Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review
Abstract
:1. Introduction
2. Sources of NAMAs in Edible Films
2.1. Plant-Derived
2.2. Animal-Derived
2.3. Micro-Organism Derived
NAMAs | Targeted Micro-Organisms | Edible Film Matrix | Food Product | Findings | References |
Plant-Derived Antimicrobials | |||||
Rosemary essential oil | Coliform bacteria | Whey protein concentrate | Fresh spinach | Reduced the total microbial and coliform count to 0.57, 0.23 log CFU/g, respectively. 2. Loss of chlorophyll also decreased. | [14,15,39] |
Nanoemulsion of essential oil from cumin | Listeria monocytogenes; Escherichia coli; Salmonella typhimurium | Chitosan film | Refrigerated beef loins | 1. Enhanced the storage life of beef loins by inhibiting the proliferation of mesophilic, psychrophilic, Enterobacteriaceae and lactic acid bacteria. 2. Augmented the antioxidant activity. | [40] |
Clove essential oil and kojic acid | Aerobic bacteria | Fully deacetylated chitosan edible films | White prawn shrimp kept in cold storage | 1. Dramatically reduced the proliferation of aerobic bacteria 2. Melanosis and color changes were also deaccelerated. | [41] |
Chitin nano fiber and Ajowan (Trachyspermumammi) essential oil | Pseudomonas; Staphylococcus aureus, lactic acid bacteria, yeast and molds | Gelatin and carboxymethyl cellulose films | Raw beef held at refrigerated conditions | 1. Discouraged the multiplication of pathogenic microorganisms. 2. In addition, also had a complimentary effect on sensory properties. | [42] |
Garlic essential oil. Oregano and garlic essential oils | Spoilage bacteria Escherichia Coli; Salmonella enteritidis; Listeria monocytogenes; Staphylococcus aureus; Penicillium spp | Chitosan and whey protein amalgamated films Whey protein isolate | Vacuum-packed sausages Kasar cheese slices | 1. Retarded the growth of bacterias responsible for spoilage. 2. Decrement of fat oxidation Exhibited an antimicrobic action against the majority of pathogenic bacteria | [43,44] |
Oregano essential oil and resveratrol nanoemulsion | Pectin edible coating | fresh pork loins | 1. Prohibited growth of microorganisms. 2. Enhanced storage life 3. Retainment of sensory characteristics of pork loins. | [45] | |
Musk lime extract | Pseudomonas aeruginosa; Vibrio parahaemolyticus | Chitosan film | Squids | Expanded the inhibition zone of these gram-negative bacteria | [46] |
Ginger essential oil | Aerobic Psychrophilic bacteria | Sodium caseinate coating | Chicken breast fillet | Antibacterial activity was significantly elevated at p < 0.05. | [47] |
Cinnamon essential oil | Staphylococcus aureus; Escherichia coli | Sodium alginate and carboxymethyl cellulose films | Banana | Showcased exceptional antimicrobic activity. | [48] |
Pomegranate peel extract | Staphylococcus aureus; Salmonella | Starch base films | NA | Appreciably constrained the growth of both bacteria | [49] |
Herba Lophatheri extract | Staphylococcus aureus; Escherichia coli | Chitosan films | NA | Inhibitory zone diameter increased by 17.02 and 19.28 percent against Staphylococcus aureus and Escherichia coli, respectively | [50] |
Thymol | Botrytis cinerea | Chitosan coating | Cherry tomatoes | Coating of cherry tomatoes by quinoa protein/chitosan) showcased antifungal action against Botrytis cinerea after seven days of storage at 5 °C (p < 0.05) | [51] |
Turmeric extract | Salmonella; Staphylococcus aureus | Chitosan films | NA | Improved activity against these bacteria after the impregnation with turmeric extract | [52] |
Propolis extract | Total viable count; Psychrotrophic bacteria; Pseudomonas spp.; Lactic acid bacteria; Enterobacteriaceae | Chitosan films with cellulose nanoparticles | Minced beef | Caused delay in microbial growth | [53] |
Carvacrol essential oil | Escherichiacoli | Thermoplastic starch films | NA | Substantial and noticeable antimicrobial activity against E.coli because of loss of homeostasis and fractional dissolution of the cell membrane. | [54] |
Cinnamon essential oil and nano titanium dioxide | Escherichia coli; Salmonella typhimurium; Staphylococcus aureus | Sago starch films | Fresh pistachio packaging | Outstanding competence to stop the multiplication of food spoiling bacteria Improved mechanical characteristics of films | [55] |
