Current State of Salmonella, Campylobacter and Listeria in the Food Chain across the Arab Countries: A Descriptive Review
Abstract
:1. Introduction
2. Non-Typhoidal Salmonella in the Food Chain in the Arab World
3. Campylobacter in the Food Chain in the Arab World
4. Listeria spp. and Listeria monocytogenes in the Food Chain in the Arab World
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in 2016. EFSA J. 2017, 15, e05077. [Google Scholar]
- ECDC; EFSA. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2010. EFSA J. 2012, 10, 9–19. [Google Scholar]
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and foodborne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Preliminary FoodNet Data on the incidence of infection with pathogens transmitted commonly through food—10 states, 2009. MMWR Morb. Mortal Wkly. Rep. J. 2010, 59, 418–422. [Google Scholar]
- World Health Organization (WHO). WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Harb, A.; O’Dea, M.; Abraham, S.; Habib, I. Childhood diarrhoea in the Eastern Mediterranean region with special emphasis on non-typhoidal Salmonella at the human–food interface. Pathogens 2019, 8, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafei, R.; Hawli, M.; Osman, M.; Dabboussi, F.; Hamze, M. Distribution of emm types and macrolide resistance determinants among group A streptococci in the Middle East and North Africa. J. Glob. Antimicrob. Resist. 2020, 22, 334–348. [Google Scholar] [CrossRef]
- Mohamed, M.-Y.I.; Abu, A.; Aziz, S.A.; Zakaria, Z.; Khan, A.R.; Habib, I. Public health significance of Campylobacter jejuni. J. Biosci. Med. 2021, 9, 100–112. [Google Scholar] [CrossRef]
- Paré, G.; Trudel, M.-C.; Jaana, M.; Kitsiou, S. Synthesizing information systems knowledge: A typology of literature reviews. Inf. Manag. 2015, 52, 183–199. [Google Scholar] [CrossRef]
- Fernández, J.; Guerra, B.; Rodicio, M.R. Resistance to carbapenems in non-typhoidal Salmonella enterica Serovars from humans, animals and food. Vet. Sci. 2018, 5, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Hald, T. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar]
- Sodagari, H.R.; Habib, I.; Shahabi, M.P.; Dybing, N.A.; Wang, P.; Bruce, M.A. Review of the public health challenges of Salmonella and turtles. Vet. Sci. 2020, 7, 56. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Bui, H.T.; Truong, T.A.; Lam, D.N.; Ikeuchi, S.; Ly, L.K.T.; Hayashidani, H. Retail fresh vegetables as a potential source of Salmonella infection in the Mekong Delta, Vietnam. Int. J. Food Microbiol. 2021, 341, 109049. [Google Scholar] [CrossRef]
- Zhu, Y.; Lai, H.; Zou, L.; Yin, S.; Wang, C.; Han, X.; Zhou, K. Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China. Int. J. Food Microbiol. 2017, 259, 43–51. [Google Scholar] [CrossRef]
- Al-Rifai, R.H.; Chaabna, K.; Denagamage, T.; Alali, W.Q. Prevalence of enteric non-typhoidal Salmonella in humans in the Middle East and North Africa: A systematic review and meta-analysis. Zoonoses Public Health 2019, 66, 701–728. [Google Scholar] [CrossRef]
- Harb, A.; Habib, I.; Mezal, E.H.; Kareem, H.S.; Laird, T.; O’Dea, M.; Abraham, S. Occurrence, antimicrobial resistance and whole-genome sequencing analysis of Salmonella isolates from chicken carcasses imported into Iraq from four different countries. Int. J. Food Microbiol. 2018, 284, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Mezali, L.; Hamdi, T.M. Prevalence and antimicrobial resistance of Salmonella isolated from meat and meat products in Algiers (Algeria). Foodborne Pathog. Dis. 2012, 9, 522–529. [Google Scholar] [CrossRef]
- Kirrella, G.A.; Deeb, A.M.; Abdallah, R.M.I. Safety of frozen liver for human consumption. J. Food Drug Anal. 2017, 25, 520–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Maksoud, M.; Abdel-Khalek, R.; El-Gendy, A.; Gamal, R.F.; Abdelhady, H.M.; House, B.L. Genetic characterisation of multidrug-resistant Salmonella enterica serotypes isolated from poultry in Cairo, Egypt. Afr. J. Lab. Med. 2015, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ibenyassine, K.; Mhand, R.A.; Karamoko, Y.; Anajjar, B.; Chouibani, M.; Ennaji, M. Bacterial pathogens recovered from vegetables irrigated by wastewater in Morocco. J. Environ. Health 2007, 69, 47–51. [Google Scholar]
- Ahmed, M.A.; Shimamoto, T. Isolation and molecular characterization of Salmonella enterica, Escherichia coli O157: H7 and Shigella spp. from meat and dairy products in Egypt. Int. J. Food Microbiol. 2014, 168, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, R.; Ali, S.F.H.; El-Malek, A.; Mohamed, A.; Mohamed, M.A.; Elsayh, K.I. Detection and identification of Salmonella species in minced beef and chicken meats by using Multiplex PCR in Assiut city. Vet. World 2011, 4, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Djeffal, S.; Bakour, S.; Mamache, B.; Elgroud, R.; Agabou, A.; Chabou, S.; Rolain, J.-M. Prevalence and clonal relationship of ESBL-producing Salmonella strains from humans and poultry in northeastern Algeria. BMC Vet. Res. 2017, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Mesbah Zekar, F.; Granier, S.A.; Marault, M.; Yaici, L.; Gassilloud, B.; Manceau, C.; Millemann, Y. From farms to markets: Gram-negative bacteria resistant to third-generation cephalosporins in fruits and vegetables in a region of north africa. Front. Microbiol. 2017, 8, 1569. [Google Scholar] [CrossRef]
- Ayachi, A.; Bennoune, O.; Heleili, N.; Alloui, N. Minor Salmonella: Potential pathogens in eggs in Algeria. J. Infect. Dev. Ctries. 2015, 9, 1156–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adjlane-Kaouche, S.; Benhacine, R.; Ghozlane, F.; Mati, A. Nutritional and hygienic quality of raw milk in the mid-northern region of Algeria: Correlations and risk factors. Sci. World J. 2014, 2014, 131593. [Google Scholar] [CrossRef] [PubMed]
- Moawad, A.A.; Hotzel, H.; Awad, O.; Tomaso, H.; Neubauer, H.; Hafez, H.M.; El-Adawy, H. Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathog. 2017, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Abaza, A. Bacteriological assessment of some vegetables and ready-to-eat salads in Alexandria, Egypt. J. Egypt. Public Health Assoc. 2017, 92, 177–187. [Google Scholar] [CrossRef]
- Tarabees, R.; Elsayed, M.S.; Shawish, R.; Basiouni, S.; Shehata, A.A. Isolation and characterization of Salmonella enteritidis and Salmonella typhimurium from chicken meat in Egypt. J. Infect. Dev. Ctries. 2017, 11, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aziz, N.M. Detection of Salmonella species in chicken carcasses using genus specific primer belong to invA gene in Sohag city, Egypt. Vet. World 2016, 9, 1125. [Google Scholar] [CrossRef] [Green Version]
- Amin, H.S.; El Rahman, A.E.R.A.A. Molecular Characterization of Salmonella enterica Isolated from Chicken Meat and its Products by Multiplex PCR. Alex. J. Vet. Sci. 2015, 46, 155–160. [Google Scholar]
- Abd-Elghany, S.; Sallam, K.; Abd-Elkhalek, A.; Tamura, T. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets. Epidemiol. Infect. 2015, 143, 997–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, S.J. Quality and quantity microbial assessment of the mobile restaurants (caravans) in Baghdad. J. Pharm. Sci. Res. 2018, 10, 2354–2355. [Google Scholar]
- Abid, A.J. Conventional and molecular approaches in bacterial contamination detection for meat samples. Int. J. PharmTech Res. 2016, 9, 212–218. [Google Scholar]
- Momani, A.L.W.; Janakat, S.; Khatatbeh, M. Bacterial contamination of table eggs sold in Jordanian markets. Pak. J. Nutr. 2018, 17, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Obaidat, M.M.; Bani Salman, A.E. Antimicrobial resistance percentages of Salmonella and Shigella in seafood imported to Jordan: Higher percentages and more diverse profiles in Shigella. J. Food Prot. 2017, 80, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Al-Groom, R. Extant of microbial contamination of cheddar cheese from markets and restaurants in Amman-Jordan. J. Pure Appl. Microbiol. 2017, 11, 1427–1433. [Google Scholar] [CrossRef]
