Chemical Composition of Essential Oils of Aromatic and Medicinal Herbs Cultivated in Greece—Benefits and Drawbacks
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, K.; Zhang, M.; Bhandari, B.; Mujumdar, A.S. Edible flower essential oils: A review of chemical compositions, bioactivities, safety and applications in food preservation. Food Res. Int. 2021, 139, 109809. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Tassou, C.C.; Nychas, G.J.E. Antimicrobial activity of the essential oil of mastic gum (Pistacia lentiscus var. chia) on Gram positive and Gram negative bacteria in broth and in Model Food System. Int. Biodeter. Biodegr. 1995, 36, 411–420. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, M.; Bhandari, B.; Gao, Z. Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends Food Sci. Technol. 2017, 64, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Papadochristopoulos, A.; Kerry, J.P.; Fegan, N.; Burgess, C.M.; Duffy, G. Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged. Meat Foods 2021, 10, 1598. [Google Scholar] [CrossRef] [PubMed]
- Blowman, K.; Magalhães, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer properties of essential oils and other natural products. Evid. Based Complement. Alternat. Med. 2018, 2018, 3149362. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-J.; Yang, J.-J.; Wu, G.-J.; Jiang, J.-G. Comparative antioxidant, anticancer and antimicrobial activities of essential oils from Semen Platycladi by different extraction methods. Ind. Crops Prod. 2020, 146, 112206. [Google Scholar] [CrossRef]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef]
- Proestos, C.; Lytoudi, K.; Mavromelanidou, O.K.; Zoumpoulakis, P.; Sinanoglou, V.J. Antioxidant Capacity of Selected Plant Extracts and Their Essential Oils. Antioxidants 2013, 2, 11–22. [Google Scholar] [CrossRef]
- Mitropoulou, G.; Sidira, M.; Skitsa, M.; Tsochantaridis, I.; Pappa, A.; Dimtsoudis, C.; Proestos, C.; Kourkoutas, Y. Assessment of the Antimicrobial, Antioxidant, and Antiproliferative Potential of Sideritis raeseri subps. raeseri Essential Oil. Foods 2020, 9, 860. [Google Scholar] [CrossRef]
- Chaves, A.V.; He, M.L.; Yang, W.Z.; Hristov, A.N.; McAllister, T.A.; Benchaar, C. Effects of essential oils on proteolytic, deaminative and methanogenic activities of mixed ruminal bacteria. Can. J. Anim. Sci. 2008, 88, 117–122. [Google Scholar] [CrossRef]
- Callaway, T.R.; Carroll, J.A.; Arthington, J.D.; Edrington, T.S.; Anderson, R.C.; Ricke, S.C.; Crandall, P.; Collier, C.; Nisbet, D.J. Citrus Products and Their Use Against Bacteria: Potential Health and Cost Benefits. In Nutrients, Dietary Supplements, and Nutriceuticals. Nutrition and Health; Gerald, J., Watson, R., Preedy, V., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 277–286. [Google Scholar]
- Viktorová, J.; Stupák, M.; Řehořová, K.; Dobiasová, S.; Hoang, L.; Hajšlová, J.; Van Thanh, T.; Van Tri, L.; Van Tuan, N.; Ruml, T. Lemon Grass Essential Oil does not Modulate Cancer Cells Multidrug Resistance by Citral—Its Dominant and Strongly Antimicrobial Compound. Foods 2020, 9, 585. [Google Scholar] [CrossRef]
- Güler, B.; Manav, E.; Uğurlu, E. Medicinal plants used by traditional healers in Bozüyük (Bilecik–Turkey). J. Ethnopharmacol. 2015, 173, 39–47. [Google Scholar] [CrossRef]
- Abdusalam, A.; Zhang, Y.; Abudoushalamu, M.; Maitusun, P.; Whitney, C.; Yang, X.-F.; Fu, Y. Documenting the heritage along the Silk Road: An ethnobotanical study of medicinal teas used in Southern Xinjiang, China. J. Ethnopharmacol. 2020, 260, 113012. [Google Scholar] [CrossRef]