Nanoemulsions of polyphenols (curcumin, gallic acid and quercetin) | Escherichia coli; Salmonella typhimurium | Gelatin and carrageenan composite film | Chicken meat | Increased storage life of broiler meat up to 17 days by inhibiting the growth of pathogens. | [56] |
Animal-Derived Antimicrobials | |||||
Casein phosphopeptides | Staphylococcus aureus; Bacillus cereus | Gelatin based films | NA | 1. Exhibited significant inhibitory effect against these gram-positive pathogens. 2. Represented increases antioxidant activity | [57] |
Gelatin and cinnamon essential oil | Escherichia coli; Staphylococcus aureus | Chitosan-based films | NA | 1. Showed excellent mechanical and antibacterial characteristics 2. Rate of antimicrobial activity was 98% | [58] |
Fish protein hydrolysates Fish protein hydrolysates and clove essential oil | Mesophillic; psychrophilic; coliform bacteria; yeast; mold Staphylococcus aureus; Yersinia enterocolitica; Aeromonas hydrophila; Debaryomyceshansenii; Listeria innocua. | Protein-based edible coatings Agar based films | Chilled Bonito Fillets Flounder fillets | Imparted excellent inhibition to the growth of mesophilic, psychrophilic, coliform bacteria as well as yeast and mold 1. Enhanced shelf life 2. Effective against the listed microorganisms | [59,60] |
Activated Lysozyme | Listeria innocua | Whey protein and oleic acid films | Smoked salmon slices | Decreases bacterial load and increased shelf life even after opening packet at refrigerated temperature | [61] |
Microorganism Based Antimicrobials | |||||
Natamycin and Pitanga leaf extracts | Aspergillusflavus; Aspergillus parasiticus | Cassava starch and chitosan | Casting method | 1. Imbibition of Pitanga extract did not affect the mechanical properties of films, but the addition of natamycin decreased flexibility. 2. Uptrend in antioxidant activity 3. Significant improvement in antifungal properties | [62] |
Nisin Nisin and clove essential oil | Staphylococcus aureus; methicillin-resistant Staphylococcus aureus (MRSA) strains Pseudomonas spp. | Carrageenan and chitosan Chitosan | NA Pork patties | Bactericidal efficacy was 90% and 99% of planktonic and biofilm cells, respectively, against these two strains of bacteria 1. Strong antimicrobial action against Pseudomonas sp. was reported. 2. Shelf life was enhanced by two times 3. Synergistic effect on antioxidant activity also | [63,64] |
Lactococcus lactis Cell-free supernatant of Lactococcus lactis | Staphylococcus aureus Staphylococcus aureus ATCC 6538; Escherichiacoli ATCC 2592 | Sodium alginate/ sodium carboxymethylcellulose films Sodium alginate or sodium carboxymethylcellulose film | Tryptone soya agar NA | 1. Repressed the growth of Staphylococcus aureus for seven days at 4 °C. 2. Reduction in transparency and gloss Robust antagonistic effect against Staphylococcus aureus and Escherichia coli | [65,66] |
Cocktail of six lytic bacteriophages | Escherichia coli | Whey protein concentrate film | Meat | 1. E.coli was reduced to an undetectable level. 2. Bacteriophages were highly stable in whey protein concentrate films | [67,68] |
Bacteriophage vB_EcoMH2W | Enterobacteriaceae family | Chitosan-based coating | Tomatoes | Significant reduction in the growth of bacteria by 3 log cycles when stored for one week. |
3. Film/Coating Formation Methods
3.1. Casting Method
3.2. Compression Molding
3.3. Extrusion Methods
4. Film/Coating Application Methods
4.1. Knife Coating
4.2. Fluidized-Bed Processing Method
4.3. Panning
4.4. Spraying and Electrostatic Spraying
4.5. Dip Coating
4.6. Electro Spinning
5. Application of NAMAs Films in the Food Industry
6. Effect of NAMAs on Physico-Chemical Properties of Edible Films
6.1. Barrier Properties
6.2. Bio-Degradability
6.3. Edibility
6.4. Biocompatibility
7. Potential Advantages and Pitfalls of Antimicrobial Edible Films/Coatings
8. Public Demand, Future Prospects
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freeland, G.; Hettiarachchy, N.; Atungulu, G.G.; Apple, J.; Mukherjee, S. Strategies to Combat Antimicrobial Resistance from Farm to Table. Food Rev. Int. 2021. [Google Scholar] [CrossRef]