- Osaili, T.M.; Al-Nabulsi, A.A.; Shaker, R.R.; Jaradat, Z.W.; Taha, M.; Al-Kherasha, M.; Holley, R. Prevalence of Salmonella serovars, Listeria monocytogenes, and Escherichia coli O157: H7 in Mediterranean ready-to-eat meat products in Jordan. J. Food Prot. 2014, 77, 106–111. [Google Scholar] [CrossRef]
- Nimri, L.; AL-Dahab, F.A.; Batchoun, R. Foodborne bacterial pathogens recovered from contaminated shawarma meat in northern Jordan. J. Infect. Dev. Ctries. 2014, 8, 1407–1414. [Google Scholar] [CrossRef] [Green Version]
- Omar, S.S.; Dababneh, B.F.; Qatatsheh, A.; Abu-Romman, S.; Hawari, A.D.; Aladaileh, S. The incidence of Listeria species and other indicator bacteria in some traditional foods sold in Karak city, Jordan. J. Food Agric. Environ. 2011, 9, 79–81. [Google Scholar]
- Malkawi, H.I.; Gharaibeh, R. Multiplex PCR for the direct detection of Salmonella enterica from chicken, lamb and beef food products. J. Basic Microbiol. Int. J. Biochem. Physiol. Genet. Morphol. Ecol. Microorg. 2003, 43, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Kassaify, Z.; Najjar, M.; Toufeili, I.; Malek, A. Microbiological and chemical profile of Lebanese qishta [heat-coagulated milk]. EMHJ-East. Mediterr. Health J. 2010, 16, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Amajoud, N.; Bouchrif, B.; El Maadoudi, M.; Senhaji, N.S.; Karraouan, B.; El Harsal, A.; El Abrini, J. Prevalence, serotype distribution, and antimicrobial resistance of Salmonella isolated from food products in Morocco. J. Infect. Dev. Ctries. 2017, 11, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ed-Dra, A.; Filali, F.R.; Karraouan, B.; El Allaoui, A.; Aboulkacem, A.; Bouchrif, B. Prevalence, molecular and antimicrobial resistance of Salmonella isolated from sausages in Meknes, Morocco. Microb. Pathog. 2017, 105, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Ennadir, J.; Hassikou, R.; Ohmani, F.; Hammamouchi, J.; Bouazza, F.; Qasmaoui, A.; Khedid, K. Microbiological quality of wheat flour consumed in Morocco. Can. J. Microbiol. 2012, 58, 145–150. [Google Scholar] [CrossRef]
- Ammari, S.; Laglaoui, A.; En-Nanei, L.; Bertrand, S.; Wildemauwe, C.; Barrijal, S.; Abid, M. Isolation, drug resistance and molecular characterization of Salmonella isolates in northern Morocco. J. Infect. Dev. Ctries. 2009, 3, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Setti, I.; Rodriguez-Castro, A.; Pata, M.P.; Cadarso-Suarez, C.; Yacoubi, B.; Bensmael, L.; Martinez-Urtaza, J. Characteristics and dynamics of Salmonella contamination along the coast of Agadir, Morocco. Appl. Environ. Microbiol. 2009, 75, 7700–7709. [Google Scholar] [CrossRef] [Green Version]
- Bouchrif, B.; Paglietti, B.; Murgia, M.; Piana, A.; Cohen, N.; Ennaji, M.M. Prevalence and antibiotic-resistance of Salmonella isolated from food in Morocco. J. Infect. Dev. Ctries. 2009, 3, 35–40. [Google Scholar]
- Cohen, N.; Filliol, I.; Karraouan, B.; Badri, S.; Carle, I.; Ennaji, H.; Karib, H. Microbial quality control of raw ground beef and fresh sausage in Casablanca (Morocco). J. Environ. Health 2008, 71, 51–55. [Google Scholar]
- Abdellah, C.; Fouzia, R.F.; Abdelkader, C.; Rachida, S.B.; Mouloud, Z. Occurrence of Salmonella in chicken carcasses and giblets in Meknes-Morocco. Pak. J. Nutr. 2008, 7, 231–233. [Google Scholar] [CrossRef]
- El Shrek, Y.M.; Ali, M.R.M. Microbiological study of spiced chicken burgers in Tripoli City, Libya. EMHJ East. Mediterr. Health J. 2012, 18, 653–662. [Google Scholar] [CrossRef]
- Al Khatib, I.A.; Al Mitwalli, S.M. Microbiological quality and sample collection policy for dairy products in Ramallah and Al-Bireh district, Palestine. EMHJ East. Mediterr. Health J. 2009, 15, 709–716. [Google Scholar] [CrossRef]
- Elhadi, N. Prevalence and antimicrobial resistance of Salmonella spp. in raw retail frozen imported freshwater fish to Eastern Province of Saudi Arabia. Asian Pac. J. Trop. Biomed. 2014, 4, 234–238. [Google Scholar] [CrossRef] [Green Version]
- Iyer, A.; Kumosani, T.; Yaghmoor, S.; Barbour, E.; Azhar, E.; Harakeh, S. Escherichia coli and Salmonella spp. in meat in Jeddah, Saudi Arabia. J. Infect. Dev. Ctries. 2013, 7, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khiyami, M.; Noura, A.-F.; Busaeed, B.; Sher, H. Food borne pathogen contamination in minimally processed vegetable salads in Riyadh, Saudi Arabia. J. Med. Plants Res. 2011, 5, 444–451. [Google Scholar]
- Hassan, A.S.; Altalhi, A.D.; Gherbawy, Y.A.; El-Deeb, B.A. Bacterial load of fresh vegetables and their resistance to the currently used antibiotics in Saudi Arabia. Foodborne Pathog. Dis. 2011, 8, 1011–1018. [Google Scholar] [CrossRef]
- Al-Dughaym, A.; Altabari, G. Safety and quality of some chicken meat products in Al-Ahsa markets-Saudi Arabia. Saudi J. Biol. Sci. 2010, 17, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasser, L.A. Mycoflora, mycotoxins, bacteriological analysis and molecular assay of some bacterial species from coffee beans in Saudi Arabia. Bull. Pharm. Sci. 2008, 31, 345–373. [Google Scholar] [CrossRef]
- Ali, A.A. Microbiological safety of raw milk in Khartoum state, Sudan: 2-Khartoum-North city. Pak. J. Nutr. 2010, 10, 651–653. [Google Scholar] [CrossRef] [Green Version]
- El Hussein, A.A.; Nor Elmadiena, M.M.; Elsaid, S.M.; Siddig, M.A.M.; Muckle, C.A.; Cole, L.; Wilkie, E.; Mistry, K. Prevalence of Salmonella enterica subspecies enterica serovars in Khartoum state, Sudan. Res. J. Microbiol. 2010, 5, 966–973. [Google Scholar] [CrossRef] [Green Version]
- Siala, M.; Barbana, A.; Smaoui, S.; Hachicha, S.; Marouane, C.; Kammoun, S.; Messadi-Akrout, F. Screening and detecting Salmonella in different food matrices in Southern Tunisia using a combined enrichment/real-time PCR method: Correlation with conventional culture method. Front. Microbiol. 2017, 8, 2416. [Google Scholar] [CrossRef]
- Gritli, A.; Daboussi, T.; Moussa, M.B.; Abassi, M. Prevalence and characterizaton of Salmonella in chicken consumed in military cantines. J. New Sci. 2015, JS-INAT, 908–914. [Google Scholar]
- Abbassi-Ghozzi, I.; Jaouani, A.; Hammami, S.; Martinez-Urtaza, J.; Boudabous, A.; Gtari, M. Molecular analysis and antimicrobial resistance of Salmonella isolates recovered from raw meat marketed in the area of “Grand Tunis”, Tunisia. Pathol. Biol. 2012, 60, e49–e54. [Google Scholar] [CrossRef]
- Pande, V.V.; Gole, V.C.; McWhorter, A.R.; Abraham, S.; Chousalkar, K.K. Antimicrobial resistance of non-typhoidal Salmonella isolates from egg layer flocks and egg shells. Int. J. Food Microbiol. 2015, 203, 23–26. [Google Scholar] [CrossRef]
- Mohamed-Yousif, I.M.; Abu, J.; Abdul-Aziz, S.; Zakaria, Z.; Rashid, A.; Awad, E.A. Occurrence of Antibiotic Resistant C. jejuni and E. coli in Wild Birds, Chickens, Environment and Humans from Orang Asli Villages in Sungai Siput, Perak, Malaysia. Am. J. Anim. Vet. Sci. 2019, 14, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Badahdah, S.A.; Aldagal, M.M. Antibiotic Resistance in Salmonella spp. Isolated from Local Chickens in Saudi Arabia. Int. J. Food Sci. Nutr. Eng. 2018, 8, 127–130. [Google Scholar] [CrossRef]
- Hassan, H.A.A.-R.; Salam, H.S.; Abdel-Latef, G.K. Serological identification and antimicrobial resistance of Salmonella isolates from broiler carcasses and human stools in Beni-Suef, Egypt. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Gharieb, R.M.; Tartor, Y.H.; Khedr, M.H. Non-Typhoidal Salmonella in poultry meat and diarrhoeic patients: Prevalence, antibiogram, virulotyping, molecular detection and sequencing of class I integrons in multi-drug resistant strains. Gut Pathog. 2015, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Salmonella (Non-Typhoidal). 2018. Available online: https://www.who.int/en/news-room/fact-sheets/detail/salmonella-(non-typhoidal) (accessed on 5 January 2021).
