Meat Quality Parameters of Boschveld Indigenous Chickens as Influenced by Dietary Yellow Mealworm Meal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds and Management
2.2. Yellow Mealworm Larval Meal and Experimental Diets, Dietary Treatment
2.3. Slaughter and Carcass Traits (Internal Parts)
2.4. Cooking Procedure
2.5. Texture Properties of Chicken
2.6. Instrumental Colour Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dyubele, N.L.; Muchenje, V.; Nkukwana, T.T.; Chimonyo, M. Consumer sensory characteristics of broiler and indigenous chicken meat: A South African example. Food Qual. Prefer. 2010, 21, 815–819. [Google Scholar] [CrossRef]
- Mwale, M.; Masika, P.J. Ethno-veterinary control of parasites, management and role of village chickens in rural households of Centane district in the Eastern Cape, South Africa. Trop. Anim. Health Prod. 2009, 41, 1685–1693. [Google Scholar] [CrossRef]
- Moges, F. Indigenous Chicken Production and Marketing Systems in Ethiopia: Characteristics and Opportunities for Market-oriented Development; ILRI (aka ILCA and ILRAD): Nairobi, Kenya, 2010; Volume 24. [Google Scholar]
- Azimu, W.; Manatbay, B.; Li, Y.; Kaimaerdan, D.; Wang, H.E.; Reheman, A.; Muhatai, G. Genetic diversity and population structure analysis of eight local chicken breeds of Southern Xinjiang. Br. Poult. Sci. 2018, 59, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Manyelo, T.G.; Selaledi, L.; Hassan, Z.M.; Mabelebele, M. Local chicken breeds of Africa: Their description, uses and conservation methods. Animals 2020, 10, 2257. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; González, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002, 95, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Elahi, U.; Wang, J.; Ma, Y.B.; Wu, S.G.; Wu, J.; Qi, G.H.; Zhang, H.J. Evaluation of yellow mealworm meal as a protein feedstuff in the diet of broiler chicks. Animals 2020, 10, 224. [Google Scholar] [CrossRef] [Green Version]
- Biasato, I.; De Marco, M.; Rotolo, L.; Renna, M.; Lussiana, C.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Costa, P.; Gai, F.; et al. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Mabelebele, M.; Ng′ambi, J.; Norris, D.; Ginindza, M. Comparison of gastrointestinal tract and pH values of digestive organs of Ross 308 broiler and indigenous Venda chickens fed the same diet. Asian J. Anim. Vet. Adv. 2014, 9, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Okoro, V.M.O.; Ravhuhali, K.E.; Mapholi, T.H.; Mbajiorgu, E.F.; Mbajiorgu, C.A. Effect of age on production characteristics of Boschveld indigenous chickens of South Africa reared intensively. S. Afr. J. Anim. Sci. 2017, 47, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.; Bianchi, C.; et al. Effects of yellow mealworm larvae (Tenebrio molitor) inclusion in diets for female broiler chickens: Implications for animal health and gut histology. Anim. Feed. Sci. Technol. 2017, 234, 253–263. [Google Scholar] [CrossRef]
- Cullere, M.; Schiavone, A.; Dabbou, S.; Gasco, L.; Dalle Zotte, A. Meat quality and sensory traits of finisher broiler chickens fed with black soldier fly (Hermetia illucens L.) larvae fat as alternative fat source. Animals 2019, 9, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küçüközet, A.O.; Uslu, M.K. Cooking loss, tenderness, and sensory evaluation of chicken meat roasted after wrapping with edible films. Food Sci. Technol. Int. 2018, 24, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Sedgh-Gooya, S.; Torki, M.; Darbemamieh, M.; Khamisabadi, H.; Karimi Torshizi, M.A.; Abdolmohamadi, A. Yellow mealworm, Tenebrio molitor (Col: Tenebrionidae), larvae powder as dietary protein sources for broiler chickens: Effects on growth performance, carcass traits, selected intestinal microbiota and blood parameters. J. Anim. Physiol. Anim. Nutr. 2021, 105, 119–128. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Marono, S.; Piccolo, G.; Parisi, G.; Iaconisi, V.; Gasco, L.; Nizza, A. Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. J. Anim. Sci. 2016, 94, 639–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palya, V. Manual for the Production of Marek′s Disease, Gumboro Disease and Inactivated Newcastle Disease Vaccines (No. 89); Food & Agriculture Org: Rome, Italy, 1991. [Google Scholar]
- Selaledi, L.; Mabelebele, M. The influence of drying methods on the chemical composition and body color of yellow mealworm (Tenebrio molitor L.). Insects 2021, 12, 333. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry, 9th ed.; National Academy of Sciences Press: Washington, DC, USA, 1994.
