Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss?
Abstract
:1. Introduction
2. Hazard Identification
2.1. Etiologic Agent—The Food/Hazard Combination Addressed by This Review Is “Human Norovirus in Bivalve Molluscs”
2.2. Prevalence—GI and GII, Circulating either Simultaneously or Separately, Are the Only Genogroups Detected in Bivalves
2.3. Pathogenesis
2.4. Exposure Pathways—Bivalve Shellfish Are Harvested within Estuaries and Coastal Zones
2.4.1. Pathway 1—Live Bivalve Molluscs That Did Not Undergo Any Treatment after Being Harvested (Only for Class a Harvesting Area)
2.4.2. Pathway 2—Live Bivalve Molluscs after the Depuration Process
2.4.3. Pathway 3—Presence of Norovirus Particles in Live Bivalve Molluscs after a Relaying Process
2.4.4. Pathway 4—Presence of Norovirus Particles in Bivalve Molluscs after Thermal Treatment
2.4.5. Pathway 5—Presence of Norovirus Particles in Bivalve Molluscs after Non-Thermal Treatment
3. Exposure Assessment
4. Hazard Characterization
5. Discussion
5.1. Exposure Pathways
5.2. Hazard Identification
5.3. Exposure Assessment
5.4. Hazard Characterization
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- Shah, M.P.; Hall, A.J. Global Disease Burden of Foodborne Illnesses Associated with Norovirus. In The Norovirus; Academic Press Cambridge: Cambridge, MA, USA, 2017; pp. 3–19. ISBN 978-0-12-804177-2. [Google Scholar]
- Guix, S.; Pintó, R.; Bosch, A. Final Consumer Options to Control and Prevent Foodborne Norovirus Infections. Viruses 2019, 11, 333. [Google Scholar] [CrossRef] [Green Version]
- Montazeri, N.; Goettert, D.; Achberger, E.C.; Johnson, C.N.; Prinyawiwatkul, W.; Janes, M.E. Pathogenic Enteric Viruses and Microbial Indicators during Secondary Treatment of Municipal Wastewater. Appl. Environ. Microbiol. 2015, 81, 6436–6445. [Google Scholar] [CrossRef] [Green Version]
- Palfrey, R.; Harman, M.; Moore, R. Impact of Waste Water Treatments on Removal of Noroviruses from Sewage; R and D Technical Report WT0924/TR; Department for Environment Food and Rural Affairs, Water Availability and Quality Division: London, UK, 2011. [Google Scholar]
- Burkhardt, W.; Calci, K.R. Selective Accumulation May Account for Shellfish-Associated Viral Illness. Appl. Environ. Microbiol. 2000, 66, 1375–1378. [Google Scholar] [CrossRef] [Green Version]
- Formiga-Cruz, M.; Allard, A.K.; Conden-Hansson, A.-C.; Henshilwood, K.; Hernroth, B.E.; Jofre, J.; Lees, D.N.; Lucena, F.; Papapetropoulou, M.; Rangdale, R.E.; et al. Evaluation of Potential Indicators of Viral Contamination in Shellfish and Their Applicability to Diverse Geographical Areas. AEM 2003, 69, 1556–1563. [Google Scholar] [CrossRef] [Green Version]
- Flannery, J.; Keaveney, S.; Doré, W. Use of FRNA Bacteriophages To Indicate the Risk of Norovirus Contamination in Irish Oysters. J. Food Prot. 2009, 72, 2358–2362. [Google Scholar] [CrossRef]
- Winterbourn, J.B.; Clements, K.; Lowther, J.A.; Malham, S.K.; McDonald, J.E.; Jones, D.L. Use of Mytilus Edulis Biosentinels to Investigate Spatial Patterns of Norovirus and Faecal Indicator Organism Contamination around Coastal Sewage Discharges. Water Res. 2016, 105, 241–250. [Google Scholar] [CrossRef] [Green Version]
- McLeod, C.; Polo, D.; Le Saux, J.-C.; Le Guyader, F.S. Depuration and Relaying: A Review on Potential Removal of Norovirus from Oysters: Effectiveness of Viral Depuration. Compr. Rev. Food Sci. Food Saf. 2017, 16, 692–706. [Google Scholar] [CrossRef] [Green Version]
- Sharp, J.H.; Clements, K.; Diggens, M.; McDonald, J.E.; Malham, S.K.; Jones, D.L.E. Coli Is a Poor End-Product Criterion for Assessing the General Microbial Risk Posed From Consuming Norovirus Contaminated Shellfish. Front. Microbiol. 2021, 12, 608888. [Google Scholar] [CrossRef]
- Dirks, R.A.M.; Jansen, C.C.C.; Hägele, G.; Zwartkruis-Nahuis, A.J.T.; Tijsma, A.S.L.; Boxman, I.L.A. Quantitative Levels of Norovirus and Hepatitis A Virus in Bivalve Molluscs Collected along the Food Chain in the Netherlands, 2013–2017. Int. J. Food Microbiol. 2021, 344, 109089. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards (BIOHAZ). Norovirus (NoV) in Oysters: Methods, Limits and Control Options. EFSA J. 2012, 10, 2500. [Google Scholar] [CrossRef] [Green Version]
- Lowther, J.A.; Gustar, N.E.; Powell, A.L.; Hartnell, R.E.; Lees, D.N. Two-Year Systematic Study To Assess Norovirus Contamination in Oysters from Commercial Harvesting Areas in the United Kingdom. Appl. Environ. Microbiol. 2012, 78, 5812–5817. [Google Scholar] [CrossRef] [Green Version]
- Gerba, C.P.; Goyal, S.M.; LaBelle, R.L.; Cech, I.; Bodgan, G.F. Failure of Indicator Bacteria to Reflect the Occurrence of Enteroviruses in Marine Waters. Am. J. Public Health 1979, 69, 1116–1119. [Google Scholar] [CrossRef] [Green Version]
- Ang, L.H. An Outbreak of Viral Gastroenteritis Associated with Eating Raw Oysters. Commun. Dis. Public Health 1998, 1, 38–40. [Google Scholar]
- Romalde, J. Prevalence of Enterovirus and Hepatitis A Virus in Bivalve Molluscs from Galicia (NW Spain): Inadequacy of the EU Standards of Microbiological Quality. Int. J. Food Microbiol. 2002, 74, 119–130. [Google Scholar] [CrossRef]
- Baert, L.; Mattison, K.; Loisy-Hamon, F.; Harlow, J.; Martyres, A.; Lebeau, B.; Stals, A.; Van Coillie, E.; Herman, L.; Uyttendaele, M. Review: Norovirus Prevalence in Belgian, Canadian and French Fresh Produce: A Threat to Human Health? Int. J. Food Microbiol. 2011, 151, 261–269. [Google Scholar] [CrossRef]
- Oh, E.G.; Song, K.C.; Kim, S.; Park, K.; Yu, H. Negative Correlation between the Prevalence of Norovirus and High Bacterial Loads of Escherichia Coli in Oysters Crassostrea Gigas. Fish. Aquat. Sci. 2015, 18, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Younger, A.D.; Teixeira Alves, M.; Taylor, N.G.H.; Lowther, J.; Baker-Austin, C.; Campos, C.J.A.; Price-Hayward, M.; Lees, D. Evaluation of the Protection against Norovirus Afforded by E. Coli Monitoring of Shellfish Production Areas under EU Regulations. Water Sci. Technol. 2018, 78, 1010–1022. [Google Scholar] [CrossRef] [Green Version]
- Knight, A.; Li, D.; Uyttendaele, M.; Jaykus, L.-A. A Critical Review of Methods for Detecting Human Noroviruses and Predicting Their Infectivity. Crit. Rev. Microbiol. 2013, 39, 295–309. [Google Scholar] [CrossRef]
- Topping, J.R.; Schnerr, H.; Haines, J.; Scott, M.; Carter, M.J.; Willcocks, M.M.; Bellamy, K.; Brown, D.W.; Gray, J.J.; Gallimore, C.I.; et al. Temperature Inactivation of Feline Calicivirus Vaccine Strain FCV F-9 in Comparison with Human Noroviruses Using an RNA Exposure Assay and Reverse Transcribed Quantitative Real-Time Polymerase Chain Reaction—A Novel Method for Predicting Virus Infectivity. J. Virol. Methods 2009, 156, 89–95. [Google Scholar] [CrossRef]
- Bosch, A.; Pintó, R.M.; Guix, S. Foodborne Viruses. Curr. Opin. Food Sci. 2016, 8, 110–119. [Google Scholar] [CrossRef]
- Liu, L.; Moore, M.D. A Survey of Analytical Techniques for Noroviruses. Foods 2020, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority (EFSA). Analysis of the European Baseline Survey of Norovirus in Oysters. EFSA J. 2019, 17, e05762. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on an Update on the Present Knowledge on the Occurrence and Control of Foodborne Viruses. EFSA J. 2011, 9, 2190. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Evaluation of Heat Treatments, Different from Those Currently Established in the EU Legislation, That Could Be Applied to Live Bivalve Molluscs from B and C Production Areas, That Have Not Been Submitted to Purification or Relaying, in Order to Eliminate Pathogenic Microorganisms. EFSA J. 2015, 13, 4332. [Google Scholar] [CrossRef]
- Hassard, F.; Sharp, J.H.; Taft, H.; LeVay, L.; Harris, J.P.; McDonald, J.E.; Tuson, K.; Wilson, J.; Jones, D.L.; Malham, S.K. Critical Review on the Public Health Impact of Norovirus Contamination in Shellfish and the Environment: A UK Perspective. Food Environ. Virol. 2017, 9, 123–141. [Google Scholar] [CrossRef] [Green Version]
- Cann, K.F.; Thomas, D.R.; Salmon, R.L.; Wyn-Jones, A.P.; Kay, D. Extreme Water-Related Weather Events and Waterborne Disease. Epidemiol. Infect. 2013, 141, 671–686. [Google Scholar] [CrossRef]
- Waste Water Treatment for 21st Century Challenges. Available online: https://www.eea.europa.eu/publications/urban-waste-water-treatment-for (accessed on 13 October 2021).