- Farag, E.; Garcell, H.G.; Ganesan, N.; Ahmed, S.N.N.; Al-Hajri, M.; Al Thani, S.M.H.J.; Al-Romaihi, H.E. A retrospective epidemiological study on the incidence of salmonellosis in the State of Qatar during 2004–2012. Qatar Med. J. 2016, 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, F.; Unni, A.; Hablas, R.; Rizk, M. Salmonella-induced enteritis. Clinical, serotypes and treatment. J. Egypt. Public Health Assoc. 1992, 67, 357–367. [Google Scholar]
- Ranjbar, R.; Giammanco, G.M.; Farshad, S.; Owlia, P.; Aleo, A.; Mammina, C. Serotypes, antibiotic resistance, and class 1 integrons in Salmonella isolates from pediatric cases of enteritis in Tehran, Iran. Foodborne Pathog. Dis. 2011, 8, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Taha, R.; Alghalibi, S.; Saleh, M. Salmonella spp. in patients suffering from enteric fever and food poisoning in Thamar city, Yemen. EMHJ East. Mediterr. Health J. 2013, 19, 88–93. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Vieira, A.R.; Karlsmose, S.; Lo Fo Wong, D.M.; Jensen, A.B.; Wegener, H.C.; Aarestrup, F.M. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathog. Dis. 2011, 8, 887–900. [Google Scholar] [CrossRef] [Green Version]
- Galanis, E.; Lo Fo Wong, D.M.; Patrick, M.E.; Binsztein, N.; Cieslik, A.; Chalermchaikit, T.; Wegener, H.C. Web-based surveillance and global Salmonella distribution, 2000–2002. Emerg. Infect. Dis. 2006, 12, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, S.M.; Kaakoush, N.O.; Leach, S.T.; Nahidi, L.; Lu, H.K.; Norman, J.; Mitchell, H.M. Host Attachment, Invasion, and Stimulation of Proinflammatory Cytokines by Campylobacter Concisus and other Non-Campylobacter jejuni Campylobacter species. J. Infect. Dis. 2010, 202, 1855–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pielsticker, C.; Glünder, G.; Rautenschlein, S. Colonization Properties of Campylobacter jejuni in Chickens. Eur. J. Microbiol. Immunol. 2012, 2, 61–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chon, J.-W.; Hyeon, J.-Y.; Lim, J.-H.; Kim, J.-H.; Song, K.-Y.; Seo, K.-H. Improvement of Modified Charcoal-cefoperazone-deoxycholate Agar by Supplementation with a High Concentration of Polymyxin B for the Detection of Campylobacter jejuni and C. coli in Chicken Carcass Rinse. Appl. Environ. Microbiol. 2012, 78, 1624–1626. [Google Scholar] [CrossRef] [Green Version]
- Mohamed-Yousif, I.M. Wild birds as Possible Source of Campylobacter jejuni. Approaches Poult. Dairy Vet. Sci. 2021, 8, 791–793. Available online: https://crimsonpublishers.com/apdv/pdf/APDV.000689.pdf.
- Kendall, J.J.; Barrero-Tobon, A.M.; Hendrixson, D.R.; Kelly, D.J. Hemerythrins in the Microaerophilic Bacterium Campylobacter jejuni Help Protect Key Iron–sulphur Cluster Enzymes from Oxidative Damage. Environ. Microbiol. 2014, 16, 1105–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, O.A.; Cagney, C.; McDowell, D.A.; Duffy, G.A. Method for the Growth and Recovery of 17 Species of Campylobacter and Its Subsequent Application to Inoculated Beef. J. Microbiol. Methods 2010, 83, 1–7. [Google Scholar] [CrossRef]
- Kienesberger, S.; Trummler, C.S.; Fauster, A.; Lang, S.; Sprenger, H.; Gorkiewicz, G.; Zechner, E.L. Interbacterial Macromolecular Transfer by the Campylobacter fetus subsp. VenerealisTtype IV Secretion System. J. Bacteriol. 2011, 193, 744–758. [Google Scholar] [CrossRef] [Green Version]
- Hansson, I.; Sandberg, M.; Habib, I.; Lowman, R.; Engvall, E.O. Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis. Transbound. Emerg. Dis. 2018, 65, 30–48. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.-Y.I.; Saleha, A.-A.; Abu, J.; Siti, K.-B.; Puan, C.L.; Bitrus, A.A.; Aliyu, A.B.; Awad, E.A. Occurrence of antibiotic resistant Campylobacter in wild birds and poultry. Malays. J. Microbiol. 2019, 15, 143–151. [Google Scholar] [CrossRef]
- Gundogdu, O.; Wren, B.W. Microbe Profile: Campylobacter jejuni—Survival instincts. Microbiology 2020, 166, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Mohamed-Yousif, I. Occurrence of antimicrobial resistance in foodborne bacteria (Campylobacter and E. coli): A Food Safety Issue and Public Health Hazard. Int. J. Food Sci. Nutr. 2021, 11. [Google Scholar] [CrossRef]
- Mohamed-Yousif, I.M. Occurrence of Campylobacter jejuni in Poultry Meats. Nov Res Sci. 8(1). 2021. Available online: https://crimsonpublishers.com/nrs/pdf/NRS.000679 (accessed on 12 June 2021).
- Yehia, H.M.; AL-Dagal, M.M. Prevalence of Campylobacter jejuni in chicken produced by major poultry companies in Saudi Arabia. Int. J. Food Contam. 2014, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Mohamed-Yousif, I.M. Role of Ruminants in Occurrence and Prevalence Campylobacter jejuni in Humans. Nov Res Sci. 8(5). 2021. Available online: https://crimsonpublishers.com/nrs/pdf/NRS.000699 (accessed on 12 June 2021).
- Ghaffoori, M.H. Prevalence of Campylobacter jejuni In Chicken Meat Marketed In Baghdad Province. Int. J. Adv. Res. Biol. Sci 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Bahobail, A.A.S.; Hassan, S.A.; El-Deeb, B.A. Microbial quality and content aflatoxins of commercially available eggs in Taif, Saudi Arabia. Afr. J. Microbiol. Res. 2012, 6, 3337–3342. [Google Scholar]
- Jribi, H.; Sellami, H.; Mariam, S.; Smaoui, S.; Ghorbel, A.; Hachicha, S.; Gdoura, R. Isolation and identification of Campylobacter spp. from poultry and poultry by-products in Tunisia by conventional culture method and multiplex real-time PCR. J. Food Prot. 2017, 80, 1623–1627. [Google Scholar] [CrossRef]
- Abd El-Aziz, D.; Abd-Allah, S. Incidence of Campylobacter species in wholesale chicken carcasses and chicken meat products in Assiut city, Egypt. Int. Food Res. J. 2017, 24, 2660–2665. [Google Scholar]
- El-Zamkan, M.A.; Hameed, K.G.A. Prevalence of Campylobacter jejuni and Campylobacter coli in raw milk and some dairy products. Vet. World 2016, 9, 1147. [Google Scholar] [CrossRef] [Green Version]
- El-Sharoud, W.M. Prevalence and survival of Campylobacter in Egyptian dairy products. Food Res. Int. 2009, 42, 622–626. [Google Scholar] [CrossRef]
- Al-Freihi, H.; Twum-Danso, K.; Sohaibani, M.; Bella, H.; El-Mouzan, M.; Sama, K. The microbiology of acute diarrhoeal disease in the eastern province of Saudi Arabia. East Afr. Med J. 1993, 70, 267–269. [Google Scholar]
- Habib, I.; Harb, A.; Hansson, I.; Vågsholm, I.; Osama, W.; Adnan, S.; Boqvist, S. Challenges and Opportunities towards the Development of Risk Assessment at the Consumer Phase in Developing Countries—The Case of Campylobacter Cross-Contamination during Handling of Raw Chicken in Two Middle Eastern Countries. Pathogens 2020, 9, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Global Tuberculosis Reports 2013; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Jalo, I.M.; Saleha, A.-A.; Bitrus, A.A.; Goni, M.D.; Abu, J.; Bejo, S.K.; Mohamed, M.A.; Mohamed, M.-Y.I. Occurrence of Multidrug resistant (MDR) Campylobacter species isolated from retail Chicken meats in Selangor, Malaysia and their associated risk factors. Malays. J. Microbiol. 2018, 14, 272–281, ID: wpr-732390. [Google Scholar]
