New Trends in Photodynamic Inactivation (PDI) Combating Biofilms in the Food Industry—A Review
Abstract
:1. Introduction
- (1)
- It exerts effectiveness on deactivating a wide range of microorganisms encompassing bacteria, fungi and viruses;
- (2)
- It exhibits the antimicrobial effect against various states of bacteria; of planktonic, biofilm and spore;
- (3)
- PDI can eradicate microorganisms rapidly and resistance development is unlikely to happen in microorganisms;
- (4)
- PDI at proper parameters generates limited influence on food commodities.
2. Overview of PDI Application in Food
2.1. Fundamentals of PDI
2.2. Current PDI Applications in Food
3. Current Applications of PDI against Food Related Biofilms
3.1. Food Products
3.2. Equipment Surfaces
3.3. Food Packages
4. Potential Mechanisms of PDI Antibiofilm Activities
4.1. ROS and Cell Lysis
4.2. Elimination of Biofilm Matrix Molecules
4.3. Intervention of Cell Motility and Quorum Sensing
4.4. Induction of SOS Response—A Cellular Response to DNA Damage
5. Factors Influencing Antibiofilm Efficiency in the Food Industry of PDI
5.1. Light Engineering Variables
5.2. The Structure and Dose of Photosensitizers
5.3. Mono/Multispecies Biofilms
5.4. Biofilm Thickness and Structures
5.5. Contact Surfaces
5.6. Food Environments
6. Potential Hurdle Strategies against Biofilms
6.1. Organic Acids
6.2. Nanobubble
6.3. Ultrasound
6.4. Biosurfactant
6.5. EDTA
6.6. Nanocarrier Particles (NPs)
6.7. Essential Oils
6.8. Chemical Disinfectants
7. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; De Keuckelaere, A.; Uyttendaele, M. Fate of Foodborne Viruses in the “Farm to Fork” Chain of Fresh Produce. Compr. Rev. Food Sci. Food. Saf. 2015, 14, 755–770. [Google Scholar] [CrossRef] [PubMed]
- Makinde, O.M.; Ayeni, K.I.; Sulyok, M.; Krska, R.; Adeleke, R.A.; Ezekiel, C.N. Microbiological safety of ready-to-eat foods in low- and middle-income countries: A comprehensive 10-year (2009 to 2018) review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 703–732. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, K.I.; Hayashidani, H.; Ohtomo, Y.; Kosuge, J.; Kato, M.; Takahashi, K.; Shiraki, Y.; Ogawa, M. Bacterial contamination of ready-to-eat foods and fresh products in retail shops and food factories. J. Food Prot. 1999, 62, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Lee, S.Y. Review: Comparison of the effectiveness of decontaminating strategies for fresh fruits and vegetables and related limitations. Crit. Rev. Food Sci. Nutr. 2018, 58, 3189–3208. [Google Scholar] [CrossRef]
- Prieto-Calvo, M.A.; López, M.; Prieto, M.; Alvarez-Ordóñez, A. Variability in resistance to Cold Atmospheric Plasma (CAP) and Ultraviolet light (UV) and multiple stress resistance analysis of pathogenic verocytotoxigenic Escherichia coli (VTEC). Food Res. Int. 2016, 79, 88–94. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef]
- Mah, T.F. Biofilm-Specific antibiotic resistance. Future Microbiol. 2012, 7, 1061–1072. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 2001, 45, 999–1007. [Google Scholar] [CrossRef] [Green Version]
- Kovacikova, G.; Lin, W.; Skorupski, K. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol. Microbiol. 2005, 57, 420–433. [Google Scholar] [CrossRef]
- Luby, B.M.; Walsh, C.D.; Zheng, G. Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons. Angew. Chem. Int. Ed. Eng. 2019, 58, 2558–2569. [Google Scholar] [CrossRef]
- Brovko, L. Photodynamic treatment: A new efficient alternative for surface sanitation. Adv. Food Nutr. Res. 2010, 61, 119–147. [Google Scholar] [CrossRef]
- Seidi Damyeh, M.; Mereddy, R.; Netzel, M.E.; Sultanbawa, Y. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1727–1759. [Google Scholar] [CrossRef]
- Martinez, S.R.; Ibarra, L.E.; Ponzio, R.A.; Forcone, M.V.; Wendel, A.B.; Chesta, C.A.; Spesia, M.B.; Palacios, R.E. Photodynamic Inactivation of ESKAPE Group Bacterial Pathogens in Planktonic and Biofilm Cultures Using Metallated Porphyrin-Doped Conjugated Polymer Nanoparticles. ACS Infect. Dis. 2020, 6, 2202–2213. [Google Scholar] [CrossRef]
- Murdoch, L.E.; Maclean, M.; MacGregor, S.J.; Anderson, J.G. Inactivation of Campylobacter jejuni by exposure to high-intensity 405-nm visible light. Foodborne Pathog. Dis. 2010, 7, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, K.; Maclean, M.; Timoshkin, I.V.; Endarko, E.; MacGregor, S.J.; Anderson, J.G. Photoinactivation of bacteria attached to glass and acrylic surfaces by 405 nm light: Potential application for biofilm decontamination. Photochem. Photobiol. 2013, 89, 927–935. [Google Scholar] [CrossRef] [Green Version]
- Buettner, G.R.; Hall, R.D. Superoxide, hydrogen peroxide and singlet oxygen in hematoporphyrin derivative-cysteine, -NADH and -light systems. Biochim. Biophys. Acta 1987, 923, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Angarano, V.; Smet, C.; Akkermans, S.; Watt, C.; Chieffi, A.; Van Impe, J.F.M. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics 2020, 9, 171. [Google Scholar] [CrossRef] [Green Version]
- Luksiene, Z. Photodynamic therapy: Mechanism of action and ways to improve the efficiency of treatment. Medicina 2003, 39, 1137–1150. Available online: https://www.ncbi.nlm.nih.gov/pubmed/14704501 (accessed on 29 March 2021).
