Protein Oxidation in Foods: Mechanisms, Consequences, and Antioxidant Solutions
Author Contributions
Funding
Conflicts of Interest
References
- Wan, L.; Xiong, Y.L.; Decker, E.A. Inhibition of Oxidation during Washing Improves the Functionality of Bovine Cardiac Myofibrillar Protein. J. Agric. Food Chem. 1993, 41, 2267–2271. [Google Scholar] [CrossRef]
- Martinaud, A.; Mercier, Y.; Marinova, P.; Tassy, C.; Gatellier, P.; Renerre, M. Comparison of Oxidative Processes on Myofibrillar Proteins from Beef during Maturation and by Different Model Oxidation Systems. J. Agric. Food Chem. 1997, 45, 2481–2487. [Google Scholar] [CrossRef]
- Xiong, Y.L. Protein Oxidation and Implications for Muscle Food Quality. In Antioxidants in Muscle Foods: Nutritional Strategies to Improve Quality; Decker, E.A., Faustman, C., Lopez-Bote, C.J., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; pp. 85–90. [Google Scholar]
- Rowe, L.J.; Maddock, K.R.; Lonergan, S.M.; Huff-Lonergan, E. Oxidative Environments Decrease Tenderization Of Beef Steaks Through Inactivation of Mu-Calpain. J Anim. Sci. 2004, 82, 3254–3266. [Google Scholar] [CrossRef]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein Oxidation in Muscle Foods: A Review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M. Protein Carbonyls in Meat Systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Soladoye, O.; Juárez, M.; Aalhus, J.; Shand, P.; Estévez, M. Protein Oxidation in Processed Meat: Mechanisms and Potential Implications on Human Health. Comp. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Xiong, Y.L. Myoprotein-Phytophenol Interaction: Implications for Muscle Food Structure-Forming Properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2801–2824. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, X. Modification of Myofibrillar Protein Functional Properties Prepared By Various Strategies: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 458–500. [Google Scholar] [CrossRef]
- Estévez, M.; Xiong, Y. Intake of Oxidized Proteins and Amino Acids and Causative Oxidative Stress and Disease: Recent Scientific Evidences and Hypotheses. J Food Sci. 2019, 84, 387–396. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, J.; Kong, B.; Chen, Q.; Liu, Q.; Liu, C. Comparative Study of Oxidative Structural Modifications of Unadsorbed and Adsorbed Proteins in Whey Protein Isolate-Stabilized Oil-in-Water Emulsions under the Stress of Primary and Secondary Lipid Oxidation Products. Foods 2021, 10, 593. [Google Scholar] [CrossRef]
- Théron, L.; Bonifacie, A.; Delabre, J.; Sayd, T.; Aubry, L.; Gatellier, P.; Ravel, C.; Chambon, C.; Astruc, T.; Rouel, J.; et al. Investigation by Synchrotron Radiation Circular Dichroism of the Secondary Structure Evolution of Pepsin under Oxidative Environment. Foods 2021, 10, 998. [Google Scholar] [CrossRef]
- Sun, Q.; Kong, B.; Liu, S.; Zheng, O.; Zhang, C. Ultrasonic Freezing Reduces Protein Oxidation and Myofibrillar Gel Quality Loss of Common Carp (Cyprinus carpio) during Long-Time Frozen Storage. Foods 2021, 10, 629. [Google Scholar] [CrossRef]
- Cao, C.; Li, X.; Yin, Y.; Kong, B.; Sun, F.; Liu, Q. Effects of Sodium Chloride on the Physical and Oxidative Stability of Filled Hydrogel Particles Fabricated with Phase Separation Behavior. Foods 2021, 10, 1027. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, V.; Utrera, M.; Estévez, M.; Ventanas, J.; Ventanas, S. Impact of High Pressure Treatment and Intramuscular Fat Content on Colour Changes and Protein and Lipid Oxidation in Sliced and Vacuum-Packaged Iberian Dry-Cured Ham. Meat Sci. 2014, 97, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Lorido, L.; Ventanas, S.; Akcan, T.; Estévez, M. Effect of Protein Oxidation on the Impaired Quality of Dry-Cured Loins Produced From Frozen Pork Meat. Food Chem. 2016, 196, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, V.; Estévez, M.; Ventanas, J.; Ventanas, S. Impact of Lipid Content and Composition on Lipid Oxidation and Protein Carbonylation in Experimental Fermented Sausages. Food Chem. 2014, 147, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Bonifacie, A.; Gatellier, P.; Promeyrat, A.; Nassy, G.; Picgirard, L.; Scislowski, V.; Santé-Lhoutellier, V.; Théron, L. New Insights into the Chemical Reactivity of Dry-Cured Fermented Sausages: Focus on Nitrosation, Nitrosylation and Oxidation. Foods 2021, 10, 852. [Google Scholar] [CrossRef]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold Plasma: A novel Non-Thermal Technology for Food Processing. Food Biophys. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Singh, A.; Shiekh, K.A.; Nuthong, P.; Benjakul, S. Effect of High Voltage Cold Plasma on Oxidation, Physiochemical, and Gelling Properties of Myofibrillar Protein Isolate from Asian Sea Bass (Lates calcarifer). Foods 2021, 10, 326. [Google Scholar] [CrossRef]
- Chawla, A.; Lobacz, A.; Tarapata, J.; Zulewska, J. UV Light Application as a Mean for Disinfection Applied in the Dairy Industry. Appl. Sci. 2021, 11, 7285. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, R.; Poojary, M.M.; Nielsen, S.B.; Lund, M.N. Effect of Addition of Tryptophan on Aggregation of Apo-α-Lactalbumin Induced by UV-Light. Foods 2021, 10, 1577. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, Y.L. Physicochemical and Microstructural Characterization of Whey Protein Films Formed with Oxidized Ferulic/Tannic Acids. Foods 2021, 10, 1599. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Z.; Qi, B.; Ran, A.; Guo, Z.; Jiang, L. Effect of Oxidation on Quality of Chiba Tofu Produced by Soy Isolate Protein When Subjected to Storage. Foods 2020, 9, 1877. [Google Scholar] [CrossRef]
- Estévez, M. Critical Overview of the Use of Plant Antioxidants in the Meat Industry: Opportunities, Innovative Applications and Future Perspectives. Meat Sci. 2021, 181, 108610. [Google Scholar] [CrossRef] [PubMed]
- Morcuende, D.; Vallejo-Torres, C.; Ventanas, S.; Martínez, S.L.; Ruiz, S.C.; Estévez, M. Effectiveness of Sprayed Bioactive Fruit Extracts in Counteracting Protein Oxidation in Lamb Cutlets Subjected to a High-Oxygen MAP. Foods 2020, 9, 1715. [Google Scholar] [CrossRef] [PubMed]
- Santana Neto, D.C.d.; Cordeiro, Â.M.T.M.; Meireles, B.R.L.A.; Araújo, Í.B.S.; Estévez, M.; Ferreira, V.C.S.; Silva, F.A.P. Inhibition of Protein and Lipid Oxidation in Ready-to-Eat Chicken Patties by a Spondias mombin L. Bagasse Phenolic-Rich Extract. Foods 2021, 10, 1338. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.L.; Guo, A. Animal and Plant Protein Oxidation: Chemical and Functional Property Significance. Foods 2021, 10, 40. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estévez, M.; Xiong, Y.L. Protein Oxidation in Foods: Mechanisms, Consequences, and Antioxidant Solutions. Foods 2021, 10, 2346. https://doi.org/10.3390/foods10102346
Estévez M, Xiong YL. Protein Oxidation in Foods: Mechanisms, Consequences, and Antioxidant Solutions. Foods. 2021; 10(10):2346. https://doi.org/10.3390/foods10102346
Chicago/Turabian StyleEstévez, Mario, and Youling L. Xiong. 2021. "Protein Oxidation in Foods: Mechanisms, Consequences, and Antioxidant Solutions" Foods 10, no. 10: 2346. https://doi.org/10.3390/foods10102346
APA StyleEstévez, M., & Xiong, Y. L. (2021). Protein Oxidation in Foods: Mechanisms, Consequences, and Antioxidant Solutions. Foods, 10(10), 2346. https://doi.org/10.3390/foods10102346