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling 2021, 6, 12. [Google Scholar] [CrossRef]
- Guillard, V.; Gaucel, S.; Fornaciari, C.; Angellier-Coussy, H.; Buche, P.; Gontard, N. The next generation of sustainable food packaging to preserve our environment in a circular economy context. Front. Nutr. 2018, 5, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, T.; Velasco, M.V.; Echeverría, P.; Pop, B.; Rusu, A. Crop and plant biomass as valuable material for BBB. Alternatives for valorization of green wastes. In Biotransformation of Agricultural Waste and By-Products: The Food, Feed, Fibre, Fuel (4F) Economy; Elsevier: San Diego, CA, USA, 2016. [Google Scholar]
- Abdollahzadeh, E.; Nematollahi, A.; Hosseini, H. Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: A review. Trends Food Sci. Technol. 2021, 110, 291–303. [Google Scholar] [CrossRef]
- Hamann, D.; Puton, B.M.S.; Colet, R.; Steffens, J.; Ceni, G.C.; Cansian, R.L.; Backes, G.T. Active edible films for application in meat products. Res. Soc. Dev. 2021, 10, e13610716379. [Google Scholar] [CrossRef]
- Batiha, G.E.S.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D.; et al. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021, 126, 108066. [Google Scholar] [CrossRef]
- Trif, M.; Vodnar, D.C.; Mitrea, L.; Rusu, A.V.; Socol, C.T. Design and Development of Oleoresins Rich in Carotenoids Coated Microbeads. Coatings 2019, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Mesgari, M.; Aalami, A.H.; Sahebkar, A. Antimicrobial activities of chitosan/titanium dioxide composites as a biological nanolayer for food preservation: A review. Int. J. Biol. Macromol. 2021, 176, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Amiri, S.; Moghanjougi, Z.M.; Bari, M.R.; Khaneghah, A.M. Natural protective agents and their applications as bio-preservatives in the food industry: An overview of current and future applications. Ital. J. Food Sci. 2021, 33 (Suppl. 1), 55–68. [Google Scholar] [CrossRef]
- Rodrigo, D.; Palop, A. Applications of Natural Antimicrobials in Food Packaging and Preservation. Foods 2021, 10, 568. [Google Scholar] [CrossRef]
- Farooq, M.; Azadfar, E.; Rusu, A.; Trif, M.; Poushi, M.K.; Wang, Y. Improving the Shelf Life of Peeled Fresh Almond Kernels by Edible Coating with Mastic Gum. Coatings 2021, 11, 618. [Google Scholar] [CrossRef]
- Rizzo, V.; Muratore, G. The Application of Essential Oils in Edible Coating: Case of Study on Two Fresh Cut Products. Int. J. Clin. Nutr. Diet. 2020, 6, 149. [Google Scholar]
- Rizzo, V.; Amoroso, L.; Licciardello, F.; Mazzaglia, A.; Muratore, G.; Restuccia, C.; Lombardo, S.; Pandino, G.; Mauromicale, G. The effect of sous vide packaging with rosemary essential oil on storage quality of fresh-cut potato. LWT Food Sci. Technol. 2018, 94, 111–118. [Google Scholar] [CrossRef]
- Amoroso, L.; Rizzo, V.; Muratore, G. Nutritional values of potato slices added with rosemary essential oil cooked in sous vid bags. Int. J. Gastron. Food Sci. 2019, 15, 1–5. [Google Scholar] [CrossRef]
- Rusu, A.V.; Criste, F.L.; Mierliţă, D.; Socol, C.T.; Trif, M. Formulation of Lipoprotein Microencapsulated Beadlets by Ionic Complexes in Algae-Based Carbohydrates. Coatings 2020, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Cao, Y.; Wang, W.; Chen, X.; Cai, J.; Wang, L.; Xiao, J. Sustained-release antimicrobial gelatin film: Effect of chia mucilage on physicochemical and antimicrobial properties. Food Hydrocoll. 2019, 87, 783–791. [Google Scholar] [CrossRef]
- Hu, X.; Yuan, L.; Han, L.; Li, S.; Song, L. Characterization of antioxidant and antibacterial gelatin films incorporated with Ginkgo biloba extract. RSC Adv. 2019, 9, 27449. [Google Scholar] [CrossRef] [Green Version]
- Alves, V.L.C.D.; Rico, B.P.M.; Cruz, R.M.S.; Vicente, A.A.; Khmelinskii, I.; Vieira, M.C. Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). LWT Food Sci. Technol. 2018, 89, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Al-Hashimi, A.G.; Ammar, A.B.; Cacciola, F.; Lakhssassi, N. Development of a Millet Starch Edible Film Containing Clove Essential Oil. Foods 2020, 9, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Agarwal, S.; Gupta, V.K. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. Int. J. Biol. Macromol. 2018, 109, 1219–1231. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Abd El-Hakim, Y.M.; Al-Sagheer, A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol. 2020, 164, 2726–2744. [Google Scholar] [CrossRef]
