The Aroma Fingerprints and Discrimination Analysis of Shiitake Mushrooms from Three Different Drying Conditions by GC-IMS, GC-MS and DSA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HAD Processing
2.3. Measure of Moisture Content and Drying Rate
2.4. Measure of Drying Rate
2.5. HS-GC-IMS Analysis
2.6. HS-SPME-GC-MS Analysis
2.7. Descriptive Sensory Analysis (DSA)
2.8. Statistical Analysis
3. Results and Discussion
3.1. The Volatile Fingerprints of Shiitake Mushrooms under Different HAD Processing by HS-GC-IMS
3.2. The Volatile Profile of Shiitake Mushrooms under Different Hot Air Drying Conditions by CG-MS
3.3. Aroma Properties of Shiitake Mushrooms under Different Hot Air Drying Conditions by DSA
3.4. Discrimination Analysis of Shiitake Mushrooms under Different Hot Air Drying Conditions by Advanced Chemometric Methods
3.4.1. Comparison Analysis of Shiitake Mushrooms Based on Volatile Fingerprints by PCA and FSA
3.4.2. Comparison Analysis of Shiitake Mushrooms Based on Volatile Compounds and Aroma Properties by PLSR
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parentelli, C.; Ares, G.; Corona, M.; Lareo, C.; Gámbaro, A.; Soubes, M.; Lema, P. Sensory and microbiological quality of shiitake mushrooms in modified-atmosphere packages. J. Sci. Food Agric. 2007, 87, 1645–1652. [Google Scholar] [CrossRef]
- SSneeden, E.Y.; Harris, H.H.; Pickering, I.J.; Prince, R.C.; Johnson, S.; Li, X.; Block, E.; George, G.N. The sulfur chemistry of shiitake mushroom. J. Am. Chem. Soc. 2004, 126, 458–459. [Google Scholar] [CrossRef] [PubMed]
- Bisen, P.; Baghel, R.; Sanodiya, B.; Thakur, G.; Prasad, G. Lentinus edodes: A macrofungus with pharmacological activities. Curr. Med. Chem. 2010, 17, 2419–2430. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Luo, Z.; Ying, T. Fumigation with essential oils improves sensory quality and enhanced antioxidant ability of shiitake mushroom (Lentinus edodes). Food Chem. 2015, 172, 692–698. [Google Scholar] [CrossRef]
- Kim, H.S.; Kacew, S.; Lee, B.M. In vitro chemopreventive effects of plant polysaccharides (Aloe barbadensis miller, Lentinus edodes, Ganoderma lucidum and Coriolus versicolor). Carcinogenesis 1999, 20, 1637–1640. [Google Scholar] [CrossRef] [Green Version]
- García-Segovia, P.; Andrés-Bello, A.; Martínez-Monzó, J. Rehydration of air-dried Shiitake mushroom (Lentinus edodes) caps: Comparison of conventional and vacuum water immersion processes. LWT-Food Sci. Technol. 2011, 44, 480–488. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, Y.; Huang, J.; Zeng, H.; Zheng, B. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chem. 2016, 197, 714–722. [Google Scholar] [CrossRef]
- Hibbett, D.S.; Donoghue, M.J. Implications of phylogenetic studies for conservation of genetic diversity in shiitake mushrooms. Conserv. Biol. 2010, 10, 1321–1327. [Google Scholar] [CrossRef] [Green Version]
- Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2012, 93, 209–218. [Google Scholar] [CrossRef]
- Politowicz, J.; Lech, K.; Lipan, L.; Figiel, A.; Carbonell-Barrachina, Á.A. Volatile composition and sensory profile of shiitake mushrooms as affected by drying method. J. Sci. Food Agric. 2017, 98, 1511–1521. [Google Scholar] [CrossRef]
- Ilter, I.; Akyıl, S.; Devseren, E.; Okut, D.; Koç, M.; Ertekin, F.K. Microwave and hot air drying of garlic puree: Drying kinetics and quality characteristics. Heat Mass Transf. 2018, 54, 2101–2112. [Google Scholar] [CrossRef]
- Doymaz, I.; Pala, M. The effects of dipping pretreatments on air-drying rates of the seedless grapes. J. Food Eng. 2002, 52, 413–417. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Han, X.; Ni, Y.; Zhao, D.; Hao, J. Quality evaluation and drying kinetics of shitake mushrooms dried by hot air, infrared and intermittent microwave–assisted drying methods. LWT-Food Sci. Technol. 2019, 107, 236–242. [Google Scholar] [CrossRef]
- Hou, H.; Liu, C.; Lu, X.; Fang, D.; Hu, Q.; Zhang, Y.; Zhao, L. Characterization of flavor frame in shiitake mushrooms (Lentinula edodes) detected by HS-GC-IMS coupled with electronic tongue and sensory analysis: Influence of drying techniques. LWT-Food Sci. Technol. 2021, 146, 111402. [Google Scholar] [CrossRef]
- Qin, L.; Gao, J.-X.; Xue, J.; Chen, D.; Lin, S.-Y.; Dong, X.-P.; Zhu, B.-W. Changes in aroma profile of shiitake mushroom (Lentinus edodes) during different stages of hot air drying. Foods 2020, 9, 444. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Wang, S.; Li, M.; Hao, T.; Lin, S.Y. The dynamic changes in product attributes of shiitake mushroom pilei and stipes during dehydration by hot air drying. J. Food Process. Preserv. 2021, 45, e15648. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Z.; Fan, X.J.; Liu, M.; Ma, J.F.; Shang, W.T.; Liu, J.; Strappe, P.; Blanchard, C.; Zhou, Z. A study on volatile metabolites screening by HS-SPME-GC-MS and HS-GC-IMS for discrimination and characterization of white and yellowed rice. Cereal Chem. 2020, 97, 496–504. [Google Scholar] [CrossRef]
- Louw, S. Recent trends in the chromatographic analysis of volatile flavor and fragrance compounds: Annual review 2020. Anal. Sci. Adv. 2021, 2, 1–14. [Google Scholar] [CrossRef]
- Luisa, R.D.C.M.; M’onica, R.; Gema, F.; Patricia, B.G. New method based on solid phase microextraction and multidimensional gas chromatography-masss pectrometry to determine pesticides in strawberry jam. LWT-Food Sci. Technol. 2019, 99, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.-L.; Jin, G.-F.; Gouda, M.; Jin, Y.-G.; Ma, M.-H. Characterization and classification of volatiles from different breeds of eggs by SPME-GC-MS and chemometrics. Food Res. Int. 2019, 116, 767–777. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, P.; Tian, H.-L.; Wang, P.; Lu, C.; Tian, P.; Zhang, Y.-Y. Insights into the aroma profile in three kiwifruit varieties by HS-SPME-GC-MS and GC-IMS coupled with DSA. Food Anal. Methods 2021, 14, 1033–1042. [Google Scholar] [CrossRef]