- Jalo, M.I.; Saleha, A.A.; Jalila, A.; Khairani-Bejo, S.; Aung, W.W.; Goni, D.M.; Mohamed, M. Occurrence of multidrug resistant (MDR) Campylobacter in chicken meat retailed in markets in Selangor, Malaysia. J. Vet. Res. 2014, 5, 65–67, ISSN: 2180-3897. [Google Scholar]
- Hassanain, N.A. Antimicrobial resistant Campylobacter jejuni isolated from humans and animals in Egypt. Glob. Vet. 2011, 6, 195–200. [Google Scholar]
- Wasfy, M.O.; Oyofo, B.A.; David, J.C.; Ismail, T.F.; El-Gendy, A.M.; Mohran, Z.S.; Peruski, L.F., Jr. Isolation and antibiotic susceptibility of Salmonella, Shigella, and Campylobacter from acute enteric infections in Egypt. J. Health Popul. Nutr. 2000, 18, 33–38. [Google Scholar] [PubMed]
- Kanaan, M.H.G.; Mohammed, F.A. Antimicrobial resistance of Campylobacter jejuni From poultry meat in local markets of Iraq. Plant Arch. 2020, 20, 410–415. [Google Scholar]
- Gharbi, M.; Béjaoui, A.; Ben Hamda, C.; Jouini, A.; Ghedira, K.; Zrelli, C.; Ghram, A. Prevalence and antibiotic resistance patterns of Campylobacter spp. isolated from broiler chickens in the north of Tunisia. BioMed Res. Int. 2018, 7943786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senok, A.; Yousif, A.; Mazi, W.; Sharaf, E.; Bindayna, K.; Elnima, E.; Botta, G. Pattern of antibiotic susceptibility in Campylobacter jejuni isolates of human and poultry origin. Jpn. J. Infect. Dis. 2007, 60, 1. [Google Scholar]
- Sonnevend, A.; Rotimi, V.O.; Kolodziejek, J.; Usmani, A.; Nowotny, N.; Pál, T. High level of ciprofloxacin resistance and its molecular background among Campylobacter jejuni strains isolated in the United Arab Emirates. J. Med. Microbiol. 2006, 55, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Jumaa, P.; Neringer, R. A survey of antimicrobial resistance in a tertiary referral hospital in the United Arab Emirates. J. Chemother. 2005, 17, 376–379. [Google Scholar] [CrossRef]
- Abushahba, M.F.; Ahmed, S.O.; Ibrahim, A.A.; Mosa, H.A. Prevalence of zoonotic species of Campylobacter in broiler chicken and humans in Assiut governorate, Egypt. Approaches Poult. Dairy Vet. Sci 2018, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- El-Tawab, A.; Ashraf, A.; El Hofy, F.I.; Ammar, A.M.; Ahmed, H.A.; Hefny, A.A. Bacteriological and molecular identification of Campylobacter species in chickens and humans, at Zagazig city, Egypt. Benha Vet. Med. J. 2015, 28, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Motlak, A. Campylobacter jejuni Carriage of Broiler Carcasses at Slaughter-house as “an Important Parameter of food Hygiene”. Kufa J. Vet. Med. Sci. 2016, 7, 48–55. [Google Scholar]
- Alaboudi, A.R.; Malkawi, I.M.; Osaili, T.M.; Abu-Basha, E.A.; Guitian, J. Prevalence, antibiotic resistance and genotypes of Campylobacter jejuni and Campylobacter coli isolated from chickens in Irbid governorate, Jordan. Int. J. Food Microbiol. 2020, 327, 108656. [Google Scholar] [CrossRef]
- Neves, M.; Malkawi, I.; Walker, M.; Alaboudi, A.; Abu-Basha, E.; Blake, D.; Crotta, M. The transmission dynamics of Campylobacter jejuni among broilers in semi-commercial farms in Jordan. Epidemiol. Infect. 2019, 147, e134. [Google Scholar] [CrossRef] [Green Version]
- Osaili, T.M.; Alaboudi, A.R.; Al-Akhras, R.R. Prevalence and antimicrobial susceptibility of Campylobacter spp. in live and dressed chicken in Jordan. Foodborne Pathog. Dis. 2012, 9, 54–58. [Google Scholar] [CrossRef]
- Asmai, R.; Karraouan, B.; Es-Soucratti, K.; En-Nassiri, H.; Bouchrif, B.; Karib, H.; Triqui, R. Prevalence and antibiotic resistance of Campylobacter coli isolated from broiler farms in the Marrakesh Safi region, Morocco. Vet. World 2020, 13, 1892. [Google Scholar] [CrossRef]
- Jouahri, M.; Asehraou, A.; Karib, H.; Hakkou, A.; Touhami, M. Prevalence and control of thermo-tolerant Campylobacter species in raw poultry meat in Morocco. MESO Prvi Hrvat. Časopis Mesu 2007, 9, 262–267. [Google Scholar]
- Abu-Madi, M.; Behnke, J.M.; Sharma, A.; Bearden, R.; Al-Banna, N. Prevalence of virulence/stress genes in Campylobacter jejuni from chicken meat sold in Qatari retail outlets. PLoS ONE 2016, 11, e0156938. [Google Scholar] [CrossRef]
- Elbrissi, A.; Sabeil, Y.; Khalifa, K.A.; Enan, K.; Khair, O.M.; El Hussein, A. Isolation, identification and differentiation of Campylobacter spp. using multiplex PCR assay from goats in Khartoum State, Sudan. Trop. Anim. Health Prod. 2017, 49, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Moumita, S.; Das, B.; Patnaik, A.; Balasubramanian, P.; Jayabalan, R. Genomics and Proteomics Features of Listeria monocytogenes. In Food Molecular Microbiology; CRC Press: Boca Raton, FL, USA, 2019; pp. 124–139. [Google Scholar]
- Schlech, W.F., III; Acheson, D. Foodborne listeriosis. Clin. Infect. Dis. 2000, 31, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, R.; Ferreira, V.; Brandão, T.R.; Palencia, R.C.; Almeida, G.; Teixeira, P. Persistent and non-persistent strains of Listeria monocytogenes: A focus on growth kinetics under different temperature, salt, and pH conditions and their sensitivity to sanitizers. Food Microbiol. 2016, 57, 103–108. [Google Scholar] [CrossRef]
- Redfern, J.; Verran, J. Effect of humidity and temperature on the survival of Listeria monocytogenes on surfaces. Lett. Appl. Microbiol. 2017, 64, 276–282. [Google Scholar] [CrossRef]
- Chen, M.; Cheng, J.; Zhang, J.; Chen, Y.; Zeng, H.; Xue, L.; Wu, H. Isolation, potential virulence, and population diversity of Listeria monocytogenes from meat and meat products in China. Front. Microbiol. 2019, 10, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasagabaster, A.; Jiménez, E.; Lehnherr, T.; Miranda-Cadena, K.; Lehnherr, H. Bacteriophage biocontrol to fight Listeria outbreaks in seafood. Food Chem. Toxicol. 2020, 145, 111682. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, A.; Baboli, Z.M.; Schimmel, K.; Jafari, S.M.; Williams, L. Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends Food Sci. Technol. 2020, 96, 61–78. [Google Scholar] [CrossRef]
- Silva, D.A.; Vallim, D.; Rosas, C.; de Mello, V.; Brandão, M.; de Filippis, I. Genetic diversity of Listeria monocytogenes serotype 1/2a strains collected in Brazil by Multi-Virulence-Locus Sequence Typing. Lett. Appl. Microbiol. 2020, 72, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Miceli, A.; Settanni, L. Influence of agronomic practices and pre-harvest conditions on the attachment and development of Listeria monocytogenes in vegetables. Ann. Microbiol. 2019, 69, 185–199. [Google Scholar] [CrossRef]