- Kim, N.S.; Lee, D.S. Comparison of different extraction methods for the analysis of fragrances from Lavandula species by gas chromatography–mass spectrometry. J. Chromatogr. A 2002, 982, 31–47. [Google Scholar] [CrossRef]
- Musarella, C.M.; Paglianiti, I.; Spampinato, G. Ethnobotanical study in the Poro and Preserre Calabresi territory (Vibo Valentia, S-Italy). Atti. Soc. Tosc. Sci. Nat. Mem. Ser. B 2019, 126, 13–28. [Google Scholar]
- Veenstra, J.P.; Johnson, J.J. Oregano (Origanium Vulgare) Extract for Food Preservation and Improving Gastrointestinal Health. Int. J. Nutr. 2019, 3, 43–52. [Google Scholar]
- Miara, M.D.; Bendif, H.; Rebbas, K.; Rabah, B.; Hammou, M.A.; Maggi, F. Medicinal plants and their traditional uses in the highland region of Bordj Bou Arreridj (Northeast Algeria). J. Herb. Med. 2019, 16, 100262. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef]
- Bampouli, A.; Kyriakopoulou, K.; Papaefstathiou, G.; Louli, V.; Krokida, M.; Magoulas, K. Comparison of different extraction methods of Pistacia lentiscus var. chia leaves: Yield, antioxidant activity and essential oil chemical composition. J. Appl. Res. Med. Aromat. Plants 2014, 1, 81–91. [Google Scholar] [CrossRef]
- Koutsoudaki, C.; Krsek, M.; Rodger, A. Chemical Composition and Antibacterial Activity of the Essential Oil and the Gum of Pistacia lentiscus Var. chia. J. Agric. Food Chem. 2005, 53, 7681–7685. [Google Scholar] [CrossRef] [PubMed]
- Dosoky, N.S.; Setzer, W.N. Biological Activities and Safety of Citrus spp. Essential Oils. Int. J. Mol. Sci. 2018, 19, 1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Liu, T.; Wang, L.; Liu, L.; Li, X.; Wu, X. Antibacterial Effects and Mechanism of Mandarin (Citrus reticulata L.) Essential Oil against Staphylococcus aureus. Molecules 2020, 25, 4956. [Google Scholar] [CrossRef] [PubMed]
- Alves-Silva, J.M.; Guerra, I.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Figueirinha, A.; Salgueiro, L. Chemical composition of Crithmum maritimum L. essential oil and hydrodistillation residual water by GC-MS and HPLC-DAD-MS/MS, and their biological activities. Ind. Crop. Prod. 2020, 149, 112329. [Google Scholar] [CrossRef]
- Kulisic-Bilusic, T.; Blažević, I.; Dejanović, B.; Miloš, M.; Pifat, G. Evaluation of the antioxidant activity of essential oils from caper (capparis spinosa) and sea fennel (crithmum maritimum) by different methods. J. Food Biochem. 2010, 34, 286–302. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T.; Deans, S.G.; Dorman, H.J. Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med. 2000, 66, 687–693. [Google Scholar] [CrossRef]
- Elgayyar, M.; Draughon, F.A.; Golden, D.A.; Mount, J.R. Antimicrobial Activity of Essential Oils from Plants against Selected Pathogenic and Saprophytic Microorganisms. J. Food Prot. 2001, 64, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- ISO 3515 Essential Oil of Lavander. Available online: http://www.iso.org (accessed on 10 July 2021).
- Heather, M.A.; Cavanagh, J.; Wilkinson, M. Lavender essential oil: A review. Aust. Infect. Control. 2005, 10, 35–37. [Google Scholar]
- De Groot, A.C.; Schmidt, E. Essential Oils, Part V: Peppermint Oil, Lavender Oil and Lemongrass Oil. Dermatitis 2016, 27, 325–332. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and human health: A comprehensive review. Phytother. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef]