- Hati, S.; Patel, N.; Sakure, A.; Mandal, S. Influence of whey protein concentrate on the production of antibacterial peptides derived from fermented milk by lactic acid bacteria. Int. J. Pept. Res. Ther. 2018, 24, 87–98. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Hao, X.; Wang, C.; Sun, B. Effects of Bioactive Packaging Films Incorporated with Bifidocin A on Microbial Reduction and Quality Parameters of Chill-Stored Spanish Mackerel (Scomberomorus niphonius) Fillets. J. Food Qual. 2019, 2019, 7108382. [Google Scholar] [CrossRef]
- Feng, Z.; Li, L.; Wang, Q.; Wu, G.; Liu, C.; Jiang, B.; Xu, J. Effect of Antioxidant and Antimicrobial Coating based on Whey Protein Nanofibrils with TiO2 Nanotubes on the Quality and Shelf Life of Chilled Meat. Int. J. Mol. Sci. 2019, 20, 1184. [Google Scholar] [CrossRef] [Green Version]
- Jasour, M.S.; Ehsani, A.; Mehryar, L.; Naghibi, S.S. Chitosan coating incorporated with the lactoperoxidase system: An active edible coating for fish preservation. J. Sci. Food Agric. 2014, 95, 1373–1378. [Google Scholar] [CrossRef]
- Padrão, J.; Gonçalves, S.; Silva, J.P.; Sencadas, V.; Lanceros-Méndez, S.; Pinheiro, A.C.; Vicente, A.C.; Rodrigues, A.A.; Dourado, F. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocoll. 2016, 58, 126–140. [Google Scholar] [CrossRef] [Green Version]
- Zimoch-Korzycka, A.; Rouilly, A.; Bobak, Ł.; Jarmoluk, A.; Korzycki, M. Chitosan and Cystatin/Lysozyme Preparation as Protective Edible Films Components. Int. J. Polym. Sci. 2015, 2015, 139617. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Chandrakasan, G.; Rodríguez-Hernández, A.I.; del Rocío López-Cuellar, M.; Palma-Rodriguez, H.; Chavarria-Hernandez, N. Bacteriocin encapsulation for food and pharmaceutical applications: Advances in the past 20 years. Biotechnol. Lett. 2019, 41, 453–469. [Google Scholar] [CrossRef]
- Pattanayaiying, R.; Sane, A.; Photjanataree, P.; Cutter, C.N. Thermoplastic starch/polybutylene adipate terephthalate film coated with gelatin containing nisin Z and lauric arginate for control of foodborne pathogens associated with chilled and frozen seafood. Int. J. Food Microbiol. 2019, 290, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Leung, V.; Szewczyk, A.; Chau, J.; Hosseinidoust, Z.; Groves, L.; Hawsawi, H.; Anany, H.; Griffiths, M.W.; Monsur Ali, M.; Filipe, C.D.M. Long-Term Preservation of Bacteriophage Antimicrobials Using Sugar Glasses. ACS Biomater. Sci. Eng. 2018, 4, 3802–3808. [Google Scholar] [CrossRef] [PubMed]
- López de Dicastillo, C.; Settier-Ramírez, L.; Gavara, R.; Hernández-Muñoz, P.; López Carballo, G. Development of Biodegradable Films Loaded with Phages with Antilisterial Properties. Polymers 2021, 13, 327. [Google Scholar] [CrossRef]
- Kalkan, S. Vibrio parahaemolyticus ATCC 17802 inactivation by using methylcellulose films containing encapsulated bacteriophages. Turk. J. Vet. Anim. Sci. 2018, 42, 480–485. [Google Scholar] [CrossRef]
- Costa, M.J.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Characterization of PHBV films loaded with FO1 bacteriophage using polyvinyl alcohol-based nanofibers and coatings: A comparative study. Innov. Food Sci. Emerg. Technol. 2021, 69, 102646. [Google Scholar] [CrossRef]
- Martin, A.; Plotto, A.; Atares, L.; Chiralt, A. Lactic Acid Bacteria Incorporated into Edible Coatings to Control Fungal Growth and Maintain Postharvest Quality of Grapes. HortScience 2019, 54, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Rico, D.; Barcenilla, B.; Meabe, A.; González, C.; Martín-Diana, A.B. Mechanical properties and quality parameters of chitosan-edible algae (Palmaria palmata) on ready-to-eat strawberries. J. Sci. Food Agric. 2019, 99, 2910–2921. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Li, F.; Liu, H.; Yang, X.; Duan, Z. Effect of fucoidan-based edible coating on antioxidant degradation kinetics in strawberry fruit during cold storage. J. Food Process. Preserv. 2020, 44, e14381. [Google Scholar] [CrossRef]