- South Africa Poultry Association. Code of Practice. 2018. Available online: http://www.sapoultry.co.za/pdf-docs/code-of-practice-sapa.pdf (accessed on 5 November 2021).
- Park, S.Y.; Byeon, D.S.; Kim, G.W.; Kim, H.Y. Carcass and retail meat cuts quality properties of broiler chicken meat based on the slaughter age. J. Anim. Sci. Technol. 2021, 63, 180. [Google Scholar] [CrossRef]
- Lyon, B.G.; Lyon, C.E. Texture evaluations of cooked, diced broiler breast samples by sensory and mechanical methods. Poult. Sci. 1996, 75, 812–819. [Google Scholar] [CrossRef]
- Rabeler, F.; Feyissa, A.H. Kinetic modeling of texture and color changes during thermal treatment of chicken breast meat. Food Bioprocess Technol. 2018, 11, 1495–1504. [Google Scholar] [CrossRef] [Green Version]
- IBM Corp. IBM SPSS Statistics for Windows, Version 27.0; IBM Corp: Armonk, NY, USA, 2020; Available online: https://www.ibm.com/docs/en/SSLVMB_27.0.0/pdf/en/GPL_Reference_Guide_for_IBM_SPSS_Statistics.pdf (accessed on 12 September 2021).
- Ravindran, V. Poultry Development Review. 2013. Available online: https://www.fao.org/3/i3531e/i3531e.pdf (accessed on 12 September 2021).
- Zadeh, Z.S.; Kheiri, F.; Faghani, M. Use of yellow mealworm (Tenebrio molitor) as a protein source on growth performance, carcass traits, meat quality and intestinal morphology of Japanese quails (Coturnix japonica). Vet. Anim. Sci. 2019, 8, 100066. [Google Scholar] [CrossRef]
- Mbhele, F.G.; Mnisi, C.M.; Mlambo, V. A nutritional evaluation of insect meal as a Sustainable protein source for Jumbo quails: Physiological and meat quality responses. Sustainability 2019, 11, 6592. [Google Scholar] [CrossRef] [Green Version]
- Leiber, F.; Gelencsér, T.; Stamer, A.; Amsler, Z.; Wohlfahrt, J.; Früh, B.; Maurer, V. Insect and legume-based protein sources to replace soybean cake in an organic broiler diet: Effects on growth performance and physical meat quality. Renew. Agric. Food Syst. 2017, 32, 21–27. [Google Scholar] [CrossRef]
- Kondjoyan, A.; Oillic, S.; Portanguen, S.; Gros, J.B. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat. Meat Sci. 2013, 95, 336–344. [Google Scholar] [CrossRef]
- Pathare, P.B.; Roskilly, A.P. Quality and energy evaluation in meat cooking. Food Eng. Rev. 2016, 8, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Droval, A.A.; Benassi, V.T.; Rossa, A.; Prudencio, S.H.; Paião, F.G.; Shimokomaki, M. Consumer attitudes and preferences regarding pale, soft, and exudative broiler breast meat. J. Appl. Poult. Res. 2012, 21, 502–507. [Google Scholar] [CrossRef]
- Nhlane, L.T.; Mnisi, C.M.; Mlambo, V.; Madibana, M.J. Effect of seaweed-containing diets on visceral organ sizes, carcass characteristics, and meat quality and stability of Boschveld indigenous hens. Poult. Sci. 2021, 100, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Shaviklo, A.R.; Alizadeh-Ghamsari, A.H.; Hosseini, S.A. Sensory attributes and meat quality of broiler chickens fed with mealworm (Tenebrio molitor). J. Food Sci. Technol. 2021, 58, 4587–4597. [Google Scholar] [CrossRef] [PubMed]