- Lipp, E.K.; Kurz, R.; Vincent, R.; Rodriguez-Palacios, C.; Farrah, S.R.; Rose, J.B. The Effects of Seasonal Variability and Weather on Microbial Fecal Pollution and Enteric Pathogens in a Subtropical Estuary. Estuaries 2001, 24, 266. [Google Scholar] [CrossRef]
- Griffin, D.W.; Donaldson, K.A.; Paul, J.H.; Rose, J.B. Pathogenic Human Viruses in Coastal Waters. CMR 2003, 16, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Le Guyader, F.; Loisy, F.; Atmar, R.L.; Hutson, A.M.; Estes, M.K.; Ruvoën-Clouet, N.; Pommepuy, M.; Le Pendu, J. Norwalk Virus-Specific Binding to Oyster Digestive Tissues. Emerg. Infect. Dis. 2006, 12, 931–936. [Google Scholar] [CrossRef]
- Riou, P.; Le Saux, J.C.; Dumas, F.; Caprais, M.P.; Le Guyader, S.F.; Pommepuy, M. Microbial Impact of Small Tributaries on Water and Shellfish Quality in Shallow Coastal Areas. Water Res. 2007, 41, 2774–2786. [Google Scholar] [CrossRef] [Green Version]
- Coulliette, A.D.; Money, E.S.; Serre, M.L.; Noble, R.T. Space/Time Analysis of Fecal Pollution and Rainfall in an Eastern North Carolina Estuary. Environ. Sci. Technol. 2009, 43, 3728–3735. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.J.A.; Kershaw, S.R.; Lee, R.J. Environmental Influences on Faecal Indicator Organisms in Coastal Waters and Their Accumulation in Bivalve Shellfish. Estuaries Coasts 2013, 36, 834–853. [Google Scholar] [CrossRef]
- Campos, C.J.A.; Lees, D.N. Environmental Transmission of Human Noroviruses in Shellfish Waters. Appl. Environ. Microbiol. 2014, 80, 3552–3561. [Google Scholar] [CrossRef] [Green Version]
- Miossec, L.; Le Guyader, F.; Haugarreau, L.; Comps, M.A.; Pommepuy, M. Possible Relation between a Winter Epidemic of Acute Gastroenteritis in France and Viral Contamination of Shellfish. J. Shellfish Res. 1998, 17, 1661–1664. [Google Scholar]
- Yates, M.V. Septic Tank Density and Ground-Water Contamination. Ground Water 1985, 23, 586–591. [Google Scholar] [CrossRef]
- Madan, N.J.; Marshall, W.A.; Laybourn-Parry, J. Virus and Microbial Loop Dynamics over an Annual Cycle in Three Contrasting Antarctic Lakes. Freshw. Biol. 2005, 50, 1291–1300. [Google Scholar] [CrossRef]
- Lymer, D.; Vrede, K. Nutrient Additions Resulting in Phage Release and Formation of Non-Nucleoid-Containing Bacteria. Aquat. Microb. Ecol. 2006, 43, 107–112. [Google Scholar] [CrossRef]
- Fallahi, S.; Mattison, K. Evaluation of Murine Norovirus Persistence in Environments Relevant to Food Production and Processing. J. Food Prot. 2011, 74, 1847–1851. [Google Scholar] [CrossRef] [PubMed]
- Gantzer, C.; Dubois, É.; Crance, J.-M.; Billaudel, S.; Kopecka, H.; Schwartzbrod, L.; Pommepuy, M.; Guyader, F.L. Devenir des virus entériques en mer et influence des facteurs environnementaux. Oceanol. Acta 1998, 21, 983–992. [Google Scholar] [CrossRef] [Green Version]
- Bitton, G. Wastewater Microbiology, 2nd ed.; Wiley-Liss: New York, NY, USA, 1999; ISBN 978-0-471-32047-0. [Google Scholar]
- Bae, J.; Schwab, K.J. Evaluation of Murine Norovirus, Feline Calicivirus, Poliovirus, and MS2 as Surrogates for Human Norovirus in a Model of Viral Persistence in Surface Water and Groundwater. AEM 2008, 74, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngazoa, E.S.; Fliss, I.; Jean, J. Quantitative Study of Persistence of Human Norovirus Genome in Water Using TaqMan Real-Time RT-PCR. J. Appl. Microbiol. 2008, 104, 707–715. [Google Scholar] [CrossRef]
- Skraber, S.; Ogorzaly, L.; Helmi, K.; Maul, A.; Hoffmann, L.; Cauchie, H.-M.; Gantzer, C. Occurrence and Persistence of Enteroviruses, Noroviruses and F-Specific RNA Phages in Natural Wastewater Biofilms. Water Res. 2009, 43, 4780–4789. [Google Scholar] [CrossRef]
- Liu, P.; Jaykus, L.-A.; Wong, E.; Moe, C. Persistence of Norwalk Virus, Male-Specific Coliphage, and Escherichia Coli on Stainless Steel Coupons and in Phosphate-Buffered Saline. J. Food Prot. 2012, 75, 2151–2157. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, A.; Miettinen, I. Persistence of Norovirus GII Genome in Drinking Water and Wastewater at Different Temperatures. Pathogens 2017, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- John, D.E.; Rose, J.B. Review of Factors Affecting Microbial Survival in Groundwater. Environ. Sci. Technol. 2005, 39, 7345–7356. [Google Scholar] [CrossRef] [Green Version]
- Gerba, C.P. Virus Occurrence and Survival in the Environmental Waters. In Perspectives in Medical Virology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 17, pp. 91–108. ISBN 978-0-444-52157-6. [Google Scholar]
- Lopman, B.; Armstrong, B.; Atchison, C.; Gray, J.J. Host, Weather and Virological Factors Drive Norovirus Epidemiology: Time-Series Analysis of Laboratory Surveillance Data in England and Wales. PLoS ONE 2009, 4, e6671. [Google Scholar] [CrossRef]
- Seitz, S.R.; Leon, J.S.; Schwab, K.J.; Lyon, G.M.; Dowd, M.; McDaniels, M.; Abdulhafid, G.; Fernandez, M.L.; Lindesmith, L.C.; Baric, R.S.; et al. Norovirus Infectivity in Humans and Persistence in Water. Appl. Environ. Microbiol. 2011, 77, 6884–6888. [Google Scholar] [CrossRef] [Green Version]
- Nordgren, J.; Matussek, A.; Mattsson, A.; Svensson, L.; Lindgren, P.-E. Prevalence of Norovirus and Factors Influencing Virus Concentrations during One Year in a Full-Scale Wastewater Treatment Plant. Water Res. 2009, 43, 1117–1125. [Google Scholar] [CrossRef] [Green Version]
- Summa, M.; von Bonsdorff, C.-H.; Maunula, L. Pet Dogs—A Transmission Route for Human Noroviruses? J. Clin. Virol. 2012, 53, 244–247. [Google Scholar] [CrossRef]
- Charoenkul, K.; Nasamran, C.; Janetanakit, T.; Tangwangvivat, R.; Bunpapong, N.; Boonyapisitsopa, S.; Suwannakarn, K.; Theamboonler, A.; Chuchaona, W.; Poovorawan, Y.; et al. Human Norovirus Infection in Dogs, Thailand. Emerg. Infect. Dis. 2020, 26, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Villabruna, N.; Schapendonk, C.M.E.; Aron, G.I.; Koopmans, M.P.G.; de Graaf, M. Human Noroviruses Attach to Intestinal Tissues of a Broad Range of Animal Species. J. Virol. 2020, 95, e01492-20. [Google Scholar] [CrossRef]