- Abedi, A.; Lakzadeh, L.; Amouheydari, M. Effect of an edible coating composed of whey protein concentrate and rosemary essential oil on the shelf life of fresh spinach. J. Food Process. Preserv. 2021, 45, e15284. [Google Scholar] [CrossRef]
- Dini, H.; Fallah, A.A.; Bonyadian, M.; Abbasvali, M.; Soleimani, M. Effect of edible composite film based on chitosan and cumin essential oil-loaded nanoemulsion combined with low-dose gamma irradiation on microbiological safety and quality of beef loins during refrigerated storage. Int. J. Biol. Macromol. 2020, 164, 1501–1509. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, C.; Liu, S.; Gao, J.; Cui, S.W.; Xia, W. Coating white shrimp (Litopenaeus vannamei) with edible fully deacetylated chitosan incorporated with clove essential oil and kojic acid improves preservation during cold storage. Int. J. Biol. Macromol. 2020, 162, 1276–1282. [Google Scholar] [CrossRef]
- Azarifar, M.; Ghanbarzadeh, B.; Sowtikhiabani, M.; Akhondzadehbasti, A.; Abdulkhani, A. The effects of gelatin-CMC films incorporated with chitin nanofiber and Trachyspermumammi essential oil on the shelf life characteristics of refrigerated raw beef. Int. J. Food Microbiol. 2020, 318, 108493. [Google Scholar] [CrossRef]
- Esmaeili, H.; Cheraghi, N.; Khanjari, A.; Rezaeigolestani, M.; Basti, A.A.; Kamkar, A.; Aghaee, E.M. Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages. Meat Sci. 2020, 166, 108135. [Google Scholar] [CrossRef]
- Seydim, A.C.; Sarikus-Tutal, G.; Sogut, E. Effect of whey protein edible films containing plant essential oils on microbial inactivation of sliced Kasar cheese. Food Packag. Shelf Life 2020, 26, 100567. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, S.; Warner, R.D.; Fang, Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coatingon the preservation of pork loin in modified atmosphere packaging. Food Control 2020, 114, 107226. [Google Scholar] [CrossRef]
- Wai, C.K.; Bond, T.Y.; Lin, N.K.; Phing, P.L. Antibacterial properties of chitosan edible filmsincorporated with musk lime extracts for thepreservation of squids. Malays. J. Anal. Sci. 2019, 23, 914–925. [Google Scholar]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control. 2018, 84, 312–320. [Google Scholar] [CrossRef]
- Han, Y.; Yu, M.; Wang, L. Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporatedwith cinnamon essential oil. Food Packag. Shelf Life 2018, 15, 35–42. [Google Scholar] [CrossRef]
- Ali, A.; Chen, Y.; Liu, H.; Yu, L.; Baloch, Z.; Khalid, S.; Zhu, J.; Chen, L. Starch-based antimicrobial films functionalized by pomegranate peel. Int. J. Biol. Macromol. 2018, 129, 1120–1126. [Google Scholar] [CrossRef]
- Wang, L.; Guo, H.; Wang, J.; Jiang, G.; Du, F.; Liu, X. Effect of Herbal ophatheri extract on the physicochemical properties and biological activities of chitosan film. Int. J. Biol. Macromol. 2019, 133, 51–57. [Google Scholar] [CrossRef]
- Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem. 2018, 246, 211–219. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Torlak, E.; Akın-Evingür, G.; Özen, İ.; Erim, F.B. Antimicrobial and physicalproperties of chitosan filmsincorporated with turmeric extract. Int. J. Biol. Macromol. 2017, 101, 882–888. [Google Scholar] [CrossRef]
- Shahbazi, Y. Characterization of nanocomposite films based on chitosan and carboxymethylcellulose containing Ziziphorac linopodioides essential oil and methanolic Ficus carica extract. J. Food Process. Preserv. 2018, 42, e13444. [Google Scholar] [CrossRef]
- Souza, A.G.; Dos Santos, N.M.A.; Silva Torin, R.F.; Santos Rosa, D. Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. Int. J. Biol. Macromol. 2020, 164, 1737–1747. [Google Scholar] [CrossRef] [PubMed]