- Wideman, N.; O′bryan, C.A.; Crandall, P.G. Factors affecting poultry meat colour and consumer preferences-A review. World’s Poult. Sci. J. 2016, 72, 353–366. [Google Scholar] [CrossRef]
- Van Laack, R.L.J.M.; Liu, C.H.; Smith, M.O.; Loveday, H.D. Characteristics of pale, soft, exudative broiler breast meat. Poult. Sci. 2000, 79, 1057–1061. [Google Scholar] [CrossRef]
- Petracci, M.; Betti, M.; Bianchi, M.; Cavani, C. Color variation and characterization of broiler breast meat during processing in Italy. Poult. Sci. 2004, 83, 2086–2092. [Google Scholar] [CrossRef]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Rochow, V.B. Can insects help to ease the problem of world food shortage. Search 1975, 6, 261–262. [Google Scholar]
Ingredient | SBM | TM5 | TM10 | TM15 | Yellow Mealworm Larvae (g/100 g) |
---|---|---|---|---|---|
Maize | 50.00 | 50.00 | 50.00 | 50.00 | |
Wheat offal | 8.00 | 8.00 | 8.00 | 8.00 | |
Yellow Mealworm | 0.00 | 5.00 | 10.00 | 15.00 | |
Full fat soya | 23.73 | 20.00 | 13.00 | 6.00 | |
Sunflower cake | 10.00 | 8.73 | 10.73 | 12.73 | |
Fish meal (72%) | 3.00 | 3.00 | 3.00 | 3.00 | |
Limestone | 1.20 | 1.20 | 1.20 | 1.20 | |
Monocalcium phosphate | 1.50 | 1.50 | 1.50 | 1.50 | |
Salt | 0.25 | 0.25 | 0.25 | 0.25 | |
Sodium Bicarbonate | 1.50 | 1.50 | 1.50 | 1.50 | |
DL methionine | 0.25 | 0.25 | 0.25 | 0.25 | |
L-Threonine | 0.12 | 0.12 | 0.12 | 0.12 | |
Lysine HCL | 0.25 | 0.25 | 0.25 | 0.25 | |
Tryptophan | 0.05 | 0.05 | 0.05 | 0.05 | |
Vit TM Premix | 0.05 | 0.05 | 0.05 | 0.05 | |
Min premix | 0.05 | 0.05 | 0.05 | 0.05 | |
Coccidiostat | 0.05 | 0.05 | 0.05 | 0.05 | |
100.00 | 100.00 | 100.00 | 100.00 | ||
Calculated analysis | |||||
%CP | 20.00 | 20.10 | 20.17 | 20.18 | 51.51 |
MEKcal/kg | 3197.11 | 3144.25 | 3110.68 | 3177.11 | 24.63 |
%EE | 16.31 | 16.24 | 16.72 | 16.20 | 25.73 |
% CF | 18.69 | 18.06 | 18.29 | 18.52 | 6.11 |
%Ca | 1.70 | 1.67 | 1.63 | 1.60 | 0.294 |
Avail P% | 0.77 | 0.75 | 0.72 | 0.69 | 7.48 |
%Lysine | 1.92 | 1.65 | 1.31 | 0.97 | 3.95 |
Met + Cys% | 1.14 | 1.02 | 0.87 | 0.71 | n/a |
Parameter | SBM | TM5 | TM10 | TM15 | SEM | p-Value |
---|---|---|---|---|---|---|
Bled weight (g) | 807.8 | 721.6 | 708 | 676.4 | 19.421 | 0.094 |
Carcass weight | 571.2 a | 495.5 ab | 530.8 ab | 455.8 b | 14.637 | 0.028 |
Eviscerated weight (g) | 550.4 | 473.2 | 484.2 | 448.4 | 14.943 | 0.089 |
Thigh (g) | 99 | 85.2 | 87 | 80 | 3.028 | 0.169 |
Drumstick (g) | 89.8 | 74 | 76 | 69.4 | 15.067 | 0.185 |
Back (g) | 135.2 a | 118 ab | 117 ab | 107 b | 3.546 | 0.045 |
Neck (g) | 52.2 | 48.4 | 47.6 | 44.2 | 1.586 | 0.371 |
Breast (g) | 145.2 a | 120 b | 122 b | 115.8 b | 3.670 | 0.015 |
Wing (g) | 82.2 | 75.2 | 80 | 74 | 2.394 | 0.593 |
Parameter | SBM | TM5 | TM10 | TM15 | SEM | p-Value |
---|---|---|---|---|---|---|
Head (g) | 34.2 a | 29.8 ab | 31.2 ab | 28.0 b | 0.837 | 0.055 |
Feet (g) | 37.6 | 31.2 | 35.6 | 31.6 | 1.403 | 0.304 |
Gizzard (g) | 30.6 a | 19.0 b | 21.2 b | 21.4 b | 1.032 | 0.000 |
Lungs (g) | 6.0 | 6.0 | 4.6 | 5.0 | 0.269 | 0.155 |
Liver (g) | 18.4 | 14.8 | 16.4 | 16.2 | 0.626 | 0.245 |
