predict lean meat yield and EUROP score of lamb carcasses. Animal 2014, 8, 1170–1177. [Google Scholar] [CrossRef]
- Kipper, M.; Marcoux, M.; Andretta, I.; Pomar, C. Repeatability and reproducibility of measurements obtained by dual-energy X-ray absorptiometry on pig carcasses. J. Anim. Sci. 2018, 96, 2027–2037. [Google Scholar] [CrossRef] [Green Version]
- Schallier, S.; Li, C.; Lesuisse, J.; Janssens, G.P.J.; Everaert, N.; Buyse, J. Dual-energy X-ray absorptiometry is a reliable non-invasive technique for determining whole body composition of chickens. Poult. Sci. 2019, 98, 2652–2661. [Google Scholar] [CrossRef]
- Prieto, N.; Navajas, E.A.; Richardson, R.I.; Ross, D.W.; Hyslop, J.J.; Simm, G.; Roehe, R. Predicting beef cuts composition, fatty acids and meat quality characteristics by spiral computed tomography. Meat Sci. 2010, 86, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Navajas, E.A.; Richardson, R.I.; Fisher, A.V.; Hyslop, J.J.; Ross, D.W.; Prieto, N.; Simm, G.; Roehe, R. Predicting beef carcass composition using tissue weights of a primal cut assessed by computed tomography. Animal 2010, 4, 1810–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navajas, E.A.; Glasbey, C.A.; Fisher, A.V.; Ross, D.W.; Hyslop, J.J.; Richardson, R.I.; Simm, G.; Roehe, R. Assessing beef carcass tissue weights using computed tomography spirals of primal cuts. Meat Sci. 2010, 84, 30–38. [Google Scholar] [CrossRef] [PubMed]
- May, S.G.; Mies, W.L.; Edwards, J.W.; Williams, F.L.; Wise, J.W.; Morgan, J.B.; Savell, J.W.; Cross, H.R. Beef carcass composition of slaughter cattle differing in frame size, muscle score, and external fatness. J. Anim. Sci. 1992, 70, 2431–2445. [Google Scholar] [CrossRef]
Mean (n = 111) | SD 1 | Min | Max | |
---|---|---|---|---|
HCW 2 (kg) | 345.8 | 33.3 | 277.3 | 410.2 |
CCW 3 (kg) | 338.7 | 30.0 | 271.3 | 401.9 |
Grade fat (mm) | 9.6 | 8.06 | 0.0 | 29.0 |
Fat thickness (mm) | 10.2 | 5.59 | 0.0 | 27.9 |
Rib-eye width 4 | 1.8 | 0.78 | 1 | 3 |
Rib-eye length 4 | 2.7 | 0.53 | 1 | 3 |
Muscle score 4 | 2.4 | 0.99 | 1 | 4 |
Ribeye area (cm2) | 83.6 | 11.2 | 60.0 | 120.0 |
LMY 5 (%) | 56.3 | 5.75 | 49.0 | 61.0 |
RCY 6 (%) | 49.6 | 2.29 | 42.9 | 54.5 |
Marbling scores 7 | 455.6 | 143.2 | 100.0 | 733.0 |
Ossification (%) 8 | 92.8 | 13.4 | 50.0 | 100.0 |
Tissue | Primal 4 | HCC 1 (n = 105) | CCC 2 (n = 102) | HCC + CCC 3 (n = 95) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | MSPE | ECT (%) | ER (%) | ED (%) | LV | R2 | MSPE | ECT (%) | ER (%) | ED (%) | LV | R2 | MSPE | ECT (%) | ER (%) | ED (%) | LV | ||