- Cavanna, D.; Zanardi, S.; Dall’Asta, C.; Suman, M. Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness. Food Chem. 2019, 271, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, N.; Birkenmeier, M.; Schwolow, S.; Rohn, S.; Weller, P. Volatile-compound fingerprinting by headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profiling for assessment of the authenticity of honey. Anal. Chem. 2018, 90, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mesa, M.; Ropartz, D.; García-Campaña, A.M.; Rogniaux, H.; Dervilly-Pinel, G.; Le Bizec, B. Ion mobility spectrometry in food analysis: Principles, current applications and future trends. Molecules 2019, 24, 2706. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, D.; Dong, Y.; Ju, H.; Wu, C.; Lin, S. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC–MS. J. Chromatogr. B 2018, 1099, 46–55. [Google Scholar] [CrossRef]
- Chang, M.; Zhao, P.; Zhang, T.; Wang, Y.; Guo, X.; Liu, R.; Jin, Q.; Wang, X. Characteristic volatiles fingerprints and profiles determination in different grades of coconut oil by HS-GC-MS and HS-SPME-GC-MS. Int. J. Food Sci. Technol. 2020, 55, 3670–3679. [Google Scholar] [CrossRef]
- García-Nicolás, M.; Arroyo-Manzanares, N.; Arce, L.; Hernández-Córdoba, M.; Viñas, P. Headspace gas chromatography coupled to mass spectrometry and ion mobility spectrometry: Classification of virgin olive oils as a study case. Foods 2020, 9, 1288. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Xiao, J.; Liu, J.; Tang, N.; Zhou, A. Variations of volatile flavour compounds in finger citron (Citrus medica L.var. sarcodactylis) pickling process revealed by E-nose, HS-SPME-GC-MS and HS-GC-IMS. Food Res. Int. 2020, 138, 109717. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques, 4th ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Ozcelik, M.; Ambros, S.; Heigl, A.; Dachmann, E.; Kulozik, U. Impact of hydrocolloid addition and microwave processing condition on drying behavior of foamed raspberry puree. J. Food Eng. 2019, 240, 83–91. [Google Scholar] [CrossRef]
- Cho, I.H.; Namgung, H.J.; Choi, H.K.; Kim, Y.S. Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing). Food Chem. 2008, 106, 71–76. [Google Scholar] [CrossRef]
- Zhang, W.T.; Lao, F.; Bi, S.; Pan, X.; Wu, J.H. Insights into the major aroma-active compounds in clear red raspberry juice (Rubus idaeus L. cv. Heritage) by molecular sensory science approaches. Food Chem. 2020, 336, 127721. [Google Scholar] [CrossRef]
- Garrido-Delgado, R.; Dobao-Prieto, M.; Arce, L.; Valcárcel, M. Determination of volatile compounds by GC-IMS to assign the quality of virgin olive oil. Food Chem. 2015, 187, 572–579. [Google Scholar] [CrossRef]