- Sofyan, N.; Situmorang, F.W.; Ridhova, A.; Yuwono, A.H.; Udhiarto, A. Visible light absorption and photosensitizing characteristics of natural yellow 3 extracted from Curcuma Longa L. for Dye-Sensitized solar cell. IOP Conf. Ser. Earth Environ. Sci. 2018, 105, 012073. [Google Scholar] [CrossRef]
- Marques-Calvo, M.S.; Codony, F.; Agusti, G.; Lahera, C. Visible light enhances the antimicrobial effect of some essential oils. Photodiagn. Photodyn. Ther. 2017, 17, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.; Du, L.; Zubair, M.; Subedi, S.; Ullah, A.; Roopesh, M.S. Applications of Light-Emitting Diodes (LEDs) in Food Processing and Water Treatment. Food Eng. Rev. 2020, 12, 268–289. [Google Scholar] [CrossRef]
- Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part one-photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 2004, 1, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Beirao, S.; Fernandes, S.; Coelho, J.; Faustino, M.A.; Tome, J.P.; Neves, M.G.; Tome, A.C.; Almeida, A.; Cunha, A. Photodynamic inactivation of bacterial and yeast biofilms with a cationic porphyrin. Photochem. Photobiol. 2014, 90, 1387–1396. [Google Scholar] [CrossRef]
- Lukšiene, Ž.; Pečiulyte, D.; Jurkoniene, S.; Puras, R. Inactivation of possible fungal food contaminants by photosensitization. Food Technol. Biotechnol. 2005, 43, 335–341. [Google Scholar]
- Huang, J.; Chen, B.; Li, H.; Zeng, Q.-H.; Wang, J.J.; Liu, H.; Pan, Y.; Zhao, Y. Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes. Food Control 2020, 108, 106886. [Google Scholar] [CrossRef]
- Sheng, L.; Zhang, Z.; Sun, G.; Wang, L. Light-driven antimicrobial activities of vitamin K3 against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Enteritidis. Food Control 2020, 114, 107235. [Google Scholar] [CrossRef]
- Maytin, E.V.; Hasan, T. Vitamin D and Other Differentiation-promoting Agents as Neoadjuvants for Photodynamic Therapy of Cancer. Photochem. Photobiol. 2020, 96, 529–538. [Google Scholar] [CrossRef]
- Ionita, M.A.; Ion, R.M.; Carstocea, B. Photochemical and photodynamic properties of vitamin B2—Riboflavin and liposomes. Oftalmologia 2003, 58, 29–34. Available online: https://www.ncbi.nlm.nih.gov/pubmed/14702729 (accessed on 1 June 2021).
- Zhu, Z.; Cai, H.; Sun, D.-W. Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends Food Sci. Technol. 2018, 75, 23–35. [Google Scholar] [CrossRef]
- Kim, M.J.; Tang, C.H.; Bang, W.S.; Yuk, H.G. Antibacterial effect of 405+/-5nm light emitting diode illumination against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality. Int. J. Food Microbiol. 2017, 244, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghate, V.; Kumar, A.; Kim, M.-J.; Bang, W.-S.; Zhou, W.; Yuk, H.-G. Effect of 460 nm light emitting diode illumination on survival of Salmonella spp. on fresh-cut pineapples at different irradiances and temperatures. J. Food Eng. 2017, 196, 130–138. [Google Scholar] [CrossRef]
- Samuoliene, G.; Brazaityte, A.; Sirtautas, R.; Virsile, A.; Sakalauskaite, J.; Sakalauskiene, S.; Duchovskis, P. LED illumination affects bioactive compounds in romaine baby leaf lettuce. J. Sci. Food Agric. 2013, 93, 3286–3291. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, C.; Yuk, H.-G.; Khoo, G.H.; Zhou, W. Application of Light-Emitting Diodes in Food Production, Postharvest Preservation, and Microbiological Food Safety. Compr. Rev. Food Sci. Food Saf. 2015, 14, 719–740. [Google Scholar] [CrossRef]
- Aponiene, K.; Paskeviciute, E.; Reklaitis, I.; Luksiene, Z. Reduction of microbial contamination of fruits and vegetables by hypericin-based photosensitization: Comparison with other emerging antimicrobial treatments. J. Food Eng. 2015, 144, 29–35. [Google Scholar] [CrossRef]
- Ghate, V.; Kumar, A.; Zhou, W.; Yuk, H.G. Irradiance and Temperature Influence the Bactericidal Effect of 460-Nanometer Light-Emitting Diodes on Salmonella in Orange Juice. J. Food Prot. 2016, 79, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Srimagal, A.; Ramesh, T.; Sahu, J.K. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk. LWT 2016, 71, 378–385. [Google Scholar] [CrossRef]
- Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef]
- Chen, B.; Huang, J.; Li, H.; Zeng, Q.-H.; Wang, J.J.; Liu, H.; Pan, Y.; Zhao, Y. Eradication of planktonic Vibrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation. Food Control 2020, 113, 107181. [Google Scholar] [CrossRef]
- Chen, B.; Huang, J.; Liu, Y.; Liu, H.; Zhao, Y.; Wang, J.J. Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with Vibrio parahaemolyticus during storage at different temperature. Int. J. Food Microbiol. 2021, 345, 109152. [Google Scholar] [CrossRef]
- Temba, B.A.; Fletcher, M.T.; Fox, G.P.; Harvey, J.J.W.; Sultanbawa, Y. Inactivation of Aspergillus flavus spores by curcumin-mediated photosensitization. Food Control 2016, 59, 708–713. [Google Scholar] [CrossRef]
- Aurum, F.S.; Nguyen, L.T. Efficacy of photoactivated curcumin to decontaminate food surfaces under blue light emitting diode. J. Food Process. Eng. 2019, 42, e12988. [Google Scholar] [CrossRef]
- Gao, J.; Matthews, K.R. Effects of the photosensitizer curcumin in inactivating foodborne pathogens on chicken skin. Food Control 2020, 109, 106959. [Google Scholar] [CrossRef]
- Hyun, J.E.; Lee, S.Y. Antibacterial effect and mechanisms of action of 460–470 nm light-emitting diode against Listeria monocytogenes and Pseudomonas fluorescens on the surface of packaged sliced cheese. Food Microbiol. 2020, 86, 103314. [Google Scholar] [CrossRef]