- Widdowson, M.-A.; Rockx, B.; Schepp, R.; van der Poel, W.H.M.; Vinje, J.; van Duynhoven, Y.T.; Koopmans, M.P. Detection of Serum Antibodies to Bovine Norovirus in Veterinarians and the General Population in the Netherlands. J. Med. Virol. 2005, 76, 119–128. [Google Scholar] [CrossRef]
- Vildevall, M.; Grahn, A.; Oliver, S.L.; Bridger, J.C.; Charpilienne, A.; Poncet, D.; Larson, G.; Svensson, L. Human Antibody Responses to Bovine (Newbury-2) Norovirus (GIII.2) and Association to Histo-Blood Group Antigens. J. Med. Virol. 2010, 82, 1241–1246. [Google Scholar] [CrossRef]
- Menon, V.K.; George, S.; Shanti, A.A.; Saravanabavan, A.; Samuel, P.; Ramani, S.; Estes, M.K.; Kang, G. Exposure to Human and Bovine Noroviruses in a Birth Cohort in Southern India from 2002 to 2006. J. Clin. Microbiol. 2013, 51, 2391–2395. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, J.; Costantini, V.P.; Cannon, J.L.; Lin, S.; Nascimento, M.S.; Vinjé, J. Presence of Antibodies against Genogroup VI Norovirus in Humans. Virol. J. 2013, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, B.; Di Profio, F.; Ceci, C.; Di Felice, E.; Green, K.Y.; Bok, K.; De Grazia, S.; Giammanco, G.M.; Massirio, I.; Lorusso, E.; et al. Seroprevalence of Norovirus Genogroup IV Antibodies among Humans, Italy, 2010–2011. Emerg. Infect. Dis. 2014, 20, 1828–1832. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.C.W.; Shan Kwan, H.; Chan, P.K.S. Structure and Genotypes of Noroviruses. In The Norovirus; Elsevier: Amsterdam, The Netherlands, 2017; pp. 51–63. ISBN 978-0-12-804177-2. [Google Scholar]
- Lysen, M.; Thorhagen, M.; Brytting, M.; Hjertqvist, M.; Andersson, Y.; Hedlund, K.-O. Genetic Diversity among Food-Borne and Waterborne Norovirus Strains Causing Outbreaks in Sweden. J. Clin. Microbiol. 2009, 47, 2411–2418. [Google Scholar] [CrossRef] [Green Version]
- De Graaf, M.; van Beek, J.; Koopmans, M.P.G. Human Norovirus Transmission and Evolution in a Changing World. Nat. Rev. Microbiol. 2016, 14, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Rajko-Nenow, P.; Waters, A.; Keaveney, S.; Flannery, J.; Tuite, G.; Coughlan, S.; O’Flaherty, V.; Doré, W. Norovirus Genotypes Present in Oysters and in Effluent from a Wastewater Treatment Plant during the Seasonal Peak of Infections in Ireland in 2010. Appl. Environ. Microbiol. 2013, 79, 2578–2587. [Google Scholar] [CrossRef] [Green Version]
- Ludwig-Begall, L.F.; Mauroy, A.; Thiry, E. Norovirus Recombinants: Recurrent in the Field, Recalcitrant in the Lab—A Scoping Review of Recombination and Recombinant Types of Noroviruses. J. Gen. Virol. 2018, 99, 970–988. [Google Scholar] [CrossRef] [PubMed]
- Bull, R.A.; Eden, J.-S.; Rawlinson, W.D.; White, P.A. Rapid Evolution of Pandemic Noroviruses of the GII.4 Lineage. PLoS Pathog. 2010, 6, e1000831. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.L.; Lambden, P.R.; Günther, H.; Otto, P.; Elschner, M.; Clarke, I.N. Molecular Characterization of a Bovine Enteric Calicivirus: Relationship to the Norwalk-Like Viruses. J. Virol. 1999, 73, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karst, S.M. STAT1-Dependent Innate Immunity to a Norwalk-Like Virus. Science 2003, 299, 1575–1578. [Google Scholar] [CrossRef]
- Wang, Q.-H.; Han, M.G.; Cheetham, S.; Souza, M.; Funk, J.A.; Saif, L.J. Porcine Noroviruses Related to Human Noroviruses. Emerg. Infect. Dis. 2005, 11, 1874–1881. [Google Scholar] [CrossRef]
- Wolf, S.; Williamson, W.; Hewitt, J.; Lin, S.; Rivera-Aban, M.; Ball, A.; Scholes, P.; Savill, M.; Greening, G.E. Molecular Detection of Norovirus in Sheep and Pigs in New Zealand Farms. Vet. Microbiol. 2009, 133, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, J.R.; Barclay, L.; Nascimento, M.S.J.; Vinjé, J. Novel Norovirus in Dogs with Diarrhea. Emerg. Infect. Dis. 2010, 16, 980–982. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, W.; Yang, S.; Cui, L.; Hua, X. Complete Genome Sequence of a New-Genotype Porcine Norovirus Isolated from Piglets with Diarrhea. J. Virol. 2012, 86, 7015–7016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knipe, D.M.; Howley, P.M. (Eds.) Fields Virology, 6th ed.; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PA, USA, 2013; ISBN 978-1-4511-0563-6. [Google Scholar]
- Di Martino, B.; Di Profio, F.; Melegari, I.; Sarchese, V.; Cafiero, M.A.; Robetto, S.; Aste, G.; Lanave, G.; Marsilio, F.; Martella, V. A Novel Feline Norovirus in Diarrheic Cats. Infect. Genet. Evol. 2016, 38, 132–137. [Google Scholar] [CrossRef]
- Chhabra, P.; de Graaf, M.; Parra, G.I.; Chan, M.C.-W.; Green, K.; Martella, V.; Wang, Q.; White, P.A.; Katayama, K.; Vennema, H.; et al. Updated Classification of Norovirus Genogroups and Genotypes. J. Gen. Virol. 2019, 100, 1393–1406. [Google Scholar] [CrossRef]
- Hall, A.J. Noroviruses: The Perfect Human Pathogens? J. Infect. Dis. 2012, 205, 1622–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2011. EFSA J. 2013, 11, 3129. [Google Scholar] [CrossRef]
- Gould, L.H.; Walsh, K.A.; Vieira, A.R.; Herman, K.; Williams, I.T.; Hall, A.J.; Cole, D. Centers for Disease Control and Prevention Surveillance for Foodborne Disease Outbreaks—United States, 1998–2008. MMWR Surveill. Summ. 2013, 62, 1–34. [Google Scholar] [PubMed]
- Venugopal, V.; Gopakumar, K. Shellfish: Nutritive Value, Health Benefits, and Consumer Safety: Shellfish Nutritive Value and Safety. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1219–1242. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, H.; Kumazaki, M.; Ueki, S.; Morita, M.; Usuku, S. Detection and Genetic Analysis of Noroviruses and Sapoviruses in Sea Snail. Food Environ. Virol. 2015, 7, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Technical Report: Review of Quantitative Risk Assessment of Foodborne Norovirus Transmission. Available online: https://www.food.gov.uk/sites/default/files/media/document/technical-report-review-of-quantitative-risk-assessment-of-norovirus-transmission_0.pdf (accessed on 13 October 2021).