- Arezoo, E.; Mohammadreza, E.; Maryam, M.; Abdorreza, M.N. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int. J. Biol. Macromol. 2019, 157, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Sadiq, M.B.; Mehmood, Z. Development of edible gelatin composite films enriched with polyphenol loaded nanoemulsions as chicken meat packaging material. CYTA J. Food. 2020, 18, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Khedri, S.; Sadeghi, E.; Rouhi, M.; Delshadian, Z.; Mortazavian, A.M.; de Toledo Guimarães, J.; Fallah, M.; Mohammadi, R. Bioactive edible films: Development and characterization of gelatinedible films incorporated with casein phosphopeptides. LWT Food Sci. Technol. 2020, 138, 110649. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Yang, F.; Wang, T.; Ni, M.; Chen, Y.; Yang, F.; Huang, D.; Fu, C.; Wang, S. Preparation and Characterization of Chitosan-Based Ternary Blend Edible Films with Efficient Antimicrobial Activities for Food Packaging Applications. J. Food Sci. 2019, 84, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Misir, G.B.; Koral, S. Effects of Edible Coatings Based on Ultrasound-treated Fish Proteins Hydrolysate in Quality Attributes of Chilled Bonito Fillets. J. Aquat. Food Prod. Technol. 2019, 28, 999–1012. [Google Scholar] [CrossRef]
- Da Rocha, M.; Alemán, A.; Romani, V.P.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P.; Prentice, C. Effects of agar films incorporated with fish protein hydrolysate or clove essential oil on flounder (Paralichthysorbignyanus) fillets shelf-life. Food Hydrocoll. 2018, 81, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Boyaci, D.; Korel, F.; Yemenicioglu, A. Development of activate-at-home-type edible antimicrobial films: An example pH-triggering mechanism formed for smoked salmon slices using lysozyme in whey protein films. Food Hydrocoll. 2016, 60, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Chakravartula, S.S.N.; Lourenço, R.V.; Balestra, F.; Quinta Barbosa Bittante, A.M.; do Amaral Sobral, P.J.; Dalla Rosa, M. Influence of pitanga (Eugenia uniflora L.) leaf extract and/or natamycin on properties of cassava starch/chitosan active films. Food Packag. Shelf Life 2020, 24, 100498. [Google Scholar] [CrossRef]
- Webber, J.L.; Namivandi-Zangeneh, R.; Drozdek, S.; Wilk, C.B.; Edgar, H.H.W.; Bronwyn, H.B.; Krasowska, M.; Beattie, D.A. Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Sci. Rep. 2021, 11, 1690. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Lekjing, S. A chitosan-based edible film with clove essential oil and nisin for improving the quality and shelf life of pork patties in cold storage. RSC Adv. 2020, 10, 17777–17786. [Google Scholar] [CrossRef]
- Ma, D.; Jiang, Y.; Ahmed, S.; Qin, W.; Liu, Y. Physical and antimicrobial properties of edible films containing Lactococcus lactis. Int. J. Biol. Macromol. 2019, 141, 378–386. [Google Scholar] [CrossRef]
- Ma, D.; Jiang, Y.; Ahmed, S.; Qin, W.; Liu, Y. Antilisterial and physical properties of polysaccharide-collagen films embedded with cell-free supernatant of Lactococcus lactis. Int. J. Biol. Macromol. 2020, 145, 1031–1038. [Google Scholar] [CrossRef]
- Tomat, D.; Soazo, M.; Verdini, R.; Casabonne, C.; Aquili, V.; Balagué, C.; Quiberoni, A. Evaluation of an WPC edible film added with a cocktail of six lytic phages against foodborne pathogens such as enteropathogenic and Shigatoxigenic Escherichia coli. LWT Food Sci. Technol. 2019, 113, 108316. [Google Scholar] [CrossRef]
- Amarillas, L.; Lightbourn-Rojas, L.; Angulo-Gaxiola, A.K.; Basilio Heredia, J.; González-Robles, A.; León-Félix, J. The antibacterial effect of chitosan-based edible coating incorporated with a lytic bacteriophage against Escherichia coli O157:H7 on the surface of tomatoes. J. Food Saf. 2018, 38, e12571. [Google Scholar] [CrossRef]
- Otoni, C.G.; Lodi, B.D.; Lorevice, M.V.; Leitão, R.C.; Ferreira, M.D.; de Moura, M.R.; Mattoso, L.H. Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Ind. Crops Prod. 2018, 121, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Montes, E.; Castro-Muñoz, R. Edible films and coatings as food-quality preservers: An overview. Foods 2021, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Suhag, R.; Kumar, N.; Petkoska, A.T.; Upadhyay, A. Film formation and deposition methods of edible coating on food products: A review. Food Res. Int. 2020, 136, 109582. [Google Scholar] [CrossRef]
- Wang, H.; Ding, F.; Ma, L.; Zhang, Y. Edible films from chitosan-gelatin: Physical properties and food packaging application. Food Biosci. 2021, 40, 100871. [Google Scholar] [CrossRef]