- Wu, J.; Hou, W.; Cao, B.; Zuo, T.; Xue, C.; Leung, A.W.; Xu, C.; Tang, Q.J. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters. Photodiagn. Photodyn. Ther. 2015, 12, 385–392. [Google Scholar] [CrossRef]
- Lindsay, D.; von Holy, A. What food safety professionals should know about bacterial biofilms. Br. Food J. 2006, 108, 27–37. [Google Scholar] [CrossRef]
- Stalder, T.; Top, E. Plasmid transfer in biofilms: A perspective on limitations and opportunities. NPJ 2016, 2, 16022. [Google Scholar] [CrossRef] [Green Version]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Tortik, N.; Spaeth, A.; Plaetzer, K. Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin. Photochem. Photobiol. Sci. 2014, 13, 1402–1409. [Google Scholar] [CrossRef]
- Chorianopoulos, N.G.; Tsoukleris, D.S.; Panagou, E.Z.; Falaras, P.; Nychas, G.J. Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol. 2011, 28, 164–170. [Google Scholar] [CrossRef]
- Li, X.; Kim, M.-J.; Bang, W.-S.; Yuk, H.-G. Anti-Biofilm effect of 405-nm LEDs against Listeria monocytogenes in simulated ready-to-eat fresh salmon storage conditions. Food Control 2018, 84, 513–521. [Google Scholar] [CrossRef]
- Yu, S.-M.; Lee, Y.H. Effect of light quality on Bacillus amyloliquefaciens JBC36 and its biocontrol efficacy. Biol. Control 2013, 64, 203–210. [Google Scholar] [CrossRef]
- Le Magrex-Debar, E.; Lemoine, J.; Gelle, M.P.; Jacquelin, L.F.; Choisy, C. Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int. J. Food Microbiol. 2000, 55, 239–243. [Google Scholar] [CrossRef]
- Huang, Y.; Pei, Q.; Deng, R.; Zheng, X.; Guo, J.; Guo, D.; Yang, Y.; Liang, S.; Shi, C. Inactivation Efficacy of 405 nm LED Against Cronobacter sakazakii Biofilm. Front. Microbiol. 2020, 11, 610077. [Google Scholar] [CrossRef] [PubMed]
- Pfau, R.; Tzatsos, A.; Kampranis, S.C.; Serebrennikova, O.B.; Bear, S.E.; Tsichlis, P.N. Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proc. Natl. Acad. Sci. USA 2008, 105, 1907–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.H.; Rungraeng, N.; Song, W.; Jun, S. Superhydrophobic and superhydrophilic nanocomposite coatings for preventing Escherichia coli K-12 adhesion on food contact surface. J. Food Eng. 2014, 131, 135–141. [Google Scholar] [CrossRef]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudre, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, L.E.; Maclean, M.; Endarko, E.; MacGregor, S.J.; Anderson, J.G. Bactericidal effects of 405 nm light exposure demonstrated by inactivation of Escherichia, Salmonella, Shigella, Listeria, and Mycobacterium species in liquid suspensions and on exposed surfaces. Sci. World J. 2012, 2012, 137805. [Google Scholar] [CrossRef] [Green Version]
- Luksiene, Z.; Buchovec, I.; Paskeviciute, E. Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-Chlorophyllin-based photosensitization. J. Photochem. Photobiol. B 2010, 101, 326–331. [Google Scholar] [CrossRef]
- Silva, A.F.; Dos Santos, A.R.; Trevisan, D.A.C.; Bonin, E.; Freitas, C.F.; Batista, A.F.P.; Hioka, N.; Simoes, M.; Graton Mikcha, J.M. Xanthene Dyes and Green LED for the Inactivation of Foodborne Pathogens in Planktonic and Biofilm States. Photochem. Photobiol. 2019, 95, 1230–1238. [Google Scholar] [CrossRef]
- Silva, A.F.; Borges, A.; Freitas, C.F.; Hioka, N.; Mikcha, J.M.G.; Simoes, M. Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal and Erythrosine is Effective in the Control of Food-Related Bacteria in Planktonic and Biofilm States. Molecules 2018, 23, 2288. [Google Scholar] [CrossRef] [Green Version]
- Cap, M.; Vachova, L.; Palkova, Z. Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. Oxid. Med. Cell Longev. 2012, 2012, 976753. [Google Scholar] [CrossRef] [Green Version]
- Brinkman, C.L.; Schmidt-Malan, S.M.; Karau, M.J.; Greenwood-Quaintance, K.; Hassett, D.J.; Mandrekar, J.N.; Patel, R. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species. PLoS ONE 2016, 11, e0168595. [Google Scholar] [CrossRef]
- Wu, J.; Chu, Z.; Ruan, Z.; Wang, X.; Dai, T.; Hu, X. Changes of Intracellular Porphyrin, Reactive Oxygen Species, and Fatty Acids Profiles During Inactivation of Methicillin-Resistant Staphylococcus aureus by Antimicrobial Blue Light. Front. Physiol. 2018, 9, 1658. [Google Scholar] [CrossRef]
- Kim, M.J.; Yuk, H.G. Antibacterial Mechanism of 405-Nanometer Light-Emitting Diode against Salmonella at Refrigeration Temperature. Appl. Environ. Microbiol. 2017, 83, e02582-16. [Google Scholar] [CrossRef] [Green Version]
- Hendiani, S.; Pornour, M.; Kashef, N. Sub-Lethal antimicrobial photodynamic inactivation: An in vitro study on quorum sensing-controlled gene expression of Pseudomonas aeruginosa biofilm formation. Lasers Med. Sci. 2019, 34, 1159–1165. [Google Scholar] [CrossRef]
- Buchovec, I.; Lukseviciute, V.; Kokstaite, R.; Labeikyte, D.; Kaziukonyte, L.; Luksiene, Z. Inactivation of Gram (-) bacteria Salmonella enterica by chlorophyllin-based photosensitization: Mechanism of action and new strategies to enhance the inactivation efficiency. J. Photochem. Photobiol. B 2017, 172, 1–10. [Google Scholar] [CrossRef]
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.-H.; Lv, X.; Pan, Y.; Sun, D.-W. Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends Food Sci. Technol. 2020, 103, 239–247. [Google Scholar] [CrossRef]
