Enhancing the Nutritional Properties of Bread by Incorporating Mushroom Bioactive Compounds: The Manipulation of the Pre-Dictive Glycaemic Response and the Phenolic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bread Preparation
2.3. Fibre Analysis
2.4. Thermal Properties
2.5. Starch Content and In Vitro Digestion Analysis
2.6. Antioxidant Analysis
2.7. Microstructure
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Mushroom Powder on the Thermal Properties of Bread
3.2. The Effect of Mushroom Powder on the Starch Content and Digestibility of Bread
3.3. The Effect of Mushroom Powder on the Total Phenolic Contents and Antioxidant Properties of Bread
3.4. The Effect of Mushroom Powder on the Microstructure of the Bread Crust and Crumb
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bharath, A.P.; Kathalsar, A.K.; Chandrashekhar, S.; Prabhasankar, P. Influence of tetraploid wheat (Triticum dicoccum) on low glycaemic index pizza base processing and its starch digestibility. Int. J. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Ronda, F.; Rivero, P.; Caballero, P.A.; Quilez, J. High insoluble fibre content increases in vitro starch digestibility in partially baked breads. Int. J. Food Sci. Nutr. 2012, 63, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Tepsongkroh, B.; Jangchud, K.; Jangchud, A.; Chonpracha, P.; Ardoin, R.; Prinyawiwatkul, W. Consumer perception of extruded snacks containing brown rice and dried mushroom. Int. J. Food Sci. Technol. 2020, 55, 46–54. [Google Scholar] [CrossRef]
- Bach, F.; Helm, C.V.; Bellettini, M.B.; Maciel, G.M.; Haminiuk, C.W.I. Edible mushrooms: A potential source of essential amino acids, glucans and minerals. Int. J. Food Sci. Technol. 2017, 52, 2382–2392. [Google Scholar] [CrossRef]
- Seghchi, M.; Morimoto, N.; Abe, M.; Yoshino, Y. Effect of maitake (Grifola frondosa) mushroom powder on bread properties. J. Food Sci. 2001, 66, 261–264. [Google Scholar] [CrossRef]
- Radzki, W.; Ziaja-Sołtys, M.; Nowak, J.; Topolska, J.; Bogucka-Kocka, A.; Sławińska, A.; Michalak-Majewska, M.; Jabłońska-Ryś, E.; Kuczumow, A. Impact of processing on polysaccharides obtained from button mushroom (Agaricus bisporus). Int. J. Food Sci. Technol. 2019, 54, 1405–1412. [Google Scholar] [CrossRef]
- Sabino Ferrari, A.B.; Azevedo de Oliveira, G.; Russo, H.M.; Bertozo, L.C.; Bolzani, V.S.; Zied, D.C.; Ximenes, V.F.; Zeraik, M.L. Pleurotusostreatus and Agaricus subrufescens: Investigation of chemical composition and antioxidant properties of these mushrooms cultivated with different handmade and commercial supplements. Int. J. Food Sci. Technol. 2021, 56, 452–460. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Yang, J.H.; Li, R.C.; Mau, J.L. Quality of bread supplemented with silver ear. J. Food Qual. 2010, 33, 59–71. [Google Scholar] [CrossRef]
- Gaglio, R.; Guarcello, R.; Venturella, G.; Palazzolo, E.; Francesca, N.; Moschetti, G.; Settanni, L.; Saporita, P.; Gargano, M.L. Microbiological, chemical and sensory aspects of bread supplemented with different percentages of the culinary mushroom Pleurotus eryngii in powder form. Int. J. Food Sci. Technol. 2019, 54, 1197–1205. [Google Scholar] [CrossRef]
- Lu, X.; Brennan, M.A.; Serventi, L.; Mason, S.; Brennan, C.S. How the inclusion of mushroom powder can affect the physicochemical characteristics of pasta. Int. J. Food Sci. Technol. 2016, 51, 2433–2439. [Google Scholar] [CrossRef]
- Brennan, M.A.; Monro, J.A.; Brennan, C.S. Effect of inclusion of soluble and insoluble fibres into extruded breakfast cereal products made with reverse screw configuration. Int. J. Food Sci. Technol. 2008, 43, 2278–2288. [Google Scholar] [CrossRef]