- Balahbib, A.; El Omari, N.; El Hachlafi, N.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health beneficial and pharmacological properties of p-cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, M.D.; Sanchez-Ballester, N.M.; Blázquez, M.A. Encapsulated Limonene: A Pleasant Lemon-Like Aroma with Promising Application in the Agri-Food Industry. A Review. Molecules 2020, 25, 2598. [Google Scholar] [CrossRef] [PubMed]
- Swerdlin, A.; Rainey, D.; Storrs, F.J. Fragrance mix reactions and lime allergic contact dermatitis. Dermatitis 2010, 21, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Deza, G.; García-Bravo, B.; Silvestre, J.F.; Pastor-Nieto, M.A.; González-Pérez, R.; Heras-Mendaza, F.; Mercader, P.; Fernández-Redondo, V.; Niklasson, B.; Giménez-Arnau, A.M.; et al. Contact sensitization to limonene and linalool hydroperoxides in Spain: A GEIDAC prospective study. Contact Dermat. 2017, 76, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Pesonen, M.; Suomela, S.; Kuuliala, O.; Henriks-Eckerman, M.L.; Aalto-Korte, K. Occupational contact dermatitis caused by D-Limonene. Contact Dermat. 2014, 71, 273–279. [Google Scholar] [CrossRef]
- Christensson, J.B.; Andersen, K.E.; Bruze, M.; Johansen, J.D.; Garcia-Bravo, B.; Gimenez-Arnau, A.; Goh, C.L.; Nixon, R.; White, I.R. Positive patch test reactions to oxidized limonene: Exposure and relevance. Contact Dermat. 2014, 71, 264–272. [Google Scholar] [CrossRef]
- De Mozzi, P.; Johnston, G.A. An outbreak of allergic contact dermatitis caused by citral in beauticians working in a health spa. Contact Dermat. 2014, 70, 377–379. [Google Scholar] [CrossRef]
- D’Auria, M.; Racioppi, R. Characterization of the volatile fraction of mastic oil and mastic gum. Nat. Prod. Res. 2020, 14, 1–4. [Google Scholar]
- Gardeli, C.; Papageorgiou, V.; Mallouchos, A.; Kibouris, T.; Komaitis, M. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar] [CrossRef]
- Zafeiropoulou, V.; Tomou, E.-M.; Douros, A.; Skaltsa, H. The Effect of Successive Harvesting on The Volatile Constituents of Two Essential Oils of Cultivated Populations of Sea Fennel (Crithmum maritimum L.) in Greece. J. Essent. Oil Bear. Plants 2021, 24, 1–11. [Google Scholar] [CrossRef]
- Quiroga, P.R.; Asensio, C.M.; Nepote, V. Antioxidant effects of the monoterpenes carvacrol, thymol and sabinene hydrate on chemical and sensory stability of roasted sunflower seeds. J. Food Agric. 2015, 95, 471–479. [Google Scholar] [CrossRef] [PubMed]
Compound | Lavandula angustifolia Mill. | Origanum vulgare L. | Citrus reticulata L. | Citrus limon L. | Pistacia lentiscus L. var. Chia | Crithmum maritimum L. | ||
---|---|---|---|---|---|---|---|---|
Retention Time (Min) | RI | % (w/w) | ||||||
alpha-thujene | 7.91 | 923 | 0.14 ± 0.03 | 0.12 ± 0.01 | n.d. | n.d. | n.d. | 0.28 ± 0.05 |
pinenes | 8.13 | 939 | 0.32 ± 0.01 | 2.01 ± 0.15 | 3.76 ± 0.43 | 12.7 ± 0.21 | 73.2 ± 2.19 | 9.57 ± 002 |
1-octen-3-ol | 8.17 | 940 | 0.21 ± 0.02 | 0.32 ± 0.05 | n.d. | n.d. | n.d. | n.d. |
camphene | 8.29 | 953 | 0.15 ± 0.01 | 0.61 ± 0.03 | n.d. | n.d. | 1.16 ± 0.21 | n.d. |
sabinene | 8.47 | 974 | 0.03 ± 0.005 | n.d. | n.d. | 1.02 ± 0.04 | 1.18 ± 0.11 | 49.45 ± 1.78 |
1,8-cineol | 10.03 | 983 | 0.84 ± 0.07 | n.d. | n.d. | n.d. | n.d. | n.d. |
3-octanone | 10.70 | 984 | 0.67 ± 0.03 | n.d. | n.d. | n.d. | n.d. | n.d. |
beta-myrcene | 10.66 | 991 | 1.13 ± 0.07 | 1.29 ± 0.21 | 2.56 ± 0.34 | 1.47 ± 0.12 | 21.2 ± 1.22 | 1.06 ± 0.06 |