Fat (kg) | Brisket | 0.86 | 0.1942 | 0.35 | 0.14 | 99.51 | 8 | 0.88 | 0.1817 | 6.46 | 0.09 | 93.44 | 10 | 0.80 | 0.2872 | 2.68 | 0.01 | 97.31 | 2 |
Chuck | 0.88 | 2.3678 | 0.25 | 0.14 | 99.61 | 8 | 0.91 | 2.1435 | 9.98 | 0.29 | 89.73 | 10 | 0.87 | 2.8515 | 5.95 | 0.01 | 94.04 | 3 | |
Flank | 0.86 | 0.9713 | 0.15 | 0.18 | 99.67 | 7 | 0.92 | 0.6498 | 9.23 | 0.12 | 90.66 | 10 | 0.88 | 0.8844 | 5.50 | 0.05 | 94.45 | 3 | |
Loin | 0.81 | 2.5542 | 0.00 | 0.18 | 99.82 | 9 | 0.91 | 1.3322 | 8.29 | 0.23 | 91.48 | 10 | 0.85 | 2.1950 | 5.90 | 0.02 | 94.08 | 3 | |
Plate | 0.87 | 0.6728 | 0.00 | 0.10 | 99.90 | 10 | 0.73 | 1.4707 | 2.74 | 0.02 | 97.24 | 4 | 0.84 | 0.9188 | 5.35 | 0.01 | 94.64 | 3 | |
Rib | 0.87 | 1.1126 | 0.07 | 0.15 | 99.78 | 10 | 0.78 | 2.0276 | 3.66 | 0.04 | 96.30 | 3 | 0.86 | 1.3099 | 5.21 | 0.02 | 94.77 | 3 | |
Round | 0.85 | 0.6854 | 0.27 | 0.01 | 99.71 | 4 | 0.72 | 1.3811 | 4.01 | 0.26 | 95.73 | 2 | 0.88 | 0.6259 | 6.71 | 0.49 | 92.80 | 2 | |
Foreshank | 0.47 | 0.0332 | 0.08 | 0.00 | 99.92 | 2 | 0.51 | 0.0309 | 0.51 | 0.00 | 99.49 | 4 | 0.50 | 0.0316 | 1.17 | 0.00 | 98.83 | 2 | |
Lean (kg) | Brisket | 0.67 | 0.2783 | 0.06 | 0.10 | 99.85 | 2 | 0.62 | 0.3286 | 0.55 | 0.76 | 98.69 | 4 | 0.76 | 0.2107 | 0.48 | 0.70 | 98.83 | 3 |
Chuck | 0.85 | 4.6386 | 1.10 | 0.04 | 98.86 | 4 | 0.52 | 14.710 | 1.02 | 0.83 | 98.15 | 3 | 0.88 | 3.9094 | 0.70 | 4.53 | 94.77 | 5 | |
Flank | 0.82 | 0.3376 | 2.26 | 0.03 | 97.71 | 9 | 0.55 | 0.8112 | 1.57 | 0.37 | 98.06 | 2 | 0.74 | 0.4638 | 0.13 | 1.11 | 98.75 | 3 | |
Loin | 0.82 | 1.5263 | 0.41 | 0.16 | 99.43 | 5 | 0.58 | 3.5920 | 0.72 | 0.22 | 99.06 | 3 | 0.82 | 1.5196 | 0.47 | 0.19 | 99.34 | 4 | |
Plate | 0.75 | 0.5167 | 0.04 | 0.08 | 99.87 | 3 | 0.46 | 1.1186 | 0.32 | 0.25 | 99.43 | 4 | 0.83 | 0.3492 | 0.66 | 0.73 | 98.61 | 5 | |
Rib | 0.66 | 1.2365 | 0.41 | 0.07 | 99.52 | 2 | 0.69 | 1.1224 | 0.45 | 1.02 | 98.53 | 3 | 0.79 | 0.7751 | 0.00 | 0.86 | 99.14 | 3 | |
Round | 0.90 | 2.0669 | 0.59 | 0.26 | 99.15 | 10 | 0.65 | 7.2982 | 1.20 | 0.58 | 98.23 | 4 | 0.86 | 2.9706 | 1.28 | 0.90 | 97.82 | 4 | |
Foreshank | 0.53 | 0.1596 | 0.14 | 0.03 | 99.83 | 2 | 0.32 | 0.2328 | 0.80 | 0.17 | 99.03 | 2 | 0.51 | 0.1681 | 0.53 | 0.20 | 99.27 | 2 | |
Bone (kg) | Brisket | 0.37 | 0.0566 | 0.05 | 0.00 | 99.95 | 2 | 0.01 5 | 0.0855 | 0.30 | 0.00 | 99.70 | 1 | 0.42 | 0.0526 | 0.25 | 0.00 | 99.75 | 2 |
Chuck | 0.68 | 0.4167 | 0.01 | 0.01 | 99.98 | 4 | 0.38 | 0.8187 | 0.14 | 0.08 | 99.78 | 4 | 0.71 | 0.3886 | 0.46 | 0.24 | 99.31 | 3 | |
Flank | 0.09 5 | 0.0086 | 0.03 | 0.01 | 99.97 | 1 | 0.03 5 | 0.0091 | 0.00 | 0.01 | 99.99 | 1 | 0.09 5 | 0.0086 | 0.06 | 0.05 | 99.89 | 1 | |