- Aravind, N.; Sissons, M.; Egan, N.; Fellows, C. Effect of insoluble dietary fibre addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chem. 2012, 130, 299–309. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, M.A.; Brennan, C.S. Synergistic effect of different dietary fibres in pasta on in vitro starch digestion? Food Chem. 2015, 172, 245–250. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Collar, C.; Jimenez, T.; Conte, P.; Piga, A. Significance of thermal transitions on starch digestibility and firming kinetics of restricted water mixed flour bread matrices. Carbohydr. Polym. 2015, 122, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Witczak, M.; Juszczak, L.; Ziobro, R.; Korus, J. Influence of modified starches on properties of gluten-free dough and bread. Part I: Rheological and thermal properties of gluten-free dough. Food Hydrocoll. 2012, 28, 353–360. [Google Scholar] [CrossRef]
- Wolter, A.; Hager, A.S.; Zannini, E.; Arendt, E.K. In vitro starch digestibility and predicted glycaemic indexes of buckwheat, oat, quinoa, sorghum, teff and commercial gluten-free bread. J. Cereal Sci. 2013, 58, 431–436. [Google Scholar] [CrossRef]
- Fardet, A.; Leenhardt, F.; Lioger, D.; Scalbert, A.; Remesy, C. Parameters controlling the glycaemic response to breads. Nutr. Res. Rev. 2006, 19, 18–25. [Google Scholar] [CrossRef]
- Dhital, S.; Brennan, C.; Gidley, M.J. Location and interactions of starches in planta: Effects on food and nutritional functionality. Trends Food Sci. Technol. 2019, 93, 156–166. [Google Scholar] [CrossRef]
- Brennan, C.S.; Blake, D.E.; Ellis, P.R.; Schofield, J.D. Effects of guar galactomannan on wheat bread microstructure and on the in vitro and in vivo digestibility of starch in bread. J. Cereal Sci. 1996, 24, 151–160. [Google Scholar] [CrossRef]
- Cleary, L.; Brennan, C. The influence of a (1→3)(1→4)-β-D-glucan rich fraction from barley on the physico-chemical properties and in vitro reducing sugars release of durum wheat pasta. Int. J. Food Sci. Technol. 2006, 41, 910–918. [Google Scholar] [CrossRef]
- Cheung, P.C. Mushrooms as Functional Foods, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Su, C.H.; Lai, M.N.; Ng, L.T. Inhibitory effects of medicinal mushrooms on α-amylase and α-glucosidase—Enzymes related to hyperglycemia. Food Funct. 2013, 4, 644–649. [Google Scholar] [CrossRef]
- Shumoy, H.; Raes, K. In vitro starch hydrolysis and estimated glycemic index of tef porridge and injera. Food Chem. 2017, 229, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Choo, C.L.; Aziz, N.A.A. Effects of banana flour and β-glucan on the nutritional and sensory evaluation of noodles. Food Chem. 2010, 119, 34–40. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D.; Baraniak, B.; Tomilo, J.; Czyz, J. Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chem. 2013, 138, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Świeca, M.; Sęczyk, L.; Gawlik-Dziki, U.; Dziki, D. Bread enriched with quinoa leaves—The influence of protein-phenolics interactions on the nutritional and antioxidant quality. Food Chem. 2014, 162, 54–62. [Google Scholar] [CrossRef]
- Olawuyi, I.F.; Lee, W.Y. Quality and antioxidant properties of functional rice muffins enriched with shiitake mushroom and carrot pomace. Int. J. Food Sci. Technol. 2019, 54, 2321–2328. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein–phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Ammar, A.F.; Zhang, H.; Siddeeg, A.; Chamba, M.V.M.; Kimani, B.G.; Hassanin, H.; Obadi, M.; Alhejj, N. Effect of the addition of alhydwan seed flour on the dough rheology, bread quality, texture profile and microstructure of wheat bread. J. Texture Stud. 2016, 47, 484–495. [Google Scholar] [CrossRef]
- Bahal, G.; Sudha, M.L.; Ramasarma, P.R. Wheat germ lipoxygenase: Its effect on dough rheology, microstructure, and bread making quality. Int. J. Food Prop. 2013, 16, 1730–1739. [Google Scholar] [CrossRef]
- Altamirano-Fortoul, R.; Hernández-Muñoz, P.; Hernando, I.; Rosell, C.M. Mechanical, microstructure and permeability properties of a model bread crust: Effect of different food additives. J. Food Eng. 2015, 163, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Martini, D.; Ciccoritti, R.; Nicoletti, I.; Nocente, F.; Corradini, D.; D’Egidio, M.G.; Taddei, F. From seed to cooked pasta: Influence of traditional and non-conventional transformation processes on total antioxidant capacity and phenolic acid content. Int. J. Food Sci. Nutr. 2018, 69, 24–32. [Google Scholar] [CrossRef]