alpha-phellandrene | 11.00 | 1000 | 0.22 ± 0.04 | n.d. | n.d. | n.d. | 0.31 ± 0.02 | n.d. |
alpha-terpinene | 11.91 | 1017 | 0.09 ± 0.01 | 5.18 ± 0.43 | n.d. | n.d. | 0.75 ± 0.03 | 0.78 ± 0.03 |
alpha-terpinolene | 12.05 | 1019 | 0.14 ± 0.01 | 0.12 ± 0.01 | 0.23 ± 0.02 | 0.31 ± 0.04 | n.d. | n.d. |
p-cymene | 12.20 | 1027 | 0.12 ± 0.03 | 8.2 ± 0.45 | 0.21 ± 0.01 | 0.15 ± 0.01 | n.d. | 0.55 ± 0.06 |
beta-phellandrene | 12.70 | 1029 | 0.15 ± 0.03 | n.d. | n.d. | n.d. | 0.12 ± 0.01 | n.d. |
limonene | 12.95 | 1031 | 0.37 ± 0.01 | 0.21 ± 0.04 | 74.0 ± 2.23 | 71.7 ± 1.25 | 0.62 ± 0.01 | 2.73 ± 0.04 |
gamma-terpinene | 14.08 | 1059 | 0.26 ± 0.03 | 5.78 ± 0.31 | 14.7 ± 1.04 | 8.52 ± 1.01 | 0.12 ± 0.01 | 31.37 ± 3.21 |
ocimene | 14.20 | 1060 | 10.77 ± 0.49 | n.d. | n.d. | n.d. | n.d. | n.d. |
geranyl acetate | 14.50 | 1094 | 0.94 ± 0.04 | n.d. | n.d. | n.d. | 0.28 ± 0.01 | n.d. |
linalool | 14.71 | 1098 | 27.85 ± 1.21 | n.d. | n.d. | n.d. | 0.15 ± 0.01 | n.d. |
1-octen-3 yl acetate | 17.22 | 1110 | 1.20 ± 0.09 | n.d. | n.d. | n.d. | n.d. | n.d. |
lavandulol | 19.12 | 1157 | 0.88 ± 0.05 | n.d. | n.d. | n.d. | n.d. | n.d. |
terpinen-4-ol | 20.55 | 1179 | 6.4 ± 0.21 | 1.8 ± 0.08 | n.d. | n.d. | n.d. | 1.50 ± 0.37 |
camphor | 20.79 | 1181 | 0.19 ± 0.01 | n.d. | n.d. | n.d. | 0.11 ± 0.01 | n.d. |
alpha-Terpineol | 21.00 | 1184 | 1.62 ± 0.51 | n.d. | n.d. | n.d. | n.d. | n.d. |
Citral | 21.13 | 1240 | n.d. | n.d. | n.d. | 2.53 ± 0.43 | n.d. | n.d. |
linalyl acetate | 21.35 | 1257 | 30.05 ± 0.12 | n.d. | n.d. | 0.50 ± 0.03 | n.d. | n.d. |
lavandulyl acetate | 21.70 | 1290 | 4.3 ± 0.09 | n.d. | n.d. | n.d. | n.d. | n.d. |
Carvacrol | 21,93 | 1298 | n.d. | 74.2 ± 1.7 | n.d. | n.d. | n.d. | n.d. |
beta caryophyllene | 22.47 | 1428 | 3.81 ± 0.17 | n.d. | n.d. | n.d. | 0.19 ± 0.01 | n.d. |
trans-beta-farnesene | 22.72 | 1454 | 3.26 ± 0.32 | n.d. | n.d. | n.d. | n.d. | n.d. |
Total identified compounds | 96.11 | 99.84 | 95.46 | 98.9 | 99.39 | 97.29 |
Essential Oil | MLC (ppm) | TPC (mgGAE/g) |
---|---|---|
Lavandula angustifolia Mill. | 1500 ± 120 | 25.3 ± 1.4 |
Origanum vulgare L. | 510 ± 63 | 42.6 ± 3.9 |
Citrus reticulata L. | 12,000 ± 430 | 21.3 ± 1.1 |
Citrus limon L. | 780 ± 78 | 24.7 ± 2.3 |
Pistacia lentiscus L. var. chia | 2350 ± 325 | 12.6 ± 1.8 |
Crithmum maritimum L. | 14,800 ± 195 | 7.5 ± 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasias, I.N.; Ntakoulas, D.D.; Raptopoulou, K.; Gardeli, C.; Proestos, C. Chemical Composition of Essential Oils of Aromatic and Medicinal Herbs Cultivated in Greece—Benefits and Drawbacks. Foods 2021, 10, 2354. https://doi.org/10.3390/foods10102354
Pasias IN, Ntakoulas DD, Raptopoulou K, Gardeli C, Proestos C. Chemical Composition of Essential Oils of Aromatic and Medicinal Herbs Cultivated in Greece—Benefits and Drawbacks. Foods. 2021; 10(10):2354. https://doi.org/10.3390/foods10102354
Chicago/Turabian StylePasias, Ioannis N., Dimitris D. Ntakoulas, Kalomoira Raptopoulou, Chrysavgi Gardeli, and Charalampos Proestos. 2021. "Chemical Composition of Essential Oils of Aromatic and Medicinal Herbs Cultivated in Greece—Benefits and Drawbacks" Foods 10, no. 10: 2354. https://doi.org/10.3390/foods10102354
APA StylePasias, I. N., Ntakoulas, D. D., Raptopoulou, K., Gardeli, C., & Proestos, C. (2021). Chemical Composition of Essential Oils of Aromatic and Medicinal Herbs Cultivated in Greece—Benefits and Drawbacks. Foods, 10(10), 2354. https://doi.org/10.3390/foods10102354