- Richards, G.P. Microbial Purification of Shellfish: A Review of Depuration and Relaying. J. Food Prot. 1988, 51, 218–251. [Google Scholar] [CrossRef]
- Atmar, R.L.; Neill, F.H.; Romalde, J.L.; Le Guyader, F.; Woodley, C.M.; Metcalf, T.G.; Estes, M.K. Detection of Norwalk Virus and Hepatitis A Virus in Shellfish Tissues with the PCR. Appl. Environ. Microbiol. 1995, 61, 3014–3018. [Google Scholar] [CrossRef] [Green Version]
- Le Guyader, F.S.; Atmar, R.L.; Le Pendu, J. Transmission of Viruses through Shellfish: When Specific Ligands Come into Play. Curr. Opin. Virol. 2012, 2, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Cai, H.; Hu, L.; Lei, R.; Pan, Y.; Yan, S.; Wang, Y. Molecular Epidemiology of Oyster-Related Human Noroviruses and Their Global Genetic Diversity and Temporal-Geographical Distribution from 1983 to 2014. Appl. Environ. Microbiol. 2015, 81, 7615–7624. [Google Scholar] [CrossRef] [Green Version]
- Mcleod, C.; Hay, B.; Grant, C.; Greening, G.; Day, D. Localization of Norovirus and Poliovirus in Pacific Oysters. J. Appl. Microbiol. 2009, 106, 1220–1230. [Google Scholar] [CrossRef]
- Comelli, H.; Rimstad, E.; Larsen, S.; Myrmel, M. Detection of Norovirus Genotype I.3b and II.4 in Bioaccumulated Blue Mussels Using Different Virus Recovery Methods. Int. J. Food Microbiol. 2008, 127, 53–59. [Google Scholar] [CrossRef]
- Suffredini, E.; Pepe, T.; Ventrone, I.; Croci, L. Norovirus Detection in Shellfish Using Two Real-Time RT-PCR Methods. New Microbiol. 2011, 34, 9–16. [Google Scholar]
- Siebenga, J.J.; Vennema, H.; Zheng, D.; Vinjé, J.; Lee, B.E.; Pang, X.; Ho, E.C.M.; Lim, W.; Choudekar, A.; Broor, S.; et al. Norovirus Illness Is a Global Problem: Emergence and Spread of Norovirus GII.4 Variants, 2001–2007. J. Infect. Dis. 2009, 200, 802–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maalouf, H.; Zakhour, M.; Le Pendu, J.; Le Saux, J.-C.; Atmar, R.L.; Le Guyader, F.S. Distribution in Tissue and Seasonal Variation of Norovirus Genogroup I and II Ligands in Oysters. AEM 2010, 76, 5621–5630. [Google Scholar] [CrossRef] [Green Version]
- Diez-Valcarce, M.; Kokkinos, P.; Söderberg, K.; Bouwknegt, M.; Willems, K.; de Roda-Husman, A.M.; von Bonsdorff, C.-H.; Bellou, M.; Hernández, M.; Maunula, L.; et al. Occurrence of Human Enteric Viruses in Commercial Mussels at Retail Level in Three European Countries. Food Environ. Virol. 2012, 4, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Rajko-Nenow, P.; Keaveney, S.; Flannery, J.; O’Flaherty, V.; Doré, W. Characterisation of Norovirus Contamination in an Irish Shellfishery Using Real-Time RT-QPCR and Sequencing Analysis. Int. J. Food Microbiol. 2012, 160, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Razafimahefa, R.M.; Ludwig-Begall, L.F.; Thiry, E. Cockles and Mussels, Alive, Alive, Oh—The Role of Bivalve Molluscs as Transmission Vehicles for Human Norovirus Infections. Transbound. Emerg. Dis. 2020, 67, 9–25. [Google Scholar] [CrossRef]
- Gabrieli, R.; Macaluso, A.; Lanni, L.; Saccares, S.; Di Giamberardino, F.; Cencioni, B.; Petrinca, A.R.; Divizia, M. Enteric Viruses in Molluscan Shellfish. New Microbiol. 2007, 30, 471–475. [Google Scholar]
- Savini, G.; Casaccia, C.; Barile, N.B.; Paoletti, M.; Pinoni, C. Norovirus in Bivalve Molluscs: A Study of the Efficacy of the Depuration System. Vet. Ital. 2009, 45, 535–539. [Google Scholar]
- Moreno, E.; Espigares, E.; Marañón, M.; Ochoa, L.M.; Espigares, M.; Fernández-Crehuet, M. The Prevalence of Noroviruses in Bivalve Molluscs Sold in Granada (Spain) Fish Markets. Molluscan Res. 2014, 34, 176–180. [Google Scholar] [CrossRef]
- Hansman, G.S.; Oka, T.; Li, T.-C.; Nishio, O.; Noda, M.; Takeda, N. Detection of Human Enteric Viruses in Japanese Clams. J. Food Prot. 2008, 71, 1689–1695. [Google Scholar] [CrossRef]
- Parra, G.I. Emergence of Norovirus Strains: A Tale of Two Genes. Virus Evol. 2019, 5, vez048. [Google Scholar] [CrossRef]
- Noel, J.S.; Fankhauser, R.L.; Ando, T.; Monroe, S.S.; Glass, R.I. Identification of a Distinct Common Strain of “Norwalk-like Viruses” Having a Global Distribution. J. Infect. Dis. 1999, 179, 1334–1344. [Google Scholar] [CrossRef] [Green Version]
- Van Beek, J.; Ambert-Balay, K.; Botteldoorn, N.; Eden, J.S.; Fonager, J.; Hewitt, J.; Iritani, N.; Kroneman, A.; Vennema, H.; Vinjé, J.; et al. Indications for Worldwide Increased Norovirus Activity Associated with Emergence of a New Variant of Genotype II.4, Late 2012. Eurosurveillance 2013, 18, 8–9. [Google Scholar] [CrossRef]
- Eden, J.-S.; Hewitt, J.; Lim, K.L.; Boni, M.F.; Merif, J.; Greening, G.; Ratcliff, R.M.; Holmes, E.C.; Tanaka, M.M.; Rawlinson, W.D.; et al. The Emergence and Evolution of the Novel Epidemic Norovirus GII.4 Variant Sydney 2012. Virology 2014, 450–451, 106–113. [Google Scholar] [CrossRef]
- De Graaf, M.; van Beek, J.; Vennema, H.; Podkolzin, A.T.; Hewitt, J.; Bucardo, F.; Templeton, K.; Mans, J.; Nordgren, J.; Reuter, G.; et al. Emergence of a Novel GII.17 Norovirus—End of the GII.4 Era? Eurosurveillance 2015, 20, 21178. [Google Scholar] [CrossRef] [Green Version]
- Iritani, N.; Yamamoto, S.P.; Abe, N.; Kanbayashi, D.; Kubo, H.; Uema, M.; Noda, M.; Kaida, A. GII.17 Norovirus Infections in Outbreaks of Acute Nonbacterial Gastroenteritis in Osaka City, Japan during Two Decades. J. Med. Virol. 2019, 91, 2101–2107. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Sun, L.; Fang, L.; Yang, F.; Mo, Y.; Lao, J.; Zheng, H.; Tan, X.; Lin, H.; Rutherford, S.; et al. Gastroenteritis Outbreaks Caused by Norovirus GII.17, Guangdong Province, China, 2014–2015. Emerg. Infect. Dis. 2015, 21, 1240–1242. [Google Scholar] [CrossRef]
- Parra, G.I.; Green, K.Y. Genome of Emerging Norovirus GII.17, United States, 2014. Emerg. Infect. Dis. 2015, 21, 1477–1479. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-C.; Feng, Y.; Chen, S.-Y.; Tsai, C.-N.; Lai, M.-W.; Chiu, C.-H. Emerging Norovirus GII.17 in Taiwan. Clin. Infect. Dis. 2015, 61, 1762–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medici, M.C.; Tummolo, F.; Calderaro, A.; Chironna, M.; Giammanco, G.M.; De Grazia, S.; Arcangeletti, M.C.; De Conto, F.; Chezzi, C.; Martella, V. Identification of the Novel Kawasaki 2014 GII.17 Human Norovirus Strain in Italy, 2015. Eurosurveillance 2015, 20, 30010. [Google Scholar] [CrossRef]
- Chan, M.C.W.; Lee, N.; Hung, T.-N.; Kwok, K.; Cheung, K.; Tin, E.K.Y.; Lai, R.W.M.; Nelson, E.A.S.; Leung, T.F.; Chan, P.K.S. Rapid Emergence and Predominance of a Broadly Recognizing and Fast-Evolving Norovirus GII.17 Variant in Late 2014. Nat. Commun. 2015, 6, 10061. [Google Scholar] [CrossRef] [Green Version]
- Andrade, J.S.R.; Fumian, T.M.; Leite, J.P.G.; Assis, M.R.d.; Bello, G.; Mir, D.; Miagostovich, M.P. Detection and Molecular Characterization of Emergent GII.P17/GII.17 Norovirus in Brazil, 2015. Infect. Genet. Evol. 2017, 51, 28–32. [Google Scholar] [CrossRef]