- Yadav, S.; Mehrotra, G.K.; Bhartiya, P.; Singh, A.; Dutta, P.K. Preparation, physicochemical and biological evaluation of quercetin-based chitosan-gelatin film for food packaging. Carbohydr. Polym. 2020, 227, 115348. [Google Scholar] [CrossRef]
- Teil, M.; Regazzi, A.; Harthong, B.; Dumont, P.J.J.; Imbault, D.; Putaux, J.L.; Peyroux, R. Manufacturing of starch-based materials using ultrasonic compression moulding (UCM): Toward a structural application. Heliyon 2021, 7, e06482. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, R.L.; von Bilderling, C.; Guz, L.; Bernal, C.; Famá, L. Effect of greenly synthetized silver nanoparticles on the properties of active starch films obtained by extrusion and compression molding. Carbohydr. Polym. 2021, 261, 117871. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, W.; Zhang, R.; Zhai, X.; Hou, H. Effect of gelatin bloom values on the physicochemical properties of starch/gelatin–beeswax composite films fabricated by extrusion blowing. Food Hydrocoll. 2021, 113, 106466. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, C.; Zhai, X.; Zhang, R.; Zhang, S.; Sun, C.; Wang, W.; Hou, H. Effect of lipids with different physical state on the physicochemical properties of starch/gelatin edible films prepared by extrusion blowing. Int. J. Biol. Macromol. 2021, 185, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Rowat, S.J.; Legge, R.L.; Moresoli, C. Plant Protein in Material Extrusion 3D Printing: Formation, Plasticization, Prospects, and Challenges. J. Food Eng. 2021, 308, 110623. [Google Scholar] [CrossRef]
- McHugh, T. Producing Edible Films. Food Technol. 2015, 69, 120–122. [Google Scholar]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. Preparation and incorporation of functional ingredients in edible films and coatings. Food Bioproc. Technol. 2021, 14, 209–231. [Google Scholar] [CrossRef]
- Costa, M.J.; Marques, A.M.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocoll. 2018, 81, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Bizymis, A.P.; Tzia, C. Edible films and coatings: Properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit. Rev. Food Sci. Nutr. 2021, 1–16. [Google Scholar] [CrossRef]
- Umaraw, P.; Munekata, P.E.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Barbosa, C.H.; Andrade, M.A.; Vilarinho, F.; Fernando, A.L.; Silva, A.S. Active Edible Packaging. Encyclopedia 2021, 1, 360–370. [Google Scholar] [CrossRef]
- Yashaswini, M.; Iyer, P. Chitosan Based Films Incorporated with Turmeric/Clove/Ginger Essential Oil for Food Packaging. J. Nanomed. Nanotechnol. 2019, 10, 537. [Google Scholar]
- Contreras Saavedra, S.; Ventura-Aguilar, R.I.; Bautista-Baños, S.; Barrera-Necha, L.L. Biodegradable chitosan coating for improving quality and controlling Alternaria alternata growth in figs. World J. Adv. Res. Rev. 2020, 7, 115–125. [Google Scholar] [CrossRef]
- Shah, S.; Hashmi, M.S. Chitosan–aloe vera gel coating delays postharvest decay of mango fruit. Hortic. Environ. Biotechnol. 2020, 61, 279–289. [Google Scholar] [CrossRef]
- Alotaibi, M.A.; Tayel, A.A.; Zidan, N.S.; El Rabey, H.A. Bioactive coatings from nano-biopolymers/plant extract composites for complete protection from mycotoxigenic fungi in dates. J. Sci. Food Agric. 2019, 99, 4338–4343. [Google Scholar] [CrossRef]
- Aloui, H.; Khwaldia, K.; Licciardello, F.; Mazzaglia, A.; Muratore, G.; Hamdi, M.; Restuccia, C. Efficacy of the combined application of chitosan and Locust Bean Gum with different citrus essential oils to control postharvest spoilage caused by Aspergillus flavus in dates. Int. J. Food Microbiol. 2014, 170, 21–28. [Google Scholar] [CrossRef]
- Khalifa, I.; Barakat, H.; El-Mansy, H.A.; Soliman, S.A. Improving the shelf-life stability of apple and strawberry fruits applying chitosan-incorporated olive oil processing residues coating. Food Packag. Shelf Life 2016, 9, 10–19. [Google Scholar] [CrossRef]
- Karagöz, Ş.; Demirdöven, A. Effect of chitosan coatings with and without Stevia rebaudiana and modified atmosphere packaging on quality of cold stored fresh-cut apples. LWT Food Sci. Technol. 2019, 108, 332–337. [Google Scholar] [CrossRef]