- Gambino, M.; Cappitelli, F. Mini-Review: Biofilm responses to oxidative stress. Biofouling 2016, 32, 167–178. [Google Scholar] [CrossRef]
- Ong, K.S.; Mawang, C.I.; Daniel-Jambun, D.; Lim, Y.Y.; Lee, S.M. Current anti-biofilm strategies and potential of antioxidants in biofilm control. Expert Rev. Anti Infect. Ther. 2018, 16, 855–864. [Google Scholar] [CrossRef]
- Oleinick, N.L.; Morris, R.L.; Belichenko, I. The role of apoptosis in response to photodynamic therapy: What, where, why, and how. Photochem. Photobiol. Sci. 2002, 1, 1–21. [Google Scholar] [CrossRef]
- Noodt, B.B.; Rodal, G.H.; Wainwright, M.; Peng, Q.; Horobin, R.; Nesland, J.M.; Berg, K. Apoptosis induction by different pathways with methylene blue derivative and light from mitochondrial sites in V79 cells. Int. J. Cancer 1998, 75, 941–948. [Google Scholar] [CrossRef]
- Lavie, G.; Kaplinsky, C.; Toren, A.; Aizman, I.; Meruelo, D.; Mazur, Y.; Mandel, M. A photodynamic pathway to apoptosis and necrosis induced by dimethyl tetrahydroxyhelianthrone and hypericin in leukaemic cells: Possible relevance to photodynamic therapy. Br. J. Cancer 1999, 79, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Wainwright, M.; Crossley, K.B. Photosensitising agents—Circumventing resistance and breaking down biofilms: A review. Int. Biodeterior. 2004, 53, 119–126. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kwon, O.J.; Park, J.W. Inactivation of catalase and superoxide dismutase by singlet oxygen derived from photoactivated dye. Biochimie 2001, 83, 437–444. [Google Scholar] [CrossRef]
- Hu, X.; Huang, Y.Y.; Wang, Y.; Wang, X.; Hamblin, M.R. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front. Microbiol. 2018, 9, 1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, M.J. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 2003, 305, 761–770. [Google Scholar] [CrossRef]
- Fekrirad, Z.; Kashef, N.; Arefian, E. Photodynamic inactivation diminishes quorum sensing-mediated virulence factor production and biofilm formation of Serratia marcescens. World J. Microbiol. Biotechnol. 2019, 35, 191. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.W.; Wang, Y.Y.; Sheu, H.M.; Chuang, Y.C. Bactericidal effects of toluidine blue-mediated photodynamic action on Vibrio vulnificus. Antimicrob. Agents Chemother. 2005, 49, 895–902. [Google Scholar] [CrossRef] [Green Version]
- Macnab, R.; Koshland, D.E., Jr. Bacterial motility and chemotaxis: Light-induced tumbling response and visualization of individual flagella. J. Mol. Biol. 1974, 84, 399–406. [Google Scholar] [CrossRef]
- Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef] [Green Version]
- Dobretsov, S.; Teplitski, M.; Paul, V. Mini-Review: Quorum sensing in the marine environment and its relationship to biofouling. Biofouling 2009, 25, 413–427. [Google Scholar] [CrossRef]
- Warrier, A.; Mazumder, N.; Prabhu, S.; Satyamoorthy, K.; Murali, T.S. Photodynamic therapy to control microbial biofilms. Photodiagn. Photodyn. Ther. 2021, 33, 102090. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Mahmoudi, H.; Rezaei-Soufi, L.; Alikhani, M.Y.; Bahador, A. Potentiation effects of antimicrobial photodynamic therapy on quorum sensing genes expression: A promising treatment for multi-species bacterial biofilms in burn wound infections. Photodiagn. Photodyn. Ther. 2020, 30, 101717. [Google Scholar] [CrossRef]
- Kim, M.J.; Bang, W.S.; Yuk, H.G. 405 +/− 5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration. Food Microbiol. 2017, 62, 124–132. [Google Scholar] [CrossRef]
- Maetani-Yasui, M.; Mawatari, K.; Honjo, A.; Bui, T.K.N.; Shimohata, T.; Uebanso, T.; Aihara, M.; Emoto, T.; Akutagawa, M.; Kinouchi, Y.; et al. Identification of Genes Associated with Sensitivity to Ultraviolet A (UVA) Irradiation by Transposon Mutagenesis of Vibrio parahaemolyticus. Appl. Sci. 2020, 10, 5549. [Google Scholar] [CrossRef]
- Mallidi, S.; Anbil, S.; Bulin, A.L.; Obaid, G.; Ichikawa, M.; Hasan, T. Beyond the Barriers of Light Penetration: Strategies, Perspectives and Possibilities for Photodynamic Therapy. Theranostics 2016, 6, 2458–2487. [Google Scholar] [CrossRef] [Green Version]
- Maclean, M.; MacGregor, S.J.; Anderson, J.G.; Woolsey, G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl. Environ. Microbiol. 2009, 75, 1932–1937. [Google Scholar] [CrossRef] [Green Version]
- Sterenborg, H.J.; van Gemert, M.J. Photodynamic therapy with pulsed light sources: A theoretical analysis. Phys. Med. Biol. 1996, 41, 835–849. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, M.; Bellnier, D.A.; Vaughan, L.A.; Spernyak, J.A.; Mazurchuk, R.; Foster, T.H.; Henderson, B.W. Light delivery over extended time periods enhances the effectiveness of photodynamic therapy. Clin. Cancer Res. 2008, 14, 2796–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dąbrowski, J.M.; Pucelik, B.; Regiel-Futyra, A.; Brindell, M.; Mazuryk, O.; Kyzioł, A.; Stochel, G.; Macyk, W.; Arnaut, L.G. Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. Coord. Chem. Rev. 2016, 325, 67–101. [Google Scholar] [CrossRef]
- Ashur, I.; Goldschmidt, R.; Pinkas, I.; Salomon, Y.; Szewczyk, G.; Sarna, T.; Scherz, A. Photocatalytic generation of oxygen radicals by the water-soluble bacteriochlorophyll derivative WST11, noncovalently bound to serum albumin. J. Phys. Chem. A 2009, 113, 8027–8037. [Google Scholar] [CrossRef]