- Inoue, T.; Itani, T.; Inomata, N.; Hara, K.; Takimoto, I.; Iseki, S.; Shimada, Y. Listeria Monocytogenes septicemia and meningitis caused by Listeria enteritis complicating ulcerative colitis. Intern. Med. 2017, 56, 2655–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, L.H.; Kinder, J.M.; Wilburn, A.; D’Mello, R.J.; Braunlin, M.R.; Jiang, T.T.; Way, S.S. Preconceptual Zika virus asymptomatic infection protects against secondary prenatal infection. PLoS Pathog. 2017, 13, e1006684. [Google Scholar] [CrossRef] [Green Version]
- King, M.T.; Huh, I.; Shenai, A.; Brooks, T.M.; Brooks, C.L. Structural basis of VHH-mediated neutralization of the foodborne pathogen Listeria monocytogenes. J. Biol. Chem. 2018, 293, 13626–13635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reda, W.W.; Abdel-Moein, K.; Hegazi, A.; Mohamed, Y.; Abdel-Razik, K. Listeria monocytogenes: An emerging foodborne pathogen and its public health implications. J. Infect. Dev. Ctries. 2016, 10, 149–154. [Google Scholar] [CrossRef] [PubMed]
- AbdEl-Malek, A.M.; Ali, S.F.H.; Moemen, R.H.; Mohamed, A.; Elsayh, K.I. Occurrence of Listeria species in meat, chicken products and human stools in Assiut city, Egypt with PCR use for rapid identification of Listeria monocytogenes. Vet. World 2010, 3, 353. [Google Scholar]
- EL-Naenaeey, E.-S.; Abdelwahab, A.; Merwad, A.; Abdou, H. Prevalence of Listeria Species in Dairy Cows and Pregnant Women with Reference to Virulotyping of Listeria monocytogenes in Egypt. Zagazig Vet. J. 2019, 47, 248–258. [Google Scholar] [CrossRef]
- Ismaiel, A.A.-R.; Ali, A.E.-S.; Enan, G. Incidence of Listeria in Egyptian meat and dairy samples. Food Sci. Biotechnol. 2014, 23, 179–185. [Google Scholar] [CrossRef]
- Amajoud, N.; Leclercq, A.; Soriano, J.M.; Bracq-Dieye, H.; El Maadoudi, M.; Abrini, J. Prevalence of Listeria spp. and characterization of Listeria monocytogenes isolated from food products in Tetouan, Morocco. Food Control 2018, 84, 436–441. [Google Scholar] [CrossRef] [Green Version]
- El Marnissi, B.; Bennani, L.; Cohen, N.; Lalami, A.E.O.; Belkhou, R. Presence of Listeria monocytogenes in raw milk and traditional dairy products marketed in the north-central region of Morocco. Afr. J. Food Sci. 2013, 7, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Alsheikh, A.; Mohammed, G.; Abdalla, M. Isolation and identification of Listeria monocytogenes from retail broiler chicken ready to eat meat products in Sudan. Int. J. Anim. Vet. Adv. 2013, 5, 9–14. [Google Scholar] [CrossRef]
- Yehia, H.M.; Ibraheim, S.M.; Hassanein, W.A. Prevalence of Listeria species in some foods and their rapid identification. Trop. J. Pharm. Res. 2016, 15, 1047–1052. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, I.R.; Abdelmonem, M.A.; Amin, H.M. Virulence and antimicrobial susceptibility profile of Listeria monocytogenes isolated from frozen vegetables available in the Egyptian market. Afr. J. Microbiol. Res. 2018, 12, 218–224. [Google Scholar]
- Osman, K.M.; Kappell, A.D.; Fox, E.M.; Orabi, A.; Samir, A. Prevalence, Pathogenicity, Virulence, Antibiotic Resistance, and Phylogenetic Analysis of Biofilm-Producing Listeria monocytogenes Isolated from Different Ecological Niches in Egypt: Food, Humans, Animals, and Environment. Pathogens 2020, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Osaili, T.M.; Alaboudi, A.R.; Nesiar, E.A. Prevalence of Listeria spp. and antibiotic susceptibility of Listeria monocytogenes isolated from raw chicken and ready-to-eat chicken products in Jordan. Food Control 2011, 22, 586–590. [Google Scholar] [CrossRef]
- Aziz, S.A.A.A.; Mohamed, M.B.E.D. Prevalence, virulence genes, and antimicrobial resistance profile of Listeria monocytogenes isolated from retail poultry shops in Beni-Suef city, Egypt. J. Adv. Vet. Anim. Res. 2020, 7, 710. [Google Scholar] [CrossRef]
- El-Gohary, A.H.; Mohamed, A.A.; Ramadan, H.H.; Abuhatab, E.A. Zoonotic and Molecular Aspects of Listeria Species Isolated From Some Farm Animals at Dakahlia Province in Egypt. Alex. J. Vet. Sci. 2018, 58, 208–214. [Google Scholar] [CrossRef]
- Elbeldi, A.; Smaoui, H.; Hamouda, S.; Helel, S.; Hmaied, F.; Mustapha, B.; Barbouche, M.-R. Listeriosis in Tunis: Seven cases reports. Bull. Soc. Pathol. Exot. (1990) 2010, 104, 58–61. [Google Scholar] [CrossRef]
- Ramdani-Bouguessa, N.; Rahal, A.K. Neonatal listeriosis in Algeria: The first two cases. Clin. Microbiol. Infect. 2000, 6, 108–111. [Google Scholar] [CrossRef] [Green Version]
- Benabdejlil, Y.; Chergi, M.; Kouach, J.; Massaoui, D.; Dehayni, M. Listeriosis in pregnant women in Morocco: A case report. J. Gynecol. Obstet. 2015, 3, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Abdellaoui, L.; Bouayad, L.; Bensefia, S.A.; Hamdi, T.M. Serotyping and antibiotic sensitivity of Listeria monocytogenes isolated from cheeses produced in the region of Algiers (Algeria). Veterinaria 2020, 69, 43–49. [Google Scholar]
- Benhalima, L.; Merad, T.; Bensouilah, M.; Ouzrout, R. Listeria monocytogenes and other Listeria species in raw milk and sausage in East Algeria. Asian J. Dairy Food Res. 2019, 38, 7–11. [Google Scholar] [CrossRef]
- Bouayad, L.; Hamdi, T.-M. Prevalence of Listeria spp. in ready to eat foods (RTE) from Algiers (Algeria). Food Control 2012, 23, 397–399. [Google Scholar] [CrossRef]
- Dapgh, A.N.; ELGedawy, A.; Abouelhag, H.A.; Mansour, A.S.; Gaber, E.; Farahat, E. Advanced Identification and Characterization of Listeria Species in Egyptian Local Soft Cheese. South Asian J. Res. Microbiol. 2020, 8, 11–18. [Google Scholar] [CrossRef]
- Mahmoud, H.; Karmi, M.; Maky, M. Occurrence and Characterization of Listeria Species Isolated from Processed Meat in Qena, Egypt. Zagazig Vet. J. 2019, 47, 267–276. [Google Scholar] [CrossRef]
- Tahoun, A.B.; Abou Elez, R.M.; Abdelfatah, E.N.; Elsohaby, I.; El-Gedawy, A.A.; Elmoslemany, A.M. Listeria monocytogenes in raw milk, milking equipment and dairy workers: Molecular characterization and antimicrobial resistance patterns. J. Glob. Antimicrob. Resist. 2017, 10, 264–270. [Google Scholar] [CrossRef]
- Mohamed, Y.; Reda, W.W.; Abdel-Moein, K.; Abd El-Razik, K.A.; Barakat, A.M.; El Fadaly, H.A.; Hassanain, N.A.; Hegazi, A.G. Prevalence and phylogenetic characterization of Listeria monocytogenes isolated from processed meat marketed in Egypt. J. Genet. Eng. Biotechnol. 2016, 14, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Meshref, A.; Zeinhom, M.; Abdel-Atty, N.S. Occurrence and distribution of Listeria species in some Egyptian foods. Alex. J. Vet. Sci. 2015, 46, 42–47. [Google Scholar] [CrossRef]
- Al-Mashhadany, D.A. Occurrence and antibiogram of Listeria monocytogenes Isolates from Retail Meat Shops at Erbil City, Kurdistan Region, Iraq. Ital. J. Food Saf. 2019, 8, 8451. [Google Scholar] [CrossRef]