- Li, S.Y.; Yang, H.F.; Tian, H.H.; Zou, J.Y. Correlation analysis of the age of brandy and volatiles in brandy by gas chromatography-mass spectrometry and gas chromatography-ion mobility spectrometry. Microchem. J. 2020, 157, 104948. [Google Scholar] [CrossRef]
- Lai, C.L.; Yang, J.S.; Liu, M.S. Effects of gamma-irradiation on the flavour of dry shiitake (Lentinus edodes Sing). J. Sci. Food Agric. 1994, 64, 19–22. [Google Scholar] [CrossRef]
- Hiraide, M.; Miyazaki, Y.; Shibata, Y. The smell and odorous components of dried shiitake mushroom, Lentinula edodes I: Relationship between sensory evaluations and amounts of odorous components. J. Wood Sci. 2004, 50, 358–364. [Google Scholar] [CrossRef]
- Ye, J.J.; Li, J.R.; Han, X.X.; Zhang, L.; Jiang, T.J.; Xia, M. Effects of active modified atmosphere packaging on postharvest quality of shiitake mushrooms (Lentinula edodes) stored at cold storage. J. Integr. Agric. 2012, 11, 474–482. [Google Scholar] [CrossRef]
- Misharina, T.A.; Muhutdinova, S.M.; Zharikova, G.G.; Terenina, M.B.; Krikunova, N.I.; Medvedeva, I.B. Formation of flavor of dry champignons (Agaricus bisporus L.). Appl. Biochem. Microbiol. 2010, 46, 108–113. [Google Scholar] [CrossRef]
- Sebzalli, Y.; Wang, X. Knowledge discovery from process operational data using PCA and fuzzy clustering. Eng. Appl. Artif. Intell. 2001, 14, 607–616. [Google Scholar] [CrossRef]
- Tian, L.; Zeng, Y.; Zheng, X.; Chiu, Y.; Liu, T. Detection of peanut oil adulteration mixed with rapeseed oil using gas chromatography and gas chromatography-ion mobility spectrometry. Food Anal. Methods 2019, 12, 2282–2292. [Google Scholar] [CrossRef]
- Hu, M.; Wang, S.; Liu, Q.; Cao, R.; Xue, Y. Flavor profile of dried shrimp at different processing stages. LWT-Food Sci. Technol. 2021, 146, 111403. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Chen, B.; Pan, N.; Qiao, K.; Wu, G.; Liu, Z. Collaborative analysis combining headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and intelligent (electronic) sensory systems to evaluate differences in the flavour of cultured pufferfish. Flavour Fragr. J. 2020, 36, 1–8. [Google Scholar] [CrossRef]
- Cho, D.B.; Seo, H.Y.; Kim, K.S. Analysis of the volatile flavor compounds produced during the growth stages of the shiitake mushrooms (Lentinus edodes). J. Food Sci. Nutr. 2003, 8, 306–314. [Google Scholar] [CrossRef]
- Xiao, H.W.; Law, C.L.; Sun, D.W.; Gao, Z.J. Color change kinetics of american ginseng (Panax quinquefolium) slices during air impingement drying. Dry. Technol. 2014, 32, 418–427. [Google Scholar] [CrossRef]
- Wang, S.-L.; Lin, S.-Y.; Du, H.-T.; Qin, L.; Lei, L.-M.; Chen, D. An insight by molecular sensory science approaches to contributions and variations of the key odorants in shiitake Mushrooms. Foods 2021, 10, 622. [Google Scholar] [CrossRef]
No. | RI | Compound | CAS Number | Formula | Comment |
---|---|---|---|---|---|
1 | 990.8 | 1-Octen-3-ol | 3391-86-4 | C8H16O | |
2 | 991.0 | 3-Octanone | 106-68-3 | C8H16O | Monomer |