- Abels, C. Targeting of the vascular system of solid tumours by photodynamic therapy (PDT). Photochem. Photobiol. Sci. 2004, 3, 765–771. [Google Scholar] [CrossRef]
- Shrestha, A.; Kishen, A. Antibacterial Nanoparticles in Endodontics: A Review. J. Endod. 2016, 42, 1417–1426. [Google Scholar] [CrossRef]
- Teixeira, A.H.; Pereira, E.S.; Rodrigues, L.K.; Saxena, D.; Duarte, S.; Zanin, I.C. Effect of photodynamic antimicrobial chemotherapy on in vitro and in situ biofilms. Caries Res. 2012, 46, 549–554. [Google Scholar] [CrossRef]
- Shany-Kdoshim, S.; Polak, D.; Houri-Haddad, Y.; Feuerstein, O. Killing mechanism of bacteria within multi-species biofilm by blue light. J. Oral. Microbiol. 2019, 11, 1628577. [Google Scholar] [CrossRef] [Green Version]
- Kart, D.; Tavernier, S.; Van Acker, H.; Nelis, H.J.; Coenye, T. Activity of disinfectants against multispecies biofilms formed by Staphylococcus aureus, Candida albicans and Pseudomonas aeruginosa. Biofouling 2014, 30, 377–383. [Google Scholar] [CrossRef]
- Stewart, P.S. Antimicrobial Tolerance in Biofilms. Microbiol. Spectr. 2015, 3. Available online: https://journals.asm.org/doi/full/10.1128/microbiolspec.MB-0010-2014 (accessed on 7 June 2021). [CrossRef] [Green Version]
- Garcia-Bayona, L.; Comstock, L.E. Bacterial antagonism in host-associated microbial communities. Science 2018, 361, eaat2456. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Vizuete, P.; Orgaz, B.; Aymerich, S.; Le Coq, D.; Briandet, R. Pathogens protection against the action of disinfectants in multispecies biofilms. Front. Microbiol. 2015, 6, 705. [Google Scholar] [CrossRef]
- Guiot, E.; Georges, P.; Brun, A.; Fontaine-Aupart, M.; Bellon-Fontaine, M.; Briandet, R. Heterogeneity of Diffusion Inside Microbial Biofilms Determined by Fluorescence Correlation Spectroscopy Under Two-photon Excitation. Photochem. Photobiol. 2002, 75, 570–578. [Google Scholar] [CrossRef]
- Suarez, C.; Piculell, M.; Modin, O.; Langenheder, S.; Persson, F.; Hermansson, M. Thickness determines microbial community structure and function in nitrifying biofilms via deterministic assembly. Sci. Rep. 2019, 9, 5110. [Google Scholar] [CrossRef] [Green Version]
- Piculell, M.; Suarez, C.; Li, C.; Christensson, M.; Persson, F.; Wagner, M.; Hermansson, M.; Jönsson, K.; Welander, T. The inhibitory effects of reject water on nitrifying populations grown at different biofilm thickness. Water Res. 2016, 104, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Mizan, M.F.R.; Jahid, I.K.; Ha, S.-D. Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature. Food Control 2016, 70, 161–166. [Google Scholar] [CrossRef]
- Ghanbari, A.; Dehghany, J.; Schwebs, T.; Musken, M.; Haussler, S.; Meyer-Hermann, M. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms. Sci. Rep. 2016, 6, 32097. [Google Scholar] [CrossRef]
- Bremer, P.J.; Fillery, S.; McQuillan, A.J. Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. Int. J. Food Microbiol. 2006, 106, 254–262. [Google Scholar] [CrossRef]
- Kuda, T.; Yano, T.; Kuda, M.T. Resistances to benzalkonium chloride of bacteria dried with food elements on stainless steel surface. LWT 2008, 41, 988–993. [Google Scholar] [CrossRef]
- Li, R.; Kuda, T.; Yano, T. Effect of food residues on efficiency of surfactant disinfectants against food related pathogens adhered on polystyrene and ceramic surfaces. LWT 2014, 57, 200–206. [Google Scholar] [CrossRef]
- Kuda, T.; Nakano, A.; Takahashi, H.; Kimura, B. Effect of the quantities of food residues on the desiccation resistance of spoilage lactic acid bacteria adhered to a stainless steel surface. Food Control 2016, 68, 40–44. [Google Scholar] [CrossRef]
- Dias, V.H.C.; Malacrida, A.M.; Dos Santos, A.R.; Batista, A.F.P.; Campanerut-Sa, P.A.Z.; Braga, G.; Bona, E.; Caetano, W.; Mikcha, J.M.G. pH interferes in photoinhibitory activity of curcumin nanoencapsulated with pluronic(R) P123 against Staphylococcus aureus. Photodiagn. Photodyn. Ther. 2021, 33, 102085. [Google Scholar] [CrossRef]
- Ghate, V.; Kumar, A.; Zhou, W.; Yuk, H.-G. Effect of organic acids on the photodynamic inactivation of selected foodborne pathogens using 461 nm LEDs. Food Control 2015, 57, 333–340. [Google Scholar] [CrossRef]
- Anyasi, T.; Jideani, A.; Edokpayi, J.; Anokwuru, C. Application of organic acids in food preservation. In Organic Acids, Characteristics, Properties and Synthesis; Vargas, C., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2017; pp. 1–47. [Google Scholar]
- Buchovec, I.; Paskeviciute, E.; Luksiene, Z. Photodynamic inactivation of food pathogen Listeria monocytogenes. Food Technol. Biotechnol. 2010, 48, 207–213. [Google Scholar]
- Luksiene, Z.; Danilcenko, H.; Taraseviciene, Z.; Anusevicius, Z.; Maroziene, A.; Nivinskas, H. New approach to the fungal decontamination of wheat used for wheat sprouts: Effects of aminolevulinic acid. Int. J. Food Microbiol. 2007, 116, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Li, C.; Zhang, Y.; Yu, H.; Xie, Y.; Guo, Y.; Yao, W. Ultrasound as an emerging technology for the elimination of chemical contaminants in food: A review. Trends Food Sci. Technol. 2021, 109, 374–385. [Google Scholar] [CrossRef]
- Zaier, H.; Ghnaya, T.; Ben Rejeb, K.; Lakhdar, A.; Rejeb, S.; Jemal, F. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresour. Technol. 2010, 101, 3978–3983. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of edible coating with essential oil in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 2467–2480. [Google Scholar] [CrossRef]