- Al-Brefkani, A.M.T.; Mammani, I.M.A. Characterisation of Listeria monocytogenes from Food and Human Clinical Samples at Duhok, Kurdistan Region of Iraq. J. Pure Appl. Microbiol. 2019, 13, 2215–2226. [Google Scholar] [CrossRef] [Green Version]
- Al-Ali, H.J.; Abd Al-Rodhan, M.; Al-Hilali, S.A.; Al-Charrakh, A.H.; Al-Mohana, A.M.; Hadi, Z.J. Molecular detection ofserotype groups of Listeria monocytogenes isolated from gallbladder of cattle and sheep in Iraq. Vet. World 2018, 11, 431. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Tayeb, B.; Ameen, A.; Merza, S.; Sharif, Y. Isolation and molecular detection of Listeria monocytogenes in minced meat, frozen chicken and cheese in Duhok province, Kurdistan region of Iraq. J. Food Microbiol. Saf. Hyg. 2017, 2, 118. [Google Scholar]
- Al-Nabulsi, A.A.; Osaili, T.M.; Awad, A.A.; Olaimat, A.N.; Shaker, R.R.; Holley, R.A. Occurrence and antibiotic susceptibility of Listeria monocytogenes isolated from raw and processed meat products in Amman, Jordan. CyTA—J. Food 2015, 13, 346–352. [Google Scholar] [CrossRef]
- Osaili, T.M.; Al-Nabulsi, A.A.; Taha, M.H.; Al-Holy, M.A.; Alaboudi, A.R.; Al-Rousan, W.M.; Shaker, R.R. Occurrence and antimicrobial susceptibility of Listeria monocytogenes isolated from brined white cheese in Jordan. J. Food Sci. 2012, 77, M528–M532. [Google Scholar] [CrossRef]
- Awaisheh, S. Incidence and contamination level of Listeria monocytogenes and other Listeria spp. in ready-to-eat meat products in Jordan. J. Food Prot. 2010, 73, 535–540. [Google Scholar] [CrossRef]
- Hesham, T.N.; Hanan, L.E.; Fathi, A.T.; Gehan, A.E.; Salem, F.A. Prevalence of Listeria spp. among Dairy, Meat and their Products Marketed in Tripoli, Libya. Int. J. Life Sci. Res. 2017, 5, 19–25. [Google Scholar]
- Boukili, M.; Filali, F.R.; Lafkih, N.; Bouymajane, A.; Sefiani, M.; Moumni, M. Prevalence, characterization and antimicrobial resistance of Listeria monocytogenes isolated from beef meat in Meknes city, Morocco. Germs 2020, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- El Hag, M.M.; El Zubeir, I.; Mustafa, N.E. Prevalence of Listeria species in dairy farms in Khartoum State (Sudan). Food Control 2020, 123, 107699. [Google Scholar] [CrossRef]
- Alsheikh, A.; Mohammed, G.; Abdalla, M.; Bakhiet, A. First isolation and identification of Listeria monocytogenes isolated from frozen and shock frozen dressed broiler chicken in Sudan. Microbiol. Res. J. Int. 2014, 28–38. [Google Scholar] [CrossRef]
- Al-Mariri, A.; Younes, A.; Ramadan, L. Prevalence of Listeria spp. in raw milk in Syria. Bulg. J. Vet. Med. 2013, 16, 112–122. [Google Scholar]
- Hmaïed, F.; Helel, S.; François, J.-M.; Leclercq, A.; Lecuit, M.; Smaoui, H.; Barkallah, I. Prevalence, identification by a DNA microarray-based assay of human and food isolates Listeria spp. from Tunisia. Pathol. Biol. 2014, 62, 24–29. [Google Scholar] [CrossRef]
Country | Tested Food Samples (Total Number) | % (Out of Total Number) of NTS Positive Samples | Salmonella Serotypes (%) * | References |
---|---|---|---|---|
Algeria | Frozen beef liver (n = 50) | 4 | ND | [18] |
Chicken Liver (n = 25) | 4 | Kentucky (100) | [23] | |
Fruit and vegetable (n = 181) | ND (not detected) | ND | [24] | |
Eggs (n = 45) | 4.4 | Bradford (100), Entritidis (0) | [25] | |
Dairy products (n = 310) | ND | ND | [26] | |
Raw red meat and meat products (n = 144) | 23.6 | Agona (1.6), Albany (3.1), Altona (12.5), Anatum (14.0), Corvallis (7.8), Enteritidis (7.8), Hadar (1.6), Heidelberg (4.7), Indiana (4.7), Infantis (1.6), Kedougou (1.6), Lexington (1.6), Liverpool (1.6), Mbandaka (4.7) Montevideo (6.3). | [17] | |
Egypt | Fresh poultry (n = 60) | 10 | Enteritidis (13.3), Typhimurium (60.0), Kentucky (6.7). | [27] |
Frozen poultry (n = 30) | 3.3 | |||
Fresh beef (n = 60) | 11.7 | |||
Frozen beef (n = 30) | 3.3 | |||
Fresh vegetables and ready-to-eat salads (n = 121) | ND | ND | [28] | |
Raw chicken meat (n = 100) | 5 | Typhimurium (60.0), Enteritidis (40.0). | [29] | |
Poultry products (n = 75) | 6.6 | Enteritidis (40), Typhimurium (40), Kentucky (20) | [30] | |
Fresh chicken meat (n = 200) | 3.5 | Enteritidis (14.3), Typhimurium (71.4), Kentucky (14.3). | [31] | |
Ready-to-eat chicken meat (n = 100) | ND | |||
Raw egg yolk (n = 30) | ND | Enteritidis (3.1), Typhimurium (0), Kentucky (41.5), Other types (55.4) | [19] | |
Eggshell (n = 30) | ND | |||
Mixed chicken meat samples (n = 62) | 60 | |||
Chicken skin (n = 22) | 64 | |||
Chicken carcasses (n = 50) | 16 | Enteritidis (37.4), Typhimurium (30.1), Kentucky (10.8), Muenster (8.4), Virchow (4.8), Anatum (4.8), Haifa (1.2), Other types (2.4) | [32] | |
Frozen beef (n = 160) | 2.5 | Enteritidis (32.1), Typhimurium (41.5), Infantis (20.8) | [21] | |
Fresh beef (n = 80) | 18.7 | |||
Beef carcasses (n = 240) | 8.3 | |||
Chicken breast (n = 160) | 1.25 | |||
Chicken legs (n = 160) | 7.5 | |||
Raw milk (Buffalo) (n = 240) | 3.3 | |||
Raw milk (Cow) (n = 240) | 1.6 | |||
Cheese (Kareish) (n = 120) | 2.5 | |||
Cheese (Domiati) (n = 120) | 0.83 | |||
Yogurt (n = 80) | ND | |||
Frozen chicken breast fillets (n = 25) | 52 | Enteritidis (100) | [22] | |
Frozen chicken legs (n = 25) | 36 | Enteritidis (100) | ||
Minced frozen meats (n = 25) | 20 | Kentucky (100) | ||
Frozen chicken (n = 100) | 16 | Enteritidis (12.5), Typhimurium (50.0), Kentucky (6.3), Newport (6.3), Muenchen (6.3), Hadar (12.5) | [16] | |
Uncooked Hamburger (n = 10) | 50 | ND | [33] | |
Fresh sheep and beef meat (n = 50) | 4.5 | ND | [34] | |
Jordan | Eggs (n = 25) | 12 | ND | [35] |
Fresh fish from Yemen (n = 110) | 6.4 | ND | [36] | |
Pre-sliced imported cheddar cheese (n = 100) | 10 | ND | [37] | |
Chicken Shawarma (n = 301) | 1 | ND | [38] | |
Roasted chicken (n = 157) | 0.6 | |||
Chicken burgers (n = 20) | ND | |||
Beef kubba (n = 115) | 0.9 | |||
Chicken Shawarma (n = 80) | 13.8 | Choleraesuis (100) | [39] | |
Beef Shawarma (n = 20) | 5 | |||
Raw milk (n = 20) | ND | ND | [40] | |
White soft cheeses fresh (n = 20) | ND | ND | ||
Labaneh (n = 20) | ND | ND | ||
Fresh and frozen beef, lamb, and poultry meat (n = 300) | 31 | ND | [41] | |
Lebanon | Qishta’a (heat-coagulated milk) (n = 31) | 42 | ND | [42] |
Morocco | Traditional cheese (n = 51) | 5.9 | Typhimurium (6.2), Enteritidis (4.2), Kentucky (22.9) Montevideo (6.2), Agona (16.7), Reading (12.5), Corvallis (8.3), Saintpaul (8.3) Israel (2.0), Hadar (2.0), Branderup (2.0) | [43] |
Minced meat (n = 138) | 12.3 | |||
Sausage (n = 20) | 5 | |||
Chicken (n = 86) | 20 | |||
Turkey (n = 17) | 52.9 | |||
Milk and other derivatives (n = 152) | ND. | |||
Turkey sausages (n = 60) | 23.3 | Typhimurium (5.9), Agona (2.9), Saintpaul (2.9), Mbandaka (11.8), Montevideo (8.8), Livingstone (2.9), Corvallis (23.5), Kentucky (17.6), Bovismorbificans (5.9), Anatum (2.9), Give (11.8), Muenster (2.9) | [44] | |