3 | 991.8 | 3-Octanone | 106-68-3 | C8H16O | Dimer |
4 | 975.3 | Benzaldehyde | 100-52-7 | C7H6O | Monomer |
5 | 975.3 | Benzaldehyde | 100-52-7 | C7H6O | Dimer |
6 | 973.2 | Dimethyl trisulfide | 3658-80-8 | C2H6S3 | |
7 | 794.6 | Hexanal | 66-25-1 | C6H12O | Monomer |
8 | 795.4 | Hexanal | 66-25-1 | C6H12O | Dimer |
9 | 742.3 | (E)-2-Pentenal | 1576-87-0 | C5H8O | |
10 | 739.5 | 3-Methyl-1-butanol | 123-51-3 | C5H12O | Monomer |
11 | 740.2 | 3-Methyl-1-butanol | 123-51-3 | C5H12O | Dimer |
12 | 709.7 | Propyl acetate | 109-60-4 | C5H10O2 | Monomer |
13 | 707.4 | Propyl acetate | 109-60-4 | C5H10O2 | Dimer |
14 | 603.6 | Ethyl acetate | 141-78-6 | C4H8O2 | Monomer |
15 | 604.1 | Ethyl acetate | 141-78-6 | C4H8O2 | Dimer |
16 | 559.5 | 2-Methylpropanal | 78-84-2 | C4H8O | |
17 | 583.5 | Acetic acid | 64-19-7 | C2H4O2 | |
18 | 507.6 | 2-Propanol | 67-63-0 | C3H8O | |
19 | 502.6 | Acetone | 67-64-1 | C3H6O | |
20 | 476.2 | Ethanol | 64-17-5 | C2H6O | Monomer |
21 | 480.4 | Ethanol | 64-17-5 | C2H6O | Dimer |
22 | 724.2 | Acetoin | 513-86-0 | C4H8O2 | |
23 | 624.9 | 2-Methyl-1-propanol | 78-83-1 | C4H10O | Monomer |
24 | 625.2 | 2-Methyl-1-propanol | 78-83-1 | C4H10O | Dimer |
25 | 1102.4 | 1-Nonanal | 124-19-6 | C9H18O | |
26 | 1067.5 | (E)-2-Octenal | 2548-87-0 | C8H14O | |
27 | 1065.2 | Phenylacetaldehyde | 122-78-1 | C8H8O | |
28 | 903.5 | Heptanal | 111-71-7 | C7H14O | |
29 | 862.0 | (E)-2-Hexenal | 6728-26-3 | C6H10O | |
30 | 588.7 | Butanal | 123-72-8 | C4H8O | |
31 | 662.4 | 2-Methylbutanal | 96-17-3 | C5H10O | |
32 | 645.8 | 3-Methylbutanal | 590-86-3 | C5H10O |
No. | RI | Compound | CAS Number | ID | Concentrations (µg/g) | ||
---|---|---|---|---|---|---|---|
Sample A | Sample B | Sample C | |||||
Sulfur compounds (7) | |||||||
1 | 735 | Carbon disulfide | 75-15-0 | RI, MS | 6.17 ± 1.34 b | 9.34 ± 0.29 a | 7.18 ± 0.34 b |
4 | 1083 | Dimethyl disulfide | 624-92-0 | RI,MS,S | 0.71 ± 0.02 c | 1.07 ± 0.10 b | 1.42 ± 0.09 a |
9 | 1252 | Thiovanic acid | 68-11-1 | RI,MS | ND | ND | 0.20 ± 0.03 a |
12 | 1350 | Dimethyl trisulfide | 3658-80-8 | RI,MS,S | 2.06 ± 0.34 c | 3.37 ± 0.72 b | 5.37 ± 0.29 a |
20 | 1709 | 1,2,4-Trithiolane | 289-16-7 | RI,MS | 12.77 ± 0.15 c | 20.35 ± 2.56 a | 15.84 ± 0.63 b |
27 | 2196 | 1,2,4,5-Tetrathiane | 291-22-5 | RI,MS | 2.09 ± 0.33 b | 3.31 ± 0.8 a | 2.70 ± 0.11 ab |
28 | 2498 | 1,2,4,6-Tetrathiepane | 292-45-5 | RI,MS | 0.83 ± 0.12 a | 0.74 ± 0.00 a | 0.92 ± 0.10 a |
Total content of sulfur compounds | 24.63 ± 2.00 b | 38.18 ± 3.78 a | 33.63 ± 0.89 a | ||||
C8 compounds (3) | |||||||
10 | 1260 | 3-Octanone | 106-68-3 | RI,MS,S | 0.10 ± 0.03 b | 3.55 ± 0.33 a | 0.05 ± 0.01 b |
15 | 1446 | 1-Octen-3-ol | 3391-86-4 | RI,MS,S | 1.59 ± 0.27 b | 4.38 ± 0.33 a | 0.34 ± 0.04 c |
22 | 1900 | Phenylethyl alcohol | 60-12-8 | RI,MS,S | 2.83 ± 0.49 a | 3.47 ± 0.35 a | 3.46 ± 0.22 a |
Total content of C8 compounds | 4.52 ± 0.75 b | 11.40 ± 0.34 a | 3.84 ± 0.21 b | ||||