- Joshi, K.; Mahendran, R.; Alagusundaram, K.; Norton, T.; Tiwari, B. Novel disinfectants for fresh produce. Trends Food Sci. Technol. 2013, 34, 54–61. [Google Scholar] [CrossRef]
- Shen, Y.; Longo, M.L.; Powell, R.L. Stability and rheological behavior of concentrated monodisperse food emulsifier coated microbubble suspensions. J. Colloid Interface Sci. 2008, 327, 204–210. [Google Scholar] [CrossRef]
- Campbell, G. Creation and characterisation of aerated food products. Trends Food Sci. Technol. 1999, 10, 283–296. [Google Scholar] [CrossRef]
- Hepworth, N.J.; Varley, J.; Hind, A. Characterizing Gas Bubble Dispersions in Beer. Food Bioprod. Process. 2001, 79, 13–20. [Google Scholar] [CrossRef]
- Zuniga, R.; Aguilera, J. Aerated food gels: Fabrication and potential applications. Trends Food Sci. Technol. 2008, 19, 176–187. [Google Scholar] [CrossRef]
- Zúñiga, R.N.; Aguilera, J.M. Structure–Fracture relationships in gas-filled gelatin gels. Food Hydrocoll. 2009, 23, 1351–1357. [Google Scholar] [CrossRef]
- Teirlinck, E.; Xiong, R.; Brans, T.; Forier, K.; Fraire, J.; Van Acker, H.; Matthijs, N.; De Rycke, R.; De Smedt, S.C.; Coenye, T.; et al. Laser-Induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nat. Commun. 2018, 9, 4518. [Google Scholar] [CrossRef]
- Burfoot, D.; Limburn, R.; Busby, R. Assessing the effects of incorporating bubbles into the water used for cleaning operations relevant to the food industry. Int. J. Food Sci. 2017, 52, 1894–1903. [Google Scholar] [CrossRef]
- Rastogi, N.K. Opportunities and challenges in application of ultrasound in food processing. Crit. Rev. Food Sci. Nutr. 2011, 51, 705–722. [Google Scholar] [CrossRef]
- Bhavya, M.L.; Hebbar, H.U. Sono-Photodynamic inactivation of Escherichia coli and Staphylococcus aureus in orange juice. Ultrason. Sonochem. 2019, 57, 108–115. [Google Scholar] [CrossRef]
- Dusane, D.H.; Pawar, V.S.; Nancharaiah, Y.V.; Venugopalan, V.P.; Kumar, A.R.; Zinjarde, S.S. Anti-Biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 2011, 27, 645–654. [Google Scholar] [CrossRef]
- Rivardo, F.; Turner, R.J.; Allegrone, G.; Ceri, H.; Martinotti, M.G. Anti-Adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl. Microbiol. Biotechnol. 2009, 83, 541–553. [Google Scholar] [CrossRef]
- Hamza, F.; Satpute, S.; Banpurkar, A.; Kumar, A.R.; Zinjarde, S. Biosurfactant from a marine bacterium disrupts biofilms of pathogenic bacteria in a tropical aquaculture system. FEMS Microbiol. Ecol. 2017, 93, 1–11. [Google Scholar] [CrossRef]
- Hu, J.; Lin, S.; Tan, B.K.; Hamzah, S.S.; Lin, Y.; Kong, Z.; Zhang, Y.; Zheng, B.; Zeng, S. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Res. Int. 2018, 111, 265–271. [Google Scholar] [CrossRef]
- Bertolini, G.; Rossi, F.; Valduga, G.; Jori, G.; Van Lier, J. Photosensitizing activity of water-and lipid-soluble phthalocyanines on Escherichia coli. FEMS Microbiol. Lett. 1990, 71, 149–155. [Google Scholar] [CrossRef]
- Banin, E.; Brady, K.M.; Greenberg, E.P. Chelator-Induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl. Environ. Microbiol. 2006, 72, 2064–2069. [Google Scholar] [CrossRef] [Green Version]
- Perni, S.; Prokopovich, P.; Pratten, J.; Parkin, I.P.; Wilson, M. Nanoparticles: Their potential use in antibacterial photodynamic therapy. Photochem. Photobiol. Sci. 2011, 10, 712–720. [Google Scholar] [CrossRef]
- Muzzarelli, R.; Tarsi, R.; Filippini, O.; Giovanetti, E.; Biagini, G.; Varaldo, P.E. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents Chemother. 1990, 34, 2019–2023. [Google Scholar] [CrossRef] [Green Version]
- Peulen, T.O.; Wilkinson, K.J. Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol. 2011, 45, 3367–3373. [Google Scholar] [CrossRef]
- Farisa Banu, S.; Rubini, D.; Murugan, R.; Vadivel, V.; Gowrishankar, S.; Pandian, S.K.; Nithyanand, P. Exploring the antivirulent and sea food preservation efficacy of essential oil combined with DNase on Vibrio parahaemolyticus. LWT 2018, 95, 107–115. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, D.; Hua, Z.; Sun, H.; Zheng, Z.; Xia, X.; Shi, C. Attenuation of Multiple Vibrio parahaemolyticus Virulence Factors by Citral. Front. Microbiol. 2019, 10, 894. [Google Scholar] [CrossRef] [Green Version]
- Kwan, D.A. Reduction of Enterococcus faecalis Biofilm by Blue Light and Sodium Hypochlorite. Master’s Thesis, Indiana University–Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA, 2017. [Google Scholar]
- Li, Y.; Tan, L.; Guo, L.; Zhang, P.; Malakar, P.K.; Ahmed, F.; Liu, H.; Wang, J.J.; Zhao, Y. Acidic electrolyzed water more effectively breaks down mature Vibrio parahaemolyticus biofilm than DNase I. Food Control 2020, 117, 107312. [Google Scholar] [CrossRef]
- Chen, C.; Liu, C.; Jiang, A.; Guan, Q.; Sun, X.; Liu, S.; Hao, K.; Hu, W. The Effects of Cold Plasma-Activated Water Treatment on the Microbial Growth and Antioxidant Properties of Fresh-Cut Pears. Food Bioproc. Technol. 2019, 12, 1842–1851. [Google Scholar] [CrossRef]
- Shaw, P.; Kumar, N.; Kwak, H.S.; Park, J.H.; Uhm, H.S.; Bogaerts, A.; Choi, E.H.; Attri, P. Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci. Rep. 2018, 8, 11268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PS Category | PSs | References |
---|---|---|
Microbial intercellular components | porphyrins, flavins, cytochromes | [23] |