Loin | 0.64 | 0.1272 | 0.05 | 0.00 | 99.95 | 4 | 0.03 5 | 0.3185 | 0.01 | 0.01 | 99.99 | 1 | 0.76 | 0.0848 | 0.03 | 0.25 | 99.72 | 6 | |
Plate | 0.62 | 0.0598 | 0.02 | 0.01 | 99.97 | 2 | 0.09 5 | 0.1329 | 0.01 | 0.01 | 99.99 | 1 | 0.62 | 0.0595 | 0.09 | 0.02 | 99.89 | 2 | |
Rib | 0.36 | 0.1358 | 0.14 | 0.01 | 99.85 | 2 | 0.04 5 | 0.1896 | 0.08 | 0.04 | 99.88 | 1 | 0.36 | 0.1369 | 0.59 | 0.33 | 99.08 | 2 | |
Round | 0.79 | 0.2256 | 0.17 | 0.12 | 99.71 | 5 | 0.36 | 0.6723 | 0.05 | 0.07 | 99.88 | 4 | 0.75 | 0.2622 | 0.64 | 0.10 | 99.26 | 3 | |
Foreshank | 0.60 | 0.0504 | 0.00 | 0.05 | 99.94 | 2 | 0.02 5 | 0.1156 | 0.13 | 0.04 | 99.83 | 1 | 0.55 | 0.0574 | 0.28 | 0.32 | 99.40 | 2 |
Tissue | Primal 1 | R2 | MSPE | ECT (%) | ER (%) | ED (%) | LV |
---|---|---|---|---|---|---|---|
Fat (kg) | Brisket | 0.99 | 0.0143 | 0.521 | 0.021 | 99.46 | 10 |
Chuck | 0.99 | 0.3074 | 0.335 | 0.019 | 99.65 | 10 | |
Flank | 0.98 | 0.1540 | 0.097 | 0.049 | 99.85 | 6 | |
Loin | 0.98 | 0.2395 | 0.219 | 0.032 | 99.75 | 10 | |
Plate | 0.98 | 0.1039 | 1.054 | 0.254 | 98.69 | 10 | |
Rib | 0.98 | 0.1384 | 0.940 | 0.095 | 98.96 | 10 | |
Round | 0.96 | 0.1734 | 0.253 | 0.001 | 99.75 | 10 | |
Foreshank | 0.74 | 0.0160 | 0.096 | 0.025 | 99.88 | 4 | |
Lean (kg) | Brisket | 0.99 | 0.0128 | 0.088 | 0.094 | 99.82 | 10 |
Chuck | 0.99 | 0.4146 | 0.023 | 0.135 | 99.84 | 10 | |
Flank | 0.97 | 0.0519 | 0.004 | 0.066 | 99.93 | 10 | |
Loin | 0.95 | 0.3825 | 0.003 | 0.042 | 99.96 | 6 | |
Plate | 0.95 | 0.0964 | 0.041 | 0.024 | 99.93 | 7 | |
Rib | 0.98 | 0.0569 | 0.006 | 0.126 | 99.87 | 10 | |
Round | 0.99 | 0.2775 | 0.123 | 0.093 | 99.78 | 10 | |
Foreshank | 0.94 | 0.0205 | 0.047 | 0.013 | 99.94 | 9 | |
Bone (kg) | Brisket | 0.89 | 0.0096 | 0.141 | 0.013 | 99.85 | 5 |
Chuck | 0.92 | 0.1081 | 0.009 | 0.019 | 99.97 | 8 | |
Flank | 0.31 | 0.0066 | 0.043 | 0.007 | 99.95 | 3 | |
Loin | 0.88 | 0.0420 | 0.106 | 0.005 | 99.89 | 9 | |
Plate | 0.94 | 0.0088 | 0.044 | 0.017 | 99.94 | 9 | |
Rib | 0.85 | 0.0313 | 0.006 | 0.009 | 99.98 | 5 | |
Round | 0.92 | 0.0875 | 0.038 | 0.008 | 99.95 | 6 | |
Foreshank | 0.86 | 0.0179 | 0.026 | 0.004 | 99.97 | 4 |
HCC 1 (n = 105) | CCC 2 (n = 102) | HCC + CCC 3 (n = 95) | DXA (n = 111) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | MSPE | ECT (%) | ER (%) | ED (%) | LV | R2 | MSPE | ECT (%) | ER (%) | ED (%) | LV | R2 | MSPE | ECT (%) | ER (%) | ED (%) | LV | R2 | MSPE | ECT (%) | ER (%) | ED (%) | LV | |
Fat (kg) | 0.92 | 29.407 | 0.130 | 0.249 | 99.62 | 10 | 0.93 | 30.104 | 11.66 | 0.427 | 87.91 | 10 | 0.91 | 35.532 | 9.073 | 0.011 | 90.92 | 3 | 0.99 | 2.5943 | 1.107 | 0.000 | 98.89 | 7 |