- La Rosa, G.; Della Libera, S.; Iaconelli, M.; Proroga, Y.T.R.; De Medici, D.; Martella, V.; Suffredini, E. Detection of Norovirus GII.17 Kawasaki 2014 in Shellfish, Marine Water and Underwater Sewage Discharges in Italy. Food Environ. Virol. 2017, 9, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Suffredini, E.; Lanni, L.; Arcangeli, G.; Pepe, T.; Mazzette, R.; Ciccaglioni, G.; Croci, L. Qualitative and Quantitative Assessment of Viral Contamination in Bivalve Molluscs Harvested in Italy. Int. J. Food Microbiol. 2014, 184, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Polo, D.; Varela, M.F.; Romalde, J.L. Detection and Quantification of Hepatitis A Virus and Norovirus in Spanish Authorized Shellfish Harvesting Areas. Int. J. Food Microbiol. 2015, 193, 43–50. [Google Scholar] [CrossRef]
- Suffredini, E.; Magnabosco, C.; Civettini, M.; Rossetti, E.; Arcangeli, G.; Croci, L. Norovirus Contamination in Different Shellfish Species Harvested in the Same Production Areas. J. Appl. Microbiol. 2012, 113, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Ding, G.; Wang, S.; Cai, Y.; Xu, J.; Cheng, J.; Zhou, D. Preliminary Quantitative Risk Assessment of Norovirus in Shellfish in the Yellow Sea and Bohai Sea of China. Foodborne Pathog. Dis. 2021, 18, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Teunis, P.F.M.; Moe, C.L.; Liu, P.; Miller, S.E.; Lindesmith, L.; Baric, R.S.; Le Pendu, J.; Calderon, R.L. Norwalk Virus: How Infectious Is It? J. Med. Virol. 2008, 80, 1468–1476. [Google Scholar] [CrossRef]
- Le Pendu, J.; Nyström, K.; Ruvoën-Clouet, N. Host–Pathogen Co-Evolution and Glycan Interactions. Curr. Opin. Virol. 2014, 7, 88–94. [Google Scholar] [CrossRef]
- Koopmans, M. Progress in Understanding Norovirus Epidemiology. Curr. Opin. Infect. Dis. 2008, 21, 544–552. [Google Scholar] [CrossRef]
- Wyatt, R.G.; Dolin, R.; Blacklow, N.R.; DuPont, H.L.; Buscho, R.F.; Thornhill, T.S.; Kapikian, A.Z.; Chanock, R.M. Comparison of Three Agents of Acute Infectious Nonbacterial Gastroenteritis by Cross-Challenge in Volunteers. J. Infect. Dis. 1974, 129, 709–714. [Google Scholar] [CrossRef]
- Kaplan, J.E.; Feldman, R.; Campbell, D.S.; Lookabaugh, C.; Gary, G.W. The Frequency of a Norwalk-like Pattern of Illness in Outbreaks of Acute Gastroenteritis. Am. J. Public Health 1982, 72, 1329–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teunis, P.F.M.; Sukhrie, F.H.A.; Vennema, H.; Bogerman, J.; Beersma, M.F.C.; Koopmans, M.P.G. Shedding of Norovirus in Symptomatic and Asymptomatic Infections. Epidemiol. Infect. 2015, 143, 1710–1717. [Google Scholar] [CrossRef] [Green Version]
- Höhne, M.; Schreier, E. Detection and Characterization of Norovirus Outbreaks in Germany: Application of a One-Tube RT-PCR Using a Fluorogenic Real-Time Detection System: One-Tube Real-Time PCR for Norovirus Detection. J. Med. Virol. 2004, 72, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.C.W.; Sung, J.J.Y.; Lam, R.K.Y.; Chan, P.K.S.; Lee, N.L.S.; Lai, R.W.M.; Leung, W.K. Fecal Viral Load and Norovirus-Associated Gastroenteritis. Emerg. Infect. Dis. 2006, 12, 1278–1280. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, K.; Oka, T.; Takeda, N.; Hansman, G.S. Norovirus Infections in Symptomatic and Asymptomatic Food Handlers in Japan. J. Clin. Microbiol. 2007, 45, 3996–4005. [Google Scholar] [CrossRef] [Green Version]
- Atmar, R.L.; Opekun, A.R.; Gilger, M.A.; Estes, M.K.; Crawford, S.E.; Neill, F.H.; Graham, D.Y. Norwalk Virus Shedding after Experimental Human Infection. Emerg. Infect. Dis. 2008, 14, 1553–1557. [Google Scholar] [CrossRef] [PubMed]
- Siebenga, J.J.; Beersma, M.F.C.; Vennema, H.; van Biezen, P.; Hartwig, N.J.; Koopmans, M. High Prevalence of Prolonged Norovirus Shedding and Illness among Hospitalized Patients: A Model for In Vivo Molecular Evolution. J. Infect. Dis. 2008, 198, 994–1001. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.J.A.; Avant, J.; Lowther, J.; Till, D.; Lees, D.N. Human Norovirus in Untreated Sewage and Effluents from Primary, Secondary and Tertiary Treatment Processes. Water Res. 2016, 103, 224–232. [Google Scholar] [CrossRef]
- Campos, C.J.A.; Avant, J.; Lowther, J.; Till, D.; Lees, D. Levels of Norovirus and E. coli in Untreated, Biologically Treated and UV-Disinfected Sewage Effluent Discharged to a Shellfish Water. J. Water Resour. Prot. 2013, 5, 978–982. [Google Scholar] [CrossRef] [Green Version]
- Pouillot, R.; Van Doren, J.M.; Woods, J.; Plante, D.; Smith, M.; Goblick, G.; Roberts, C.; Locas, A.; Hajen, W.; Stobo, J.; et al. Meta-Analysis of the Reduction of Norovirus and Male-Specific Coliphage Concentrations in Wastewater Treatment Plants. Appl. Environ. Microbiol. 2015, 81, 4669–4681. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.; Knight, A.; Richards, G.P. Persistence and Elimination of Human Norovirus in Food and on Food Contact Surfaces: A Critical Review. J. Food Prot. 2016, 79, 1273–1294. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.N.; Joffe, J.; Anmangandla, U.; Jacangelo, J.G.; Heath, M. Water Quality and Disinfection Kinetics. J.-Am. Water Work. Assoc. 1996, 88, 95–103. [Google Scholar] [CrossRef]
- Thurston-Enriquez, J.A.; Haas, C.N.; Jacangelo, J.; Gerba, C.P. Chlorine Inactivation of Adenovirus Type 40 and Feline Calicivirus. Appl. Environ. Microbiol. 2003, 69, 3979–3985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahler, A.M.; Cromeans, T.L.; Roberts, J.M.; Hill, V.R. Source Water Quality Effects on Monochloramine Inactivation of Adenovirus, Coxsackievirus, Echovirus, and Murine Norovirus. Water Res. 2011, 45, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.-A.; Sobsey, M.D. Inactivation of Norovirus by Chlorine Disinfection of Water. Water Res. 2008, 42, 4562–4568. [Google Scholar] [CrossRef] [PubMed]
- Kroneman, A.; Verhoef, L.; Harris, J.; Vennema, H.; Duizer, E.; van Duynhoven, Y.; Gray, J.; Iturriza, M.; Bottiger, B.; Falkenhorst, G.; et al. Analysis of Integrated Virological and Epidemiological Reports of Norovirus Outbreaks Collected within the Foodborne Viruses in Europe Network from 1 July 2001 to 30 June 2006. J. Clin. Microbiol. 2008, 46, 2959–2965. [Google Scholar] [CrossRef] [Green Version]
- Pavoni, E.; Consoli, M.; Suffredini, E.; Arcangeli, G.; Serracca, L.; Battistini, R.; Rossini, I.; Croci, L.; Losio, M.N. Noroviruses in Seafood: A 9-Year Monitoring in Italy. Foodborne Pathog. Dis. 2013, 10, 533–539. [Google Scholar] [CrossRef]
- La Bella, G.; Martella, V.; Basanisi, M.G.; Nobili, G.; Terio, V.; La Salandra, G. Food-Borne Viruses in Shellfish: Investigation on Norovirus and HAV Presence in Apulia (SE Italy). Food Environ. Virol. 2017, 9, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Hernroth, B.E.; Conden-Hansson, A.-C.; Rehnstam-Holm, A.-S.; Girones, R.; Allard, A.K. Environmental Factors Influencing Human Viral Pathogens and Their Potential Indicator Organisms in the Blue Mussel, Mytilus Edulis: The First Scandinavian Report. AEM 2002, 68, 4523–4533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rippey, S.R. Infectious Diseases Associated with Molluscan Shellfish Consumption. Clin. Microbiol. Rev. 1994, 7, 419–425. [Google Scholar] [CrossRef]