- Li, L.; Lietz, G.; Seal, C.J. Phenolic, apparent antioxidant and nutritional composition of quinoa (Chenopodium quinoa Willd.) seeds. Int. J. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Luo, M.; Hou, F.; Dong, L.; Huang, F.; Zhang, R.; Su, D. Comparison of microwave and high-pressure processing on bound phenolic composition and antioxidant activities of sorghum hull. Int. J. Food Sci. Technol. 2020, 55, 3190–3202. [Google Scholar] [CrossRef]
- Nguyen, N.M.P.; Le, T.T.; Vissenaekens, H.; Gonzales, G.B.; Van Camp, J.; Smagghe, G.; Raes, K. In vitro antioxidant activity and phenolic profiles of tropical fruit by-products. Int. J. Food Sci. Technol. 2019, 54, 1169–1178. [Google Scholar] [CrossRef]
- | Tonset °C | Tgelatinization °C | Tendset °C | ΔH J/g | ΔTr °C |
---|---|---|---|---|---|
Control bread | 58.06 ± 0.84 | 64.41 ± 1.73 | 69.85 ± 1.17 | 0.42 ± 0.08 | 11.80 ± 0.33 |
5% White button mushroom bread | 55.96 ± 1.07 | 60.14 ± 0.85 | 67.19 ± 2.51 | 0.38 ± 0.07 | 11.23 ± 3.59 |
10% White button mushroom bread | 55.64 ± 2.17 | 59.62 ± 0.09 | 65.92 ± 2.19 | 0.40 ± 0.14 | 10.29 ± 0.02 |
15% White button mushroom bread | 52.71 ± 1.70 | 59.84 ± 0.36 | 70.59 ± 0.68 | 0.86 ± 0.10 | 17.89 ± 2.38 |
5% Shiitake mushroom bread | 56.34 ± 2.82 | 61.31 ± 0.28 | 68.79 ± 1.83 | 0.44 ± 0.08 | 12.45 ± 4.65 |
10% Shiitake mushroom bread | 53.79 ± 0.81 | 61.16 ± 0.49 | 73.14 ± 0.60 | 0.73 ± 0.10 | 19.35 ± 0.21 |
15% Shiitake mushroom bread | 52.97 ± 1.94 | 59.59 ± 1.58 | 68.31 ± 1.69 | 0.64 ± 0.09 | 15.34 ± 0.25 |
5% Porcini mushroom bread | 54.2 ± 0.16 | 61.01 ± 0.07 | 69.88 ± 0.82 | 0.42 ± 0.02 | 15.68 ± 0.98 |
10% Porcini mushroom bread | 54.30 ± 1.01 | 60.14 ± 0.80 | 68.93 ± 0.26 | 0.56 ± 0.03 | 14.63 ± 1.27 |
15% Porcini mushroom bread | 52.74 ± 1.41 | 57.10 ± 0.73 | 67.13 ± 0.96 | 1.27 ± 0.2 | 14.39 ± 2.38 |
- | ST | AUC | TPC | DPPH | ORAC | ΔH | IDF | SDF | TDF |
---|---|---|---|---|---|---|---|---|---|
ST | - | 0.699 *** | −0.409 * | −0.380 * | −0.490 ** | −0.773 *** | −0.618 *** | −0.365 * | −0.608 *** |
AUC | - | - | −0.355 | −0.232 | −0.412 * | −0.586 *** | −0.858 *** | −0.368 * | −0.802 *** |
TPC | - | - | - | 0.960 *** | 0.979 *** | 0.493 ** | 0.432 * | 0.752 *** | 0.573 *** |
DPPH | - | - | - | - | 0.966 *** | 0.484 ** | 0.342 | 0.764 *** | 0.504 ** |
ORAC | - | - | - | - | - | 0.551 ** | 0.509 ** | 0.776 *** | 0.642 *** |
ΔH | - | - | - | - | - | - | 0.580 *** | 0.620 *** | 0.653 *** |
IDF | - | - | - | - | - | - | - | 0.539 ** | 0.968 *** |
SDF | - | - | - | - | - | - | - | - | 0.734 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Brennan, M.A.; Guan, W.; Zhang, J.; Yuan, L.; Brennan, C.S. Enhancing the Nutritional Properties of Bread by Incorporating Mushroom Bioactive Compounds: The Manipulation of the Pre-Dictive Glycaemic Response and the Phenolic Properties. Foods 2021, 10, 731. https://doi.org/10.3390/foods10040731
Lu X, Brennan MA, Guan W, Zhang J, Yuan L, Brennan CS. Enhancing the Nutritional Properties of Bread by Incorporating Mushroom Bioactive Compounds: The Manipulation of the Pre-Dictive Glycaemic Response and the Phenolic Properties. Foods. 2021; 10(4):731. https://doi.org/10.3390/foods10040731
Chicago/Turabian StyleLu, Xikun, Margaret A. Brennan, Wenqiang Guan, Jie Zhang, Li Yuan, and Charles S. Brennan. 2021. "Enhancing the Nutritional Properties of Bread by Incorporating Mushroom Bioactive Compounds: The Manipulation of the Pre-Dictive Glycaemic Response and the Phenolic Properties" Foods 10, no. 4: 731. https://doi.org/10.3390/foods10040731
APA StyleLu, X., Brennan, M. A., Guan, W., Zhang, J., Yuan, L., & Brennan, C. S. (2021). Enhancing the Nutritional Properties of Bread by Incorporating Mushroom Bioactive Compounds: The Manipulation of the Pre-Dictive Glycaemic Response and the Phenolic Properties. Foods, 10(4), 731. https://doi.org/10.3390/foods10040731