Lean (kg) | 0.89 | 36.092 | 1.066 | 0.165 | 98.77 | 5 | 0.67 | 104.53 | 1.305 | 1.276 | 97.42 | 4 | 0.93 | 23.044 | 1.403 | 5.401 | 93.20 | 6 | 0.99 | 3.1380 | 0.046 | 0.180 | 99.77 | 8 |
Bone (kg) | 0.82 | 2.4731 | 0.000 | 0.039 | 99.96 | 5 | 0.31 | 9.2266 | 0.061 | 0.151 | 99.79 | 1 | 0.84 | 2.1539 | 0.323 | 1.360 | 98.32 | 5 | 0.92 | 1.0459 | 0.029 | 0.013 | 99.96 | 5 |
SQ (kg) | 0.88 | 6.5924 | 0.219 | 0.086 | 99.69 | 8 | 0.82 | 9.7306 | 4.224 | 0.007 | 95.77 | 3 | 0.88 | 6.5623 | 4.704 | 0.063 | 95.23 | 3 | 0.95 | 2.5014 | 0.038 | 0.025 | 99.94 | 10 |
BC (kg) | 0.81 | 0.5213 | 0.404 | 0.136 | 99.46 | 10 | 0.75 | 0.6954 | 1.960 | 0.307 | 97.73 | 7 | 0.75 | 0.6965 | 4.453 | 0.084 | 95.46 | 4 | 0.81 | 0.5184 | 0.111 | 0.024 | 99.87 | 5 |
IM (kg) | 0.91 | 10.189 | 0.145 | 0.269 | 99.59 | 10 | 0.91 | 12.097 | 10.30 | 0.462 | 89.24 | 10 | 0.90 | 12.709 | 8.903 | 0.026 | 91.07 | 3 | 0.98 | 1.7734 | 0.742 | 0.022 | 99.24 | 7 |
LMY (%) | 0.66 | 7.3418 | 3.603 | 0.034 | 96.36 | 5 | 0.85 | 3.1867 | 4.719 | 0.113 | 95.17 | 5 | 0.90 | 2.2255 | 8.180 | 0.069 | 91.75 | 6 | 0.81 | 3.9807 | 0.176 | 0.482 | 99.34 | 5 |
RCY (%) | 0.68 | 1.7008 | 0.641 | 0.001 | 99.36 | 10 | 0.65 | 1.8364 | 1.321 | 0.054 | 98.63 | 4 | 0.86 | 0.7776 | 6.983 | 0.589 | 92.43 | 6 | 0.86 | 0.7566 | 0.027 | 0.003 | 99.97 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segura, J.; Aalhus, J.L.; Prieto, N.; Larsen, I.L.; Juárez, M.; López-Campos, Ó. Carcass and Primal Composition Predictions Using Camera Vision Systems (CVS) and Dual-Energy X-ray Absorptiometry (DXA) Technologies on Mature Cows. Foods 2021, 10, 1118. https://doi.org/10.3390/foods10051118
Segura J, Aalhus JL, Prieto N, Larsen IL, Juárez M, López-Campos Ó. Carcass and Primal Composition Predictions Using Camera Vision Systems (CVS) and Dual-Energy X-ray Absorptiometry (DXA) Technologies on Mature Cows. Foods. 2021; 10(5):1118. https://doi.org/10.3390/foods10051118
Chicago/Turabian StyleSegura, José, Jennifer L. Aalhus, Nuria Prieto, Ivy L. Larsen, Manuel Juárez, and Óscar López-Campos. 2021. "Carcass and Primal Composition Predictions Using Camera Vision Systems (CVS) and Dual-Energy X-ray Absorptiometry (DXA) Technologies on Mature Cows" Foods 10, no. 5: 1118. https://doi.org/10.3390/foods10051118
APA StyleSegura, J., Aalhus, J. L., Prieto, N., Larsen, I. L., Juárez, M., & López-Campos, Ó. (2021). Carcass and Primal Composition Predictions Using Camera Vision Systems (CVS) and Dual-Energy X-ray Absorptiometry (DXA) Technologies on Mature Cows. Foods, 10(5), 1118. https://doi.org/10.3390/foods10051118