- Rohayem, J. Norovirus Seasonality and the Potential Impact of Climate Change. Clin. Microbiol. Infect. 2009, 15, 524–527. [Google Scholar] [CrossRef] [Green Version]
- Myrmel, M.; Berg, E.M.M.; Grinde, B.; Rimstad, E. Enteric Viruses in Inlet and Outlet Samples from Sewage Treatment Plants. J. Water Health 2006, 4, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayama, H.; Haramoto, E.; Oguma, K.; Yamashita, H.; Tajima, A.; Nakajima, H.; Ohgaki, S. One-Year Monthly Quantitative Survey of Noroviruses, Enteroviruses, and Adenoviruses in Wastewater Collected from Six Plants in Japan. Water Res. 2008, 42, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Sima, L.C.; Schaeffer, J.; Le Saux, J.-C.; Parnaudeau, S.; Elimelech, M.; Le Guyader, F.S. Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant. Appl. Environ. Microbiol. 2011, 77, 5170–5177. [Google Scholar] [CrossRef] [Green Version]
- Victoria, M.; Guimarães, F.R.; Fumian, T.M.; Ferreira, F.F.M.; Vieira, C.B.; Shubo, T.; Leite, J.P.G.; Miagostovich, M.P. One Year Monitoring of Norovirus in a Sewage Treatment Plant in Rio de Janeiro, Brazil. J. Water Health 2010, 8, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Westrell, T.; Teunis, P.; van den Berg, H.; Lodder, W.; Ketelaars, H.; Stenström, T.A.; de Roda Husman, A.M. Short- and Long-Term Variations of Norovirus Concentrations in the Meuse River during a 2-Year Study Period. Water Res. 2006, 40, 2613–2620. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Sautu, U.; Sano, D.; Guix, S.; Kasimir, G.; Pintó, R.M.; Bosch, A. Human Norovirus Occurrence and Diversity in the Llobregat River Catchment, Spain: Norovirus Occurrence and Diversity in Water. Environ. Microbiol. 2012, 14, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Katayama, H.; Tanaka, A.; Otaki, M.; Ohgaki, S. Determination of Naturally Occurring Noroviruses in Coastal Seawater by Alkaline Elution after Acid Rinse Using Negatively Charged Membrane. Water Supply 2004, 4, 73–77. [Google Scholar] [CrossRef]
- Bazzardi, R. Indagine Sulla Presenza di Norovirus in Molluschi Bivalvi Vivi Allevati e Commercializzati Nella Regione Sardegna. Ph.D. Thesis, Università degli Studi di Sassari, Sassari, Italy, 2013. [Google Scholar]
- Anacleto, P.; Barrento, S.; Nunes, M.L.; Rosa, R.; Marques, A. Portuguese Consumers’ Attitudes and Perceptions of Bivalve Molluscs. Food Control 2014, 41, 168–177. [Google Scholar] [CrossRef]
- Polo, D.; Schaeffer, J.; Fournet, N.; Le Saux, J.-C.; Parnaudeau, S.; McLeod, C.; Le Guyader, F.S. Digital PCR for Quantifying Norovirus in Oysters Implicated in Outbreaks, France. Emerg. Infect. Dis. 2016, 22, 2189–2191. [Google Scholar] [CrossRef] [PubMed]
- Schwab, K.J.; Neill, F.H.; Estes, M.K.; Metcalf, T.G.; Atmar, R.L. Distribution of Norwalk Virus within Shellfish Following Bioaccumulation and Subsequent Depuration by Detection Using RT-PCR. J. Food Prot. 1998, 61, 1674–1680. [Google Scholar] [CrossRef]
- Lees, D. Viruses and Bivalve Shellfish. Int. J. Food Microbiol. 2000, 59, 81–116. [Google Scholar] [CrossRef]
- Richards, G.P.; McLeod, C.; Le Guyader, F.S. Processing Strategies to Inactivate Enteric Viruses in Shellfish. Food Environ. Virol. 2010, 2, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Rupnik, A.; Doré, W.; Devilly, L.; Fahy, J.; Fitzpatrick, A.; Schmidt, W.; Hunt, K.; Butler, F.; Keaveney, S. Evaluation of Norovirus Reduction in Environmentally Contaminated Pacific Oysters During Laboratory Controlled and Commercial Depuration. Food Environ. Virol. 2021, 13, 229–240. [Google Scholar] [CrossRef] [PubMed]
- McLeod, C.; Polo, D.; Le Saux, J.-C.; Le Guyader, F.S. Final Report: Evaluating the Effectiveness of Depuration in Removing Norovirus from Oysters 2017. Seafood Safety Assessment Ltd. and the 2 French Research Institute for Exploitation of the Sea. Available online: https://www.food.gov.uk/sites/default/files/media/document/fs101068finrep_0.pdf (accessed on 7 October 2021).
- Love, D.C.; Lovelace, G.L.; Sobsey, M.D. Removal of Escherichia Coli, Enterococcus Fecalis, Coliphage MS2, Poliovirus, and Hepatitis A Virus from Oysters (Crassostrea Virginica) and Hard Shell Clams (Mercinaria Mercinaria) by Depuration. Int. J. Food Microbiol. 2010, 143, 211–217. [Google Scholar] [CrossRef]
- Provost, K.; Dancho, B.A.; Ozbay, G.; Anderson, R.S.; Richards, G.P.; Kingsley, D.H. Hemocytes Are Sites of Enteric Virus Persistence within Oysters. Appl. Environ. Microbiol. 2011, 77, 8360–8369. [Google Scholar] [CrossRef] [Green Version]
- Polo, D.; Álvarez, C.; Vilariño, M.L.; Longa, Á.; Romalde, J.L. Depuration Kinetics of Hepatitis A Virus in Clams. Food Microbiol. 2014, 39, 103–107. [Google Scholar] [CrossRef]
- Polo, D.; Feal, X.; Romalde, J.L. Mathematical Model for Viral Depuration Kinetics in Shellfish: An Useful Tool to Estimate the Risk for the Consumers. Food Microbiol. 2015, 49, 220–225. [Google Scholar] [CrossRef]
- Schneider, K.R.; Cevallos, J.; Rodrick, G.E. Molluscan shellfish depuration. In Shellfish Safety and Quality; Elsevier: Amsterdam, The Netherlands, 2009; pp. 509–541. ISBN 978-1-84569-152-3. [Google Scholar]
- Neilson, B. Bacterial Depuration by the American Oyster (Crassostrea virginica) under Controlled Conditions. Vol. 2. Practical Considerations and Plant Design; Special Scientific Report, no. 88 v.2.; Virginia Institute of Marine Science: Greate, VA, USA, 1978. [Google Scholar] [CrossRef]
- Riisgård, H.U.; Lüskow, F.; Pleissner, D.; Lundgreen, K.; López, M.Á.P. Effect of Salinity on Filtration Rates of Mussels Mytilus Edulis with Special Emphasis on Dwarfed Mussels from the Low-Saline Central Baltic Sea. Helgol. Mar. Res. 2013, 67, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Borsuk, M.E.; Powers, S.P.; Peterson, C.H. A Survival Model of the Effects of Bottom-Water Hypoxia on the Population Density of an Estuarine Clam (Macoma Balthica). Can. J. Fish. Aquat. Sci. 2002, 59, 1266–1274. [Google Scholar] [CrossRef]
- Li, Q.; Sun, S.; Zhang, F.; Wang, M.; Li, M. Effects of Hypoxia on Survival, Behavior, Metabolism and Cellular Damage of Manila Clam (Ruditapes Philippinarum). PLoS ONE 2019, 14, e0215158. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Mai, K.; Ma, H.; Wang, X.; Deng, D.; Liu, X.; Xu, W.; Liufu, Z.; Zhang, W.; Tan, B. Effects of Dissolved Oxygen on Survival and Immune Responses of Scallop (Chlamys Farreri Jones et Preston). Fish Shellfish Immunol. 2007, 22, 272–281. [Google Scholar] [CrossRef]
- Polo, D.; Feal, X.; Varela, M.F.; Monteagudo, A.; Romalde, J.L. Depuration Kinetics of Murine Norovirus in Shellfish. Food Res. Int. 2014, 64, 182–187. [Google Scholar] [CrossRef]
- Berti, M.; Teodori, L.; Portanti, O.; Leone, A.; CARMINE, I.; Ferri, N.; Visciano, P.; Schirone, M.; Savini, G. Experimental Contaminatio of Chamelea Gallina with Murine Norovirus and Effectiveness of Depuration. Ital. J. Food Sci. 2020, 32. [Google Scholar] [CrossRef]