Plant source | Tetrapyrrole macrocycles (chlorins, phthalocyanines and bacteriochlorin), curcumin, hypericin, hematoporphyrin | [25,26] |
Other natural PSs | Riboflavin (vitamin B2), Vitamin K3, vitamin D | [27,28,29] |
Synthetic chemical | Rose bengal, erythrosine, TiO2 | [30] |
Food Products | Strains | PS | Light (Dose)/Temperature | Food Quality | Reference |
---|---|---|---|---|---|
Apricots (Prunus armeniaca), plums (Prunus domestica) and cauliflower (Brassica oleracea) | Bacillus cereus | Hypericin | 585 nm (6.912 J/cm2) | Reached microbial reduction of 1.1, 0.7, 1.3 log10 CFU/g on apricots, plums and cauliflower surfaces; No significant changes in antioxidant content. | [35] |
Orange juice | Salmonella spp. | - | 460 nm (4500 J/cm2) | Color might change significantly due to over-lighting and overheating. Irradiance of 92.0 mW/cm2 resulted in colour threshold values of 500 J/cm2 at 4, 12, and 20 °C; irradiance of 254.7 mW/cm2 resulted in 1000, 2000, 1000 mW/cm2; irradiance of 147.7 mW/cm2 resulted in 3500, 500, 2500 mW/cm2. | [36] |
Milk | Escherichia coli | - | 405–460 nm/5–15 °C | No significant differences (p > 0.05) were detected in moisture, fat, protein, carbohydrate, acidity, pH and viscosity; Minimum overall colour change was with PDI treatment at 406 nm, 13.8 °C, and for 37.83 min. | [37] |
Cooked oyster | Vibrio parahaemolyticus biofilm | 100.0 μM curcumin | 405 nm (9.36 J/cm2) | Irradiation achieved inactivation to an undetectable level from 5.2 log10 CFU/g. | [40] |
Maize kernels (Fruit corn) | Aspergillus flavus | 25 μM Curcumin | 400–700 nm (60 J/cm2) | 2.2 log10 CFU/mL reduction of Aspergillus flavus spores. | [41] |
Grape | E. coli | Curcumin | 465 nm (36.3 J/cm2) | Vitamin C was decreased by 5% of PDI treated samples after 4 days, and 24% decrease of untreated samples; Firmness loss was delayed (28% loss of PDI treated samples and 56% loss of untreated), reduced weight loss (14% loss of PDI treated samples and 38% loss of untreated); No significant colour changes after 4 days storage of PDI samples; 2.4 log10 CFU/g viable cell reduction of PDI treated samples. | [42] |
Chicken | Listeria monocytogenes | Curcumin | 430 nm (6.4, 32.1, and 64.2 kJ/m2) | There were no recognizable differences in chicken skin colour after treatment with light dose greater or equal to 32.1 kJ/m2. | [43] |
Packaged sliced cheese | L. monocytogenes, Pseudomonas fluorescens | - | 460–470 nm/4–25 °C | At 4 °C for 1 h to 7 d of PDI treatment, no significant colour changes were observed, however, increasing irradiation time at ambient temperatures could induce colour differences. | [44] |
Fresh-cut mango | E. coli, L. monocytogenes, Salmonella spp. | - | 405 nm/4, 10, 20 °C | No significant differences in colour, ascorbic acid, antioxidant capacity, flavonoid and β-carotene between treated and untreated samples regardless of storage temperatures. | [31] |
Oyster | Norovirus | Curcumin | 470 nm (3.6 J/cm2)/10 °C | The curcumin under the concentration of 10 μM did not affect colour and flavour while applied in oyster. | [45] |
Food Products | PS | Wavelength | Temperature | Total Dose | Log Reduction | Reference |
---|---|---|---|---|---|---|
Pepper | 50 μM curcumin bound to polyvinylpyrrolidone | 435 nm | Not specified | 33.8 J/cm2 | Killed almost all Staphylococcus aureus attached colonies (99.7%). | [49] |
Fresh salmon | Endogenous PS | 405 nm | 4, 12 °C | 460.8 J/cm2 | 0.3–0.5 log10 CFU/cm2 reduction of L. monocytogenes and Salmonella spp. | [51] |
UHT whole milk | TiO2 | 400 nm | Room temperature | Not specified | The L. monocytogenes biofilm growing on the glass with nanoparticle (glass surface modified by 16% w/v TiO2) was found to have decreased by 3 log10 CFU/cm2 after 90 min irradiation. | [50] |
Mandarin | Endogenous PS | 448–655 nm | 20 °C | Not specified | The biofilm formation of Bacillus amyloliquefaciens JBC36 decreased significantly by combining red and green light together at an intensity of 240 μM/m2s. | [52] |
Bacteria | PDI Treatment | Antibiofilm Mechanisms and Genotypic Expression | Reference |
---|---|---|---|
Methicillin-Resistant S. aureus | 415 nm LED 0–4 J/cm2 20 °C | Rapid generation of ROS; Induced lipid peroxidation; Membrane damage; | [64] |
L. monocytogenes, P. fluorescens | 460–470 nm LED 0–604.8 J/cm2 4, 25 °C | Membrane damage; Loss of cytoplasmic components; Metabolic inhibition (RNA, protein, and peptidoglycan metabolism); | [44] |
Salmonella enteritidis, Salmonella saintpaul | 405 nm LED 72 J/cm2 4 °C | Membrane damage; Nucleotide oxidation and degradation; Genes (oxyR, recA, rpoS, sodA, and soxR) were lower expressed after PDI illumination except oxyR (Flagellar motor gene) and recA (Induces a cellular response to DNA damage-SOS response) were of higher expression levels in S. Enteritidis cells. | [65] |
V. parahaemolyticus biofilm | 455–460 nm LED 20.0 μM curcumin13.68 J/cm2 7–37 °C | Cell wall damage; Genomic DNA damage and protein degradation; Decrease in carbohydrate C-O-C group, ring breathing tyrosine, Amide III phenylalanine of proteins and the guanine (G), cytosine (C) and uracil (U) of DNA/RNA of biofilm matrix. The expression levels of flagellar motor gene (oxyR) and quorum sensing related genes were down-regulated. | [39] |
Cronobacter sakazakii biofilm | 405 nm LED 26 mW/cm2, 2 h 25 °C | Destruct and degrade polysaccharide and protein in the biofilm matrix; A significant reduction of all eight genes (bcsA, bcsG, flgJ, motA, motB, luxR, fliD, flhD) related to biofilm formation, the greatest difference is the expression of fliD gene. | [54] |