Heart (g) | 5.6 | 5.6 | 4.4 | 5.2 | 0.212 | 0.148 |
Proventriculus (g) | 4.2 | 3.6 | 4.8 | 4.2 | 0.245 | 0.408 |
Small intestine (g) | 20.4 | 18.4 | 17.8 | 17.2 | 0.570 | 0.220 |
Full intestine length (cm) | 117.5 | 119.7 | 116.4 | 111.5 | 2.175 | 0.609 |
Parameters (Before Cooking) | SBM | TM5% | TM10% | TM15% | SEM | p-Value |
---|---|---|---|---|---|---|
Breast meat before cooking | ||||||
Lightness L* (before cooking) | 61.8 b | 61.7 b | 69.3 a | 68.8 a | 1.201 | 0.008 |
Redness a* (before cooking) | 1.9 | 1.7 | 3.0 | 2.7 | 0.354 | 0.549 |
Yellowness b* (before cooking) | 2.9 | 6.3 | 5.0 | 5.0 | 0.651 | 0.352 |
Parameters (After cooking) | ||||||
Cooking loss % | 8.82 b | 12.23 ab | 11.97 ab | 13.70 a | 0.650 | 0.049 |
Breast Internal temperature (left) | 65.3 b | 76.7 a | 71.3 ab | 80.7 a | 1.702 | 0.004 |
Breast Internal temperature (right) | 66.0 b | 76.5 a | 72.4 ab | 80.8 a | 1.570 | 0.003 |
Drained water (g) | 29.0 | 33.1 | 34.3 | 36.4 | 1.516 | 0.388 |
Lightness L* (after cooking) | 71.4 | 66.4 | 69.4 | 68.8 | 0.950 | 0.343 |
Redness a* (after cooking) | 3.8 | 4.3 | 2.8 | 2.8 | 0.259 | 0.076 |
Yellowness b* (after cooking) | 17.0 | 21.1 | 17.2 | 17.6 | 0.661 | 0.077 |
Texture (shear force) | 40.9 b | 33.7 b | 55.6 a | 39.8 b | 2.166 | 0.001 |
Texture (stress) | 0.0527 b | 0.0574 b | 0.0927 a | 0.0682 ab | 0.004 | 0.003 |
Parameter | SBM | TM5% | TM10% | TM15% | SEM | p-Value |
---|---|---|---|---|---|---|
Breast pH (After slaughter) | 5.83 ab | 6.01 a | 5.80 ab | 5.74 b | 0.037 | 0.055 |
Breast pH (After 24 h) | 5.88 a | 5.87 ab | 5.80 ab | 5.75 b | 0.017 | 0.034 |
Breast pH (After 48 h) | 5.86 | 6.02 | 5.86 | 5.98 | 0.028 | 0.093 |
Small intestine pH (After slaughter) | 6.37 | 6.18 | 6.19 | 6.20 | 0.031 | 0.093 |
Small intestine pH (after 24 h) | 6.45 a | 6.23 b | 6.29 b | 6.30 ab | 0.023 | 0.003 |
Small intestine pH (after 48 h) | 6.28 | 6.17 | 6.20 | 6.27 | 0.020 | 0.174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selaledi, L.; Baloyi, J.; Mbajiorgu, C.; Sebola, A.N.; Kock, H.d.; Mabelebele, M. Meat Quality Parameters of Boschveld Indigenous Chickens as Influenced by Dietary Yellow Mealworm Meal. Foods 2021, 10, 3094. https://doi.org/10.3390/foods10123094
Selaledi L, Baloyi J, Mbajiorgu C, Sebola AN, Kock Hd, Mabelebele M. Meat Quality Parameters of Boschveld Indigenous Chickens as Influenced by Dietary Yellow Mealworm Meal. Foods. 2021; 10(12):3094. https://doi.org/10.3390/foods10123094
Chicago/Turabian StyleSelaledi, Letlhogonolo, Josephine Baloyi, Christian Mbajiorgu, Amenda Nthabiseng Sebola, Henriette de Kock, and Monnye Mabelebele. 2021. "Meat Quality Parameters of Boschveld Indigenous Chickens as Influenced by Dietary Yellow Mealworm Meal" Foods 10, no. 12: 3094. https://doi.org/10.3390/foods10123094
APA StyleSelaledi, L., Baloyi, J., Mbajiorgu, C., Sebola, A. N., Kock, H. d., & Mabelebele, M. (2021). Meat Quality Parameters of Boschveld Indigenous Chickens as Influenced by Dietary Yellow Mealworm Meal. Foods, 10(12), 3094. https://doi.org/10.3390/foods10123094