- Pepe, T.; Ventrone, I.; Suffredini, E.; Ceruso, M.; Croci, L.; Anastasio, A.; Cortesi, M.L. Norovirus Monitoring in Bivalve Molluscs Harvested and Commercialized in Southern Italy. J. Food Prot. 2012, 75, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Battistini, R.; Listorti, V.; Squadrone, S.; Pederiva, S.; Abete, M.C.; Mua, R.; Ciccotelli, V.; Suffredini, E.; Maurella, C.; Baioni, E.; et al. Occurrence and Persistence of Enteric Viruses, Arsenic and Biotoxins in Pacific Oysters Farmed in an Italian Production Site. Mar. Pollut. Bull. 2021, 162, 111843. [Google Scholar] [CrossRef]
- Ueki, Y.; Shoji, M.; Suto, A.; Tanabe, T.; Okimura, Y.; Kikuchi, Y.; Saito, N.; Sano, D.; Omura, T. Persistence of Caliciviruses in Artificially Contaminated Oysters during Depuration. Appl. Environ. Microbiol. 2007, 73, 5698–5701. [Google Scholar] [CrossRef] [Green Version]
- Nappier, S.P.; Graczyk, T.K.; Schwab, K.J. Bioaccumulation, Retention, and Depuration of Enteric Viruses by Crassostrea Virginica and Crassostrea Ariakensis Oysters. AEM 2008, 74, 6825–6831. [Google Scholar] [CrossRef] [Green Version]
- Younger, A.D.; Neish, A.; Walker, D.I.; Jenkins, K.L.; Lowther, J.A.; Stapleton, T.A.; Alves, M.T. Strategies to Reduce Norovirus (NoV) Contamination from Oysters under Depuration Conditions. Food Chem. Toxicol. 2020, 143, 111509. [Google Scholar] [CrossRef]
- Rees, G. Safe Management of Shellfish and Harvest Waters; World Health Organization, Ed.; Emerging Issues in Water and Infectious Disease Series; Published on Behalf of the World Health Organization by IWA Pub.: London, UK, 2010; ISBN 978-1-84339-225-5. [Google Scholar]
- Bozkurt, H.; D’Souza, D.H.; Davidson, P.M. Thermal Inactivation of Foodborne Enteric Viruses and Their Viral Surrogates in Foods. J. Food Prot. 2015, 78, 1597–1617. [Google Scholar] [CrossRef] [PubMed]
- Hirneisen, K.A.; Kniel, K.E. Comparing Human Norovirus Surrogates: Murine Norovirus and Tulane Virus. J. Food Prot. 2013, 76, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Chen, H.; Hicks, D.; Wu, C. Thermal Inactivation of Human Norovirus Surrogates in Oyster Homogenate. Int. J. Food Microbiol. 2018, 281, 47–53. [Google Scholar] [CrossRef]
- Ailavadi, S.; Davidson, P.M.; Morgan, M.T.; D’Souza, D.H. Thermal Inactivation Kinetics of Tulane Virus in Cell-Culture Medium and Spinach: Heat Inactivation Kinetics of Tulane Virus. J. Food Sci. 2019, 84, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, H.; D’Souza, D.H.; Davidson, P.M. Determination of the Thermal Inactivation Kinetics of the Human Norovirus Surrogates, Murine Norovirus and Feline Calicivirus. J. Food Prot. 2013, 76, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, H.; D’Souza, D.H.; Davidson, P.M. A Comparison of the Thermal Inactivation Kinetics of Human Norovirus Surrogates and Hepatitis A Virus in Buffered Cell Culture Medium. Food Microbiol. 2014, 42, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Messens, W.; Fernandez-Escamez, P.S.; Lees, D.; Lindqvist, R.; O’Mahony, M.; Suffredini, E.; Cortiñas Abrahantes, J.; Chantzis, E.; Koutsoumanis, K. Thermal Processing of Live Bivalve Molluscs for Controlling Viruses: On the Need for a Risk-Based Design. Crit. Rev. Food Sci. Nutr. 2018, 58, 2854–2865. [Google Scholar] [CrossRef]
- López-Caballero, M.E.; Pérez-Mateos, M.; Montero, P.; Borderías, A.J. Oyster Preservation by High-Pressure Treatment. J. Food Prot. 2000, 63, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Romero, M.; Smiddy, M.; Hill, C.; Kerry, J.P.; Kelly, A.L. Effects of High Pressure Treatment on Physicochemical Characteristics of Fresh Oysters (Crassostrea Gigas). Innov. Food Sci. Emerg. Technol. 2004, 5, 161–169. [Google Scholar] [CrossRef]
- Kingsley, D. High Pressure Processing of Bivalve Shellfish and HPP’s Use as a Virus Intervention. Foods 2014, 3, 336–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, F.; Neetoo, H.; Chen, H.; Li, J. Inactivation of a Human Norovirus Surrogate by High-Pressure Processing: Effectiveness, Mechanism, and Potential Application in the Fresh Produce Industry. Appl. Environ. Microbiol. 2011, 77, 1862–1871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingsley, D.H.; Holliman, D.R.; Calci, K.R.; Chen, H.; Flick, G.J. Inactivation of a Norovirus by High-Pressure Processing. Appl. Environ. Microbiol. 2007, 73, 581–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Ye, M.; Neetoo, H.; Golovan, S.; Chen, H. Pressure Inactivation of Tulane Virus, a Candidate Surrogate for Human Norovirus and Its Potential Application in Food Industry. Int. J. Food Microbiol. 2013, 162, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Arcangeli, G.; Terregino, C.; De Benedictis, P.; Zecchin, B.; Manfrin, A.; Rossetti, E.; Magnabosco, C.; Mancin, M.; Brutti, A. Effect of High Hydrostatic Pressure on Murine Norovirus in Manila Clams: HHP Effect on MNV in Manila Clams. Lett. Appl. Microbiol. 2012, 54, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Leon, J.S.; Kingsley, D.H.; Montes, J.S.; Richards, G.P.; Lyon, G.M.; Abdulhafid, G.M.; Seitz, S.R.; Fernandez, M.L.; Teunis, P.F.; Flick, G.J.; et al. Randomized, Double-Blinded Clinical Trial for Human Norovirus Inactivation in Oysters by High Hydrostatic Pressure Processing. Appl. Environ. Microbiol. 2011, 77, 5476–5482. [Google Scholar] [CrossRef] [Green Version]
- Lou, F.; Huang, P.; Neetoo, H.; Gurtler, J.B.; Niemira, B.A.; Chen, H.; Jiang, X.; Li, J. High-Pressure Inactivation of Human Norovirus Virus-Like Particles Provides Evidence That the Capsid of Human Norovirus Is Highly Pressure Resistant. Appl. Environ. Microbiol. 2012, 78, 5320–5327. [Google Scholar] [CrossRef] [Green Version]
- Lou, F.; DiCaprio, E.; Li, X.; Dai, X.; Ma, Y.; Hughes, J.; Chen, H.; Kingsley, D.H.; Li, J. Variable High-Pressure-Processing Sensitivities for Genogroup II Human Noroviruses. Appl. Environ. Microbiol. 2016, 82, 6037–6045. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, N.; Kurdziel, A.S.; Langton, S.; Needs, E.; Cook, N. Resistance of Poliovirus to Inactivation by High Hydrostatic Pressures. Innov. Food Sci. Emerg. Technol. 2001, 2, 95–98. [Google Scholar] [CrossRef]
- Govaris, A.; Pexara, A. Inactivation of Foodborne Viruses by High-Pressure Processing (HPP). Foods 2021, 10, 215. [Google Scholar] [CrossRef]
- Ye, M.; Lingham, T.; Huang, Y.; Ozbay, G.; Ji, L.; Karwe, M.; Chen, H. Effects of High-Hydrostatic Pressure on Inactivation of Human Norovirus and Physical and Sensory Characteristics of Oysters. J. Food Sci. 2015, 80, M1330–M1335. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hoover, D.G.; Kingsley, D.H. Temperature and Treatment Time Influence High Hydrostatic Pressure Inactivation of Feline Calicivirus, a Norovirus Surrogate†. J. Food Prot. 2005, 68, 2389–2394. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, D.H.; Chen, H. Influence of PH, Salt, and Temperature on Pressure Inactivation of Hepatitis A Virus. Int. J. Food Microbiol. 2009, 130, 61–64. [Google Scholar] [CrossRef]