Miscellaneous (18) | |||||||
2 | 934 | 3-Methylbutanal | 590-86-3 | RI,MS,S | 1.86 ± 0.03 ab | 1.59 ± 0.10 b | 2.16 ± 0.36 a |
3 | 1056 | (E)-2-Butenal | 123-73-9 | RI,MS | ND | 1.82 ± 0.40 a | ND |
5 | 1103 | Hexanal | 66-25-1 | RI,MS | 0.17 ± 0.06 b | 0.30 ± 0.01 a | 0.20 ± 0.01 b |
6 | 1109 | 2-Methyl-2-butenal | 497-03-0 | RI,MS | ND | 0.70 ± 0.01 a | ND |
7 | 1134 | Phenylethane | 100-41-4 | RI,MS | 0.95 ± 0.13 a | ND | ND |
8 | 1214 | 1-Pentanol | 71-41-0 | RI,MS | 0.41 ± 0.03 b | 1.15 ± 0.19 a | 0.34 ± 0.03 b |
11 | 1344 | 1-Cyclopropylpropane | 2415-72-7 | RI,MS | 0.54 ± 0.22 a | 0.67 ± 0.05 a | ND |
13 | 1385 | Cyclohexanol | 108-93-0 | RI,MS | 1.33 ± 0.14 a | 1.36 ± 0.15 a | 1.20 ± 0.11 a |
14 | 1441 | Acetic acid | 64-19-7 | RI,MS,S | 0.15 ± 0.10 b | ND | 0.43 ± 0.01 a |
16 | 1489 | Benzyl chloride | 100-44-7 | RI,MS | 0.20 ± 0.06 a | 0.22 ± 0.01 a | 0.10 ± 0.01 c |
17 | 1501 | Benzaldehyde | 100-52-7 | RI,MS,S | 2.08 ± 0.29 c | 5.46 ± 0.76 b | 6.66 ± 0.62 a |
18 | 1638 | Phenylacetaldehyde | 122-78-1 | RI,MS,S | 1.65 ± 0.68 a | 1.04 ± 0.43 a | 1.53 ± 0.21 a |
19 | 1659 | Isovaleric acid | 503-74-2 | RI,MS,S | 1.21 ± 0.03 b | 1.06 ± 0.14 b | 2.29 ± 0.35 a |
21 | 1789 | 2-Phenylpropenal | 4432-63-7 | RI,MS | ND | 0.26 ± 0.05 a | ND |
23 | 1921 | β-Methylbenzeneethanol | 1123-85-9 | RI,MS | 0.94 ± 0.16 c | 1.83 ± 0.17 a | 1.45 ± 0.22 b |
24 | 1926 | 2-Phenyl-2-butenal | 4411-89-6 | RI,MS | ND | 2.95 ± 0.50 a | ND |
25 | 1952 | 2-Ethylcaproic acid | 149-57-5 | RI,MS | 0.33 ± 0.03 a | ND | ND |
26 | 1997 | Phenol | 108-95-2 | RI,MS | 0.06 ± 0.01 b | 0.18 ± 0.05 a | ND |
Total content of miscellaneous | 11.87 ± 1.18 c | 20.60 ± 1.78 a | 16.36 ± 0.57 b | ||||
Total content of volatile compounds | 41.02 ± 3.67 c | 70.18 ± 5.71 a | 53.83 ± 1.57 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Qin, L.; Geng, Y.; Kong, Q.; Wang, S.; Lin, S. The Aroma Fingerprints and Discrimination Analysis of Shiitake Mushrooms from Three Different Drying Conditions by GC-IMS, GC-MS and DSA. Foods 2021, 10, 2991. https://doi.org/10.3390/foods10122991
Chen D, Qin L, Geng Y, Kong Q, Wang S, Lin S. The Aroma Fingerprints and Discrimination Analysis of Shiitake Mushrooms from Three Different Drying Conditions by GC-IMS, GC-MS and DSA. Foods. 2021; 10(12):2991. https://doi.org/10.3390/foods10122991
Chicago/Turabian StyleChen, Dong, Lei Qin, Yue Geng, Qinglong Kong, Silu Wang, and Songyi Lin. 2021. "The Aroma Fingerprints and Discrimination Analysis of Shiitake Mushrooms from Three Different Drying Conditions by GC-IMS, GC-MS and DSA" Foods 10, no. 12: 2991. https://doi.org/10.3390/foods10122991
APA StyleChen, D., Qin, L., Geng, Y., Kong, Q., Wang, S., & Lin, S. (2021). The Aroma Fingerprints and Discrimination Analysis of Shiitake Mushrooms from Three Different Drying Conditions by GC-IMS, GC-MS and DSA. Foods, 10(12), 2991. https://doi.org/10.3390/foods10122991