Beef sausages (n = 60) | 15 | |||
Artisanal sausages (n = 36) | 30.6 | |||
Cereal products (n = 60) | ND | - | [45] | |
Chicken meat, eggs, and visceral organs (n = 432) | 0.7 | Hadar (9.1), Corvallis (18.2), Mbandaka (18.2), Ouakam (18.2), Tm var. Cop (9.1), Virchow (18.2), Altona (9.1). | [46] | |
Mussels (n = 279) | 10 | Kentucky (57.1), Blockley (42.9), Senftenberg (0) | [47] | |
Cooked meat (n = 2952) | 0.7 | Anatum (3.8), Bareilley (1.0), Berta (1.9), Blokley (10.4), Brenderup (6.6), Bredeney (12.3), Enteritidis (2.8), Hadar (3.8), Infantis (23.8), Kiambu (5.7) | [48] | |
Sausages (n = 2052) | 0.1 | |||
Chicken meat (n = 1200) | 0.4 | |||
Pastry (n = 2232) | 0.2 | |||
Chopped meat (n = 196) | 2.4 | |||
Sea food (n = 562) | 1.8 | |||
Spices (n = 80) | 1.3 | |||
Slaughterhouses: beef meat (n = 2122) | 3.5 | Labadi (1.9), MBandaka (7.6), Montevideo (3.8), Typhimurium (8.5), Salamae type II (1.0), Non-typeable (2.8) | ||
Raw ground beef (n = 150) | 2 | Entritidis (33.3), Typhimurium (33.3). | [49] | |
Fresh sausage (n = 100) | 4 | Anatum (33.3), Bareilly: (14.3) | ||
Chicken breast, legs, liver, gizzard (n = 576) | 10 | Typhimurium (40.4), Newport (26.3), Montevideo (17.5), Heidelberg (15.8) | [50] | |
Vegetable samples (n = 50) | 2 | Arizona (100) | [20] | |
Libya | Uncooked chicken burger (n = 56) | 12.5 | ND | [51] |
Cooked spiced chicken burger (n = 64) | 1.6 | |||
Palestine | Raw milk, yogurt (n = 155) | ND | ND | [52] |
Pasteurized milk (n = 235) | ND | |||
Concentrated yogurt, salt (n = 170) | ND | |||
Cheese and cooked cheese (n = 109) | ND | |||
Saudi Arabia | Fish from Thailand (n = 98) | 44.9 | ND | [53] |
Fish from Vietnam (n = 25) | 52 | |||
Fish from Bahrain (n = 35) | 31.4 | |||
Fish from India (n = 50) | 28 | |||
Fish from Myanmar (n = 15) | 46.7 | |||
Frozen meat and fresh meat (n = 60) | 25 | ND | [54] | |
West region (n = 40) | ND | ND | [55] | |
East region (n = 40) | 20 | |||
North region (n = 40) | ND | |||
South region (n = 40) | 7.5 | |||
Center region (n = 40) | 2.5 | |||
Fresh vegetables (n = 68) | ND | ND | [56] | |
Chicken (n = 100) | 1 | Arizona (100) | [57] | |
Coffee beans (n = 31) | ND | ND | [58] | |
Raw milk (n = 16) | ND | ND | [59] | |
Sudan | Raw and cooked food (n = 370) | 2.4 | Enteritidis (22.2), Typhimurium (11.1), Livingstone (11.1), Agona (11.1), Blockley: (11.1), Molade (22.2), I:rough-O:I,z13:1,5 (11.1) | [60] |
Tunisia | Cooked dishes (n=150) | 21.3 | Zanzibar (0.08), Kentucky (28.0), Manchester (12.0), Schwarzengrund (0.08), Bredeney (4.0) Altona (12.0), Anatum (20.0), Amsterdam (4.0), Orion (4.0) | [61] |
Raw milk (n = 93) | 33.3 | |||
Dairy products (n = 22) | 22.7 | |||
Vegetables salad (n = 70) | 12.8 | |||
Seafood (n = 46) | 23.9 | |||
Raw poultry meat including (n = 45) | 60 | |||
Cakes (n = 41) | 26.8 | |||
Salami and sausage (n = 20) | 25 | |||
Raw red meat (n = 13) | 35.5 | |||
Chicken carcasses (n = 50) | 16 | Enteritidis (100) | [62] | |
Cuts of beef (n = 144) | 29.8 | Enteritidis (3.8), Typhimurium (35.0), Kentucky (17.5), Suberu (15.0), Newlands (8.8), Zanzibar (13.8), Orion (7.5), Neumuenster (1.3) | [63] | |
Raw chicken (n = 60) | 48.3 | |||
Portions of minced meat (n = 56) | 10.7 | |||
Cuts of lamb (n = 33) | 6 | |||
Merguez (sausages) (n = 10) | ND | |||
Fish (n = 12) | ND |
Country | Tested Food Samples (Total Number) | Campylobacter spp. % * | C. jejuni % | C. coli % | Other Species | References |
---|---|---|---|---|---|---|
Egypt | Broiler (n = 101) | 16.8 | ND | 4 | ND | [108] |
Slaughterhouses (n = 104) | 24 | ND | 3.9 | ND | ||
Fresh chicken meat products (n = 30) | 53.3 | 46.7 | 46.7 | ND | [93] | |
Frozen chicken meat products (n = 30) | 53.3 | 46.7 | 40 | ND | ||
Chicken burger (n = 15) | ND | ND | ND | ND | ||
Chicken nuggets (n = 15) | 13.3 | 13.3 | 13.3 | ND | ||
Raw milk (n = 50) | 22 | 20 | 20 | ND | [94] | |
Kareish cheese (n = 50) | 34 | 14 | 14 | ND | ||
Yoghurt (n = 50) | 18 | 8 | 8 | ND | ||
Skin (n = 39) | 30.8 | 12.8 | 17.9 | C. lari (17.9), C. hyointestinal (0) | [109] | |
Thigh meat (n = 39) | 38.5 | 17.9 | 20.5 | C. lari (20.5), C. hyointestinal (1) | ||
Breast meat (n = 39) | 41 | 33.3 | 5.1 | C. lari (5.1), C. hyointestinal (2.7) | ||
Raw milk (n = 50) | ND | 4 | ND | ND | [95] | |
Laban Rayeb (n = 25) | ND | ND | ND | ND | ||
Stored Domiati cheese (n = 39) | ND | ND | ND | ND | ||
Fresh Domiati cheese (n = 38) | ND | 11 | ND | ND | ||
Zabady (n = 25) | ND | ND | ND | ND | ||
Ras cheese (n = 25) | ND | ND | ND | ND | ||
Kariesh cheese (n = 25) | ND | ND | ND | ND | ||
Iraq | Retail frozen chicken meat (n = 40) | 75 | 25 | 50 | ND | [103] |
Broiler chicken carcasses (n = 20) | ND | 60 | ND | ND | [90] | |
Broiler carcasses (n = 280) | ND | 49.6 | ND | ND | [110] | |
Jordan | Broiler chicken carcasses (n = 177) | 31.6 | 17 | ND | ND | [111] |
Broiler chicken (n = 50) | ND | 30 | ND | ND | [112] | |
Live and Dressed Chicken (n = 140) | 40 | ND | ND | ND | [113] | |
Morocco | Broiler (n = 105) | 71.4 | ND | 40 | ND | [114] |
Raw poultry meat (n = 50) | 62 | ND | ND | ND | [115] | |
Qatar | Chicken skin (400) | 36.5 | 29.3 | ND | ND | [116] |
Saudi Arabia | Chicken product (n = 99) | ND | 52.3 | ND | [88] | |
Unwashed eggshell (n = 20) | 5 | ND | ND | ND | [91] | |
Sudan | Goats (n = 336) | 83 | 5.7 | 69.6 | C. upsaliensis (3.9%), C. fetus (2.1%), C. lari (1.8%) | [117] |
Tunisia | Broiler chickens (n = 590) | 22.4 | ND | ND | ND | [104] |
Chicken meat (n = 149) | 26.8 | 16.1 | 3.4 | ND | [92] | |
Turkey meat (n = 101) | 23.7 | 13.8 | 1.9 | ND |
Country | Tested Food Samples (Total Number) | Listeria spp. % * | L. monocytogenes % | Other Listeria Species % | References |
---|---|---|---|---|---|
Algeria | Cheese (n = 385) | ND | 5.2 | ND | [146] |
Raw milk (n = 42) | 14.3 | ND | L. innocua (4.4), L. seeligeri (2.2). | [147] | |
Sausage (n = 45) | 6.7 | 2.2 | L. innocua (4.4), L. seeligeri (0). | ||
Foods ready to eat (n = 227) | 9.3 | 2.6 | L. innocua (4.8), L. ivanovii (1.3), L. welshimeri (0.4). | [148] | |
Egypt | Soft cheese (n = 155) | 14.2 | 4.5 | L. innocua (9.7). | [149] |
Milk of dairy cows (n = 200) | 19 | 4 | L. Ivanovii (6), L. innocua (2), L. grayi (3), L. Welshimeri (4) | [132] | |
Minced meat (n = 20) | 50 | 15 | L. ivanovii (10), L. welshimeri (5), L. innocua (20), L. seeligeri (0), L. grayi (0). | [150] | |
Kofta (n = 20) | 70 | 20 | L. ivanovii (5), L. welshimeri (10), L. innocua (14), L. seeligeri (10), L. grayi (5). | ||
Sausage (n = 20) | 35 | 10 | L. ivanovii (10), L. welshimeri (5), L. innocua (10), L. seeligeri (0), L. grayi (0). | ||
Burger (n = 20) | 60 | 15 | L. ivanovii (15), L. welshimeri (10), L. innocua (10), L. seeligeri (5), L. grayi (5). | ||