L. monocytogenes biofilm | 455–460 nm LED 0.5 μM curcumin 3.24 J/cm2 4–37 °C | Cytoplasmic DNA and protein damage; Reduced adhesion; Deconstruct biofilm architecture; The virulence genes including inlA, hlyA, and plcA significantly down-regulated. The prfA responsible for stress response were upregulated. | [26] |
P. aeruginosa biofilm | 650 nm diode laser 0.012 mM methylene blue (MB) 23 J/cm2 | Disrupted biofilm matrix; Reduced cell clusters; The downregulation of the expression of QS-controlled biofilm formation genes (pslA and pelF) and QS genes (lasI, lasR, rhlI, and rhlR) in P. aeruginosa ATCC 27853. | [66] |
Salmonella enterica biofilm | 405 nm LED, 0.015 mM Chl, 38 J/cm2 | Generation of ROS, especially singlet oxygen; Cell membrane disintegration; Leakage of DNA and protein components; Shrinkage of cells; Genes for the adaptation and protection against oxidative stress (oxyR, ahpC, grxA, atpC) and SOS response gene sulA were up-regulated. | [67] |
Hurdle Strategy | Mechanisms | Advantages & Disadvantages |
---|---|---|
Organic acids | Undissociated form of organic acids that easily penetrate cell membrane and decrease intracellular pH; Chelation effect of organic acids, and they can disrupt structures of cell membrane; ALA can promote endogenous PS synthesis and accumulation. | Advantages: wide range disinfection, safe and effective; Disadvantages: occurrence of acid resistant and tolerant microorganisms; application requirement of pH less than 5.5; acid ionization will reduce antimicrobial activities [113]. |
Nanobubble | It expands space between sessile cells, allowing to own radical and intensive energy. | Advantages: long stay time, low energy required, far-reaching force, applicable in liquid disinfection; Disadvantages: easy to be deformed. |
Ultrasound | High pressure, high energy, strong agitation, shear stress, and turbulence can kill microorganisms and deconstruct biofilm structures. | Advantages: no ionizing radiation, simple to be applied; Disadvantages: ultrasound can cause adverse effect on food properties like colour or phenolic compounds loss; it also can induce resistant microorganisms [116]. |
Biosurfactant | It inhibits microbial adherence and biofilm formation. | Advantages: it can inhibit microbial adherence on equipment surfaces and make it easy to proceed hygiene procedure; Disadvantages: should design surfactant depending on different surfaces and food composition in case of compromising the surfactant and contamination of food products. |
EDTA | EDTA can chelate the divalent cation which are essential to stability and maintenance of the biofilm matrix, and thus achieve biofilm deconstruction and removal. | Advantages: approved by FDA, it can be used to promote stability of colour, flavour and texture; Disadvantages: it induces long-term lead poisoning [117]. |
Nanocarrier | Nanocarrier assists in high delivery of PS into biofilm matrix, inhibition of PS degradation, moderate release rate and resultant production of ROS from PDI process. | Advantages: it can control PS degradation and release, and promote ROS production; Disadvantages: in complexity to make sure nanocarrier can work and will not affect food qualities and human health. |
Essential oils | Essential oils can modulate antibiotic activities of some bacterium; some essential oils disrupt lipid structure, cause cytoplasmic leakage and lead to cell lysis. | Advantages: natural, safe and friendly; Disadvantages: some essential oils will interact with emulsifiers or food compounds, and it will decrease antimicrobial and antibiofilm activities; essential oils may have pungent odour [118]. |
Chemical disinfectants | Depending on various disinfectants: Sodium hypochlorite can kill microorganisms and deconstruct biofilms; Electrolyzed water involve disinfection of intracellular potassium leakage, TTC-dehydrogenase relative activity and bacterial ultrastructure destruction; Cold plasma treated water can produce ROS and RONS that kill microorganisms and decontaminate biofouling. | Advantages: widely used disinfectants are easy access and handling, always compatible with other detergents, some disinfectant efficiencies vary in different food environments (pH, temperature, different food matrices); Disadvantages: most are corrosive, by-products from some disinfectant like chlorinated ones will produce chlorine and be risky for food and human health [119]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Kyere, E.; Ahmed Sadiq, F. New Trends in Photodynamic Inactivation (PDI) Combating Biofilms in the Food Industry—A Review. Foods 2021, 10, 2587. https://doi.org/10.3390/foods10112587
Wang D, Kyere E, Ahmed Sadiq F. New Trends in Photodynamic Inactivation (PDI) Combating Biofilms in the Food Industry—A Review. Foods. 2021; 10(11):2587. https://doi.org/10.3390/foods10112587
Chicago/Turabian StyleWang, Dan, Emmanuel Kyere, and Faizan Ahmed Sadiq. 2021. "New Trends in Photodynamic Inactivation (PDI) Combating Biofilms in the Food Industry—A Review" Foods 10, no. 11: 2587. https://doi.org/10.3390/foods10112587
APA StyleWang, D., Kyere, E., & Ahmed Sadiq, F. (2021). New Trends in Photodynamic Inactivation (PDI) Combating Biofilms in the Food Industry—A Review. Foods, 10(11), 2587. https://doi.org/10.3390/foods10112587