- Tang, Q.; Li, D.; Xu, J.; Wang, J.; Zhao, Y.; Li, Z.; Xue, C. Mechanism of Inactivation of Murine Norovirus-1 by High Pressure Processing. Int. J. Food Microbiol. 2010, 137, 186–189. [Google Scholar] [CrossRef]
- Rzeżutka, A.; Cook, N. Survival of Human Enteric Viruses in the Environment and Food. FEMS Microbiol. Rev. 2004, 28, 441–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos, Y.H. Water and Pathogenic Viruses Inactivation—Food Engineering Perspectives. Food Eng. Rev. 2020, 12, 251–267. [Google Scholar] [CrossRef]
- Grove, S.F.; Lee, A.; Lewis, T.; Stewart, C.M.; Chen, H.; Hoover, D.G. Inactivation of Foodborne Viruses of Significance by High Pressure and Other Processes†. J. Food Prot. 2006, 69, 957–968. [Google Scholar] [CrossRef]
- Choi, M.-S.; Jeon, E.B.; Kim, J.Y.; Choi, E.H.; Lim, J.S.; Choi, J.; Ha, K.S.; Kwon, J.Y.; Jeong, S.H.; Park, S.Y. Virucidal Effects of Dielectric Barrier Discharge Plasma on Human Norovirus Infectivity in Fresh Oysters (Crassostrea Gigas). Foods 2020, 9, 1731. [Google Scholar] [CrossRef]
- Boxman, I.; Tilburg, J.; Teloeke, N.; Vennema, H.; Jonker, K.; Deboer, E.; Koopmans, M. Detection of Noroviruses in Shellfish in the Netherlands. Int. J. Food Microbiol. 2006, 108, 391–396. [Google Scholar] [CrossRef] [Green Version]
- European Market Observatory for Fisheries and Aquaculture Products (EUMOFA); European Commission; Directorate General for Maritime Affairs and Fisheries. The EU Fish Market: 2019 ed.; Publication Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- European Market Observatory for Fisheries and Aquaculture Products (EUMOFA); European Commission; Directorate General for Maritime Affairs and Fisheries. EU Consumer Habits Regarding Fishery and Aquaculture Products. Annex 1, Mapping and Analysis of Existing Studies on Consumer Habits of the European Union; Publications Office: Luxembourg, 2017. [Google Scholar]
- Pouillot, R.; Smith, M.; Van Doren, J.M.; Catford, A.; Holtzman, J.; Calci, K.R.; Edwards, R.; Goblick, G.; Roberts, C.; Stobo, J.; et al. Risk Assessment of Norovirus Illness from Consumption of Raw Oysters in the United States and in Canada. Risk Anal. 2021, risa.13755. [Google Scholar] [CrossRef]
- Teunis, P.; Havelaar, A.; Vliegenthart, J.; Roessink, G. Risk Assessment of Campylobacter Species in Shellfish: Identifying the Unknown. Water Sci. Technol. 1997, 35, 29–34. [Google Scholar] [CrossRef]
- Strubbia, S.; Lyons, B.P.; Lee, R.J. Geographical and Temporal Variation of E. Coli and Norovirus in Mussels. Mar. Pollut. Bull. 2016, 107, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Ilic, N.; Velebit, B.; Teodorovic, V.; Djordjevic, V.; Karabasil, N.; Vasilev, D.; Djuric, S.; Adzic, B.; Dimitrijevic, M. Influence of Environmental Conditions on Norovirus Presence in Mussels Harvested in Montenegro. Food Environ. Virol. 2017, 9, 406–414. [Google Scholar] [CrossRef]
- Teunis, P.F.M.; Le Guyader, F.S.; Liu, P.; Ollivier, J.; Moe, C.L. Noroviruses Are Highly Infectious but There Is Strong Variation in Host Susceptibility and Virus Pathogenicity. Epidemics 2020, 32, 100401. [Google Scholar] [CrossRef] [PubMed]
- Thebault, A.; Teunis, P.F.M.; Le Pendu, J.; Le Guyader, F.S.; Denis, J.-B. Infectivity of GI and GII Noroviruses Established from Oyster Related Outbreaks. Epidemics 2013, 5, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Atmar, R.L.; Opekun, A.R.; Gilger, M.A.; Estes, M.K.; Crawford, S.E.; Neill, F.H.; Ramani, S.; Hill, H.; Ferreira, J.; Graham, D.Y. Determination of the 50% Human Infectious Dose for Norwalk Virus. J. Infect. Dis. 2014, 209, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Kirby, A.E.; Teunis, P.F.; Moe, C.L. Two Human Challenge Studies Confirm High Infectivity of Norwalk Virus. J. Infect Dis. 2015, 211, 166–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Abel, N.; Schoen, M.E.; Kissel, J.C.; Meschke, J.S. Comparison of Risk Predicted by Multiple Norovirus Dose-Response Models and Implications for Quantitative Microbial Risk Assessment: Comparison of Risk Predicted by Multiple Norovirus Dose-Response Models. Risk Anal. 2017, 37, 245–264. [Google Scholar] [CrossRef] [PubMed]
- Nordgren, J.; Svensson, L. Genetic Susceptibility to Human Norovirus Infection: An Update. Viruses 2019, 11, 226. [Google Scholar] [CrossRef] [Green Version]
- Lowther, J.A.; Avant, J.M.; Gizynski, K.; Rangdale, R.E.; Lees, D.N. Comparison between Quantitative Real-Time Reverse Transcription PCR Results for Norovirus in Oysters and Self-Reported Gastroenteric Illness in Restaurant Customers. J. Food Prot. 2010, 73, 305–311. [Google Scholar] [CrossRef]
- Toffan, A.; Brutti, A.; De Pasquale, A.; Cappellozza, E.; Pascoli, F.; Cigarini, M.; Di Rocco, M.; Terregino, C.; Arcangeli, G. The Effectiveness of Domestic Cook on Inactivation of Murine Norovirus in Experimentally Infected Manila Clams (Ruditapes Philippinarum). J. Appl. Microbiol. 2014, 116, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Biswas, D.; Micallef, S.A. Safety and Practice for Organic Food; Elsevier: London, UK, 2019; ISBN 978-0-12-812060-6. [Google Scholar]
- Hewitt, J.; Rivera-Aban, M.; Greening, G.E. Evaluation of Murine Norovirus as a Surrogate for Human Norovirus and Hepatitis A Virus in Heat Inactivation Studies. J. Appl. Microbiol. 2009, 107, 65–71. [Google Scholar] [CrossRef] [PubMed]
Processing | Production Area | Health Risk | Missing/ Insufficient Data | Available Data | Instructions for Consumer | References | |
---|---|---|---|---|---|---|---|
No processing requested | A | High if consumed raw Negligible if consumed cooked |
|
| To be cooked | [12,25,113,139] | |
Depuration | B | High |
|
| [11,12,13,25,97,113,115,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173] | ||
Long Relaying (≥2 months) | BC | High |
|
| [10,25,115,154,174] | ||
Transformation | Thermal treatment | BC | Negligible | Not applicable |
| None | [175,176,177,178,179,180,181] |
Non thermal treatment | Not determined |
|
| None | [182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savini, F.; Giacometti, F.; Tomasello, F.; Pollesel, M.; Piva, S.; Serraino, A.; De Cesare, A. Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss? Foods 2021, 10, 2444. https://doi.org/10.3390/foods10102444
Savini F, Giacometti F, Tomasello F, Pollesel M, Piva S, Serraino A, De Cesare A. Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss? Foods. 2021; 10(10):2444. https://doi.org/10.3390/foods10102444
Chicago/Turabian StyleSavini, Federica, Federica Giacometti, Federico Tomasello, Marta Pollesel, Silvia Piva, Andrea Serraino, and Alessandra De Cesare. 2021. "Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss?" Foods 10, no. 10: 2444. https://doi.org/10.3390/foods10102444
APA StyleSavini, F., Giacometti, F., Tomasello, F., Pollesel, M., Piva, S., Serraino, A., & De Cesare, A. (2021). Assessment of the Impact on Human Health of the Presence of Norovirus in Bivalve Molluscs: What Data Do We Miss? Foods, 10(10), 2444. https://doi.org/10.3390/foods10102444