Luncheon (n = 20) | 40 | 10 | L. ivanovii (10), L. welshimeri (10), L. innocua (5), L. seeligeri (5), L. grayi (0). | ||
Pasterma (n = 20) | 25 | 5 | L. ivanovii (10), L. welshimeri (0), L. innocua (5), L. seeligeri (5), L. grayi (0). | ||
Vegetable (n = 331) | ND | 14.2 | ND | [138] | |
Raw milk, milking equipment, and hand swabs (n = 300) | 26.3 | 23 | L. innocua (3.3) | [151] | |
Beef burgers (n = 50) | ND | 32 | ND | [152] | |
Minced meat (n = 25) | ND | 4 | ND | ||
Luncheon (n = 25) | ND | 4 | ND | ||
Raw milk (n = 51) | 27.5 | 3.9 | L. ivanovii (3.9), L. innocua (9.8), L. seeligeri (5.9), L. grayi (2), L. welshimeri (2). | [153] | |
Kareish cheese (n = 51) | 13.73 | 2 | L. ivanovii (2), L. innocua (2), L. seeligeri (6.5), L. grayi (0), L. welshimeri (2). | ||
Burger (n = 50) | 8 | ND | L. ivanovii (2), L. innocua (0), L. seeligeri (0), L. grayi (4). L. welshimeri (2). | ||
Butter (n = 31) | 6.5 | ND | L. ivanovii (3.2), L. innocua (0), L. seeligeri (0), L. grayi (0), L. welshimeri (3.2). | ||
Frozen lean beef (n = 30) | 20 | 3.3 | L. ivanovii (6.7), L. grayi (3.3), L. innocua (3.3), L. Seeligeri (3.3), L. welshimeri (0). | [133] | |
Raw milk (n = 30) | 13.3 | ND | L. ivanovii (3.3), L. grayi (3.3), L. innocua (0), L. Seeligeri (3.3), L. welshimeri (3.3). | ||
Minced frozen beef (n = 25) | 32 | 4 | L. ivanovii (0), L. innocua (28), L. welshimeri (0), L. seeligeri (0), L. grayi (0), L. murrayi (0). | [131] | |
Luncheon (n = 25) | 32 | 8 | L. ivanovii (4), L. innocua (0), L. welshimeri (8), L. seeligeri (8), L. grayi (4), L. murrayi (0). | ||
Frozen chicken leg (n = 25) | 52 | ND | L. ivanovii (12), L. innocua (8), L. welshimeri (8), L. seeligeri (0), L. grayi (16), L. murrayi (0). | ||
Frozen chicken fillet (n = 25) | 56 | 8 | L. ivanovii (12), L. innocua (12), L. welshimeri (12), L. seeligeri (0), L. grayi (8), L. murrayi (4). | ||
Iraq | Red meat (n = 375) | ND | 13.9 | ND | [154] |
Frozen chicken (n = 309) | ND | 8.7 | ND | [155] | |
Fresh red meat (n = 167) | ND | 6 | ND | ||
Gallbladder of sheep (n = 150) | ND | 4 | ND | [156] | |
Gallbladder of cattle (n = 150) | ND | 1.3 | ND | ||
Cheese (n = 50) | ND | 2 | ND | [157] | |
Minced meat (n = 50) | ND | 14 | ND | ||
Frozen chicken (n = 50) | ND | 8 | ND | ||
Jordan | Raw and processed meat (n = 270) | ND | 24.4 | L. ivanovii (27), L. grayi (8.9), L. seeligeri (3.7), L. welshimeri (2.2), L. innocua (6.3) | [158] |
Ready-to-Eat Meat Products (n = 1028) | ND | 2 | ND | [38] | |
White Cheese (n = 350) | 27.1 | 11.1 | L. grayi (6.9%), L. innocua (2%), L. ivanovii (4%), L. seeligeri (2%), and L. welshimeri (0.3%) | [159] | |
RTE chicken-Shawirma (n = 30) | ND | 13.3 | L. ivanovii (66.7), L. grayi (6.6), L. seeligeri (3.3), L. welshimeri (0). | [140] | |
Fresh broiler chicken (n = 160) | ND | 9.4 | L. ivanovii (30), L. grayi (5), L. seeligeri (2.5), L. welshimeri (0.6). | ||
RTE chicken-burger (n = 30) | ND | 76.7 | L. ivanovii (10), L. grayi (0), L. seeligeri (0), L. welshimeri (0). | ||
RTE chicken-sausage (n = 30) | ND | 30 | L. ivanovii (6.7), L. grayi (0), L. seeligeri (0), L. welshimeri (3.3). | ||
Mortadella (n = 30) | ND | ND | L. ivanovii (0), L. grayi (0), L. seeligeri (0), L. welshimeri (0). | ||
RTE beef meat (n = 120) | ND | 19.2 | L. innocua (24), L. welshimeri (14.2). | [160] | |
Ready-to-eat poultry meat (n = 120) | ND | 15 | L. innocua (23), L. welshimeri (15.8). | ||
Libya | Raw cow milk (n = 20) | 45 | 20 | ND | [161] |
Laben (n = 20) | 35 | 5 | ND | ||
Ricotta cheese (n = 20) | 40 | 5 | ND | ||
Maassora cheese (n = 20) | 40 | 5 | ND | ||
Chicken meat (n = 20) | 45 | 20 | ND | ||
Chicken burger (n = 20) | 60 | 15 | ND | ||
Raw beef (n = 20) | 65 | 20 | ND | ||
Beef burger (n = 20) | 60 | 5 | ND | ||
Beef sausage (n = 20) | 55 | 20 | ND | ||
Morocco | Beef meat (n = 140) | ND | 7.1 | ND | [162] |
Dairy products (n = 404) | 3.2 | 0.7 | L. innocua (1.5), L. welshimeri (0.7), L. seeligeri (0.3). | [134] | |
Bovine meat products (n = 258) | 12.8 | 2.7 | L. innocua (9.3), L. welshimeri (0), L. seeligeri (0). | ||
Poultry meat products (n = 103) | 14.6 | ND | L. innocua (13.6), L. welshimeri (1), L. seeligeri (0). | ||
Pastries (n = 162) | 4.9 | 3.1 | L. innocua (1.9), L. welshimeri (0), L. seeligeri (0). | ||
Salads (n = 143) | 2.8 | ND | L. innocua (2.8), L. welshimeri (0), L. seeligeri (0). | ||
Chickpea flour cooked with eggs sold in the street (n = 20) | 25 | ND | L. innocua (25), L. welshimeri (0), L. seeligeri (0). | ||
Mayonnaises (n = 6) | 33.3 | 16.7 | L. innocua (16.7), L. welshimeri (0), L. seeligeri (0). | ||
Raw milk, Lben and Jben (n = 288) | ND | 5.9 | ND | [136] | |
Saudi Arabia | Raw beef (n = 10) | 50 | ND | L. innocua (10), L. seeligeri (10), L. welshimeri (20), L. grayi (10), L. ivanovii (0). | [91] |
Raw chicken (n = 10) | 50 | 20 | L. innocua (10), L. seeligeri (10), L. welshimeri (0), L. grayi (0), L. ivanovii (10). | ||
Raw fish (n = 10) | 30 | ND | L. innocua (0), L. seeligeri (10), L. welshimeri (10), L. grayi (10), L. ivanovii (0). | ||
Raw camel milk (n = 10) | 20 | ND | L. innocua (0), L. seeligeri (0), L. welshimeri (0), L. grayi (10), L. ivanovii (0). | ||
Unwashed eggshell (n = 20) | 10 | ND | ND | [91] | |
Sudan | Raw milk (n = 120) | 7.5 | 2.5 | L. innocua (0), L. Seeligeri (1.7), L. welshimeri (1.7), L. ivanovii (1.7), L. grayi (0), L. murrayi (0). | [163] |
Frozen chicken meat (n = 500) | 39 | 12.8 | L. ivanovii (19.4), L. grayi (4), L. seeligeri (1), L. welshimeri (1.8). | [164] | |
Syria | Cow milk (n = 345) | 70 | 6.7 | L. innocua (3.2), L. ivanovi (2), L. gravi (0.9), L. welshimeri (1.4), | [165] |
Sheep milk (n = 225) | 30 | 5.3 | L. innocua (1.8), L. ivanovi (2.2), L. gravi (0.4), L. welshimeri (1.3), | ||
Tunisia | Fish (n = 50) | - | 2 | Not reported | [166] |
Sausage (n = 30) | - | 3 | Not reported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, I.; Mohamed, M.-Y.I.; Khan, M. Current State of Salmonella, Campylobacter and Listeria in the Food Chain across the Arab Countries: A Descriptive Review. Foods 2021, 10, 2369. https://doi.org/10.3390/foods10102369
Habib I, Mohamed M-YI, Khan M. Current State of Salmonella, Campylobacter and Listeria in the Food Chain across the Arab Countries: A Descriptive Review. Foods. 2021; 10(10):2369. https://doi.org/10.3390/foods10102369
Chicago/Turabian StyleHabib, Ihab, Mohamed-Yousif Ibrahim Mohamed, and Mushtaq Khan. 2021. "Current State of Salmonella, Campylobacter and Listeria in the Food Chain across the Arab Countries: A Descriptive Review" Foods 10, no. 10: 2369. https://doi.org/10.3390/foods10102369
APA StyleHabib, I., Mohamed, M.-Y. I., & Khan, M. (2021). Current State of Salmonella, Campylobacter and Listeria in the Food Chain across the Arab Countries: A Descriptive Review. Foods, 10(10), 2369. https://doi.org/10.3390/foods10102369