- Falcó, I.; Flores-Meraz, P.L.; Randazzo, W.; Sánchez, G.; López-Rubio, A.; Fabra, M.J. Antiviral activity of alginate-oleic acid based coatings incorporating green tea extract on strawberries and raspberries. Food Hydrocoll. 2019, 87, 611–618. [Google Scholar] [CrossRef] [Green Version]
- Arnon-Rips, H.; Porat, R.; Poverenov, E. Enhancement of agricultural produce quality and storability using citral-based edible coatings; the valuable effect of nano-emulsification in a solid-state delivery on fresh-cut melons model. Food Chem. 2018, 277, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.S.; Tomar, M.; Punia, S.; Kukula-Koch, W.; Kumar, M. Enhancing the functionality of chitosan and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int. J. Biol. Macromol. 2020, 164, 304–332. [Google Scholar] [CrossRef] [PubMed]
- Joshi, K.; Sparks, P.; Friedman, M.; Olsen, C.; McHugh, T.; Ravishankar, S. Effect of Antimicrobial Edible Films on the Sensory and Physical Properties of Organic Spinach in Salad Bags. Nutr. Food Sci. 2021, 12, 176–193. [Google Scholar]
- Beristain-Bauza, S.D.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial activity of whey protein films supplemented with Lactobacillus sakei cell-free supernatant on fresh beef. Food Microbiol. 2017, 62, 207–211. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.; Arfat, Y.A.; Bher, A.; Jacob, H.; Auras, R. Compression molded LLDPE films loaded with bimetallic (Ag-Cu) nanoparticles and cinnamon essential oil for chicken meat packaging applications. LWT Food Sci. Technol. 2018, 93, 329–338. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Fang, Y.; Holley, R.A. Inhibition of Campylobacter jejuni on fresh chicken breasts by ҡ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized oriental mustard extract. Int. J. Food Microbiol. 2014, 187, 77–82. [Google Scholar] [CrossRef]
- Garavito, J.; Moncayo-Martínez, D.; Castellanos, D.A. Evaluation of Antimicrobial Coatings on Preservation and Shelf Life of Fresh Chicken Breast Fillets Under Cold Storage. Foods 2020, 9, 1203. [Google Scholar] [CrossRef]
- Sotoudeh, B.; Azizi, M.; Mirmajidi Hashtjin, A.; Pourahmad, R.; Tavakolipour, H. Evaluation of Chitosan-Nisin Coating on Quality Characteristic of Fresh Chicken Fillet under Refrigerated Conditions. J. Agric. Sci. Technol. 2020, 22, 135–146. [Google Scholar]
- Hao, R.; Liu, Y.; Sun, L.; Xia, L.; Jia, H.; Li, Q. Sodium alginate coating with plant extract affected microbial communities, biogenic amine formation and quality properties of abalone (Haliotis discus hannai Ino) during chill storage. LWT Food Sci. Technol. 2017, 81, 1–9. [Google Scholar] [CrossRef]
- Chawla, R.; Sivakumar, S.; Kaur, H. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements—A review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100024. [Google Scholar]
- Soazo, M.; Perez, L.M.; Piccirilli, G.N.; Delorenzi, N.J.; Verdini, R.A. Antimicrobial and physicochemical characterization of whey protein concentrate edible films incorporated with liquid smoke. LWT Food Sci. Technol. 2016, 72, 285–291. [Google Scholar] [CrossRef]
- Raju, A.; Sasikala, S. Natural Antimicrobial Edible Film for Preservation of Paneer. Biosci. Biotechnol. Res. Asia 2016, 13, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 2017, 76, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Göksen, G.; Fabra, M.J.; Ekiz, H.I.; López-Rubio, A. Phytochemical loaded electrospun nanofibers as novel active edible films: Characterization and antibacterial efficiency in cheese slices. Food Control 2020, 112, 107133. [Google Scholar] [CrossRef]
- Kavas, N.; Kavas, G.; Saygili, D. Use of ginger essential oil- fortified edible coatings in Kashar cheese and its effects on Escherichia coli O157:H7 and Staphylococcus aureus. CyTA J. Food Sci. Nutr. 2016, 14, 317–323. [Google Scholar]
- Ünalan, İ.U.; Arcan, İ.; Korel, F.; Yemenicioğlu, A. Application of active zein-based films with controlled release properties to control Listeria monocytogenes growth and lipid oxidation in fresh Kashar cheese. Innov. Food Sci. Emerg. 2013, 20, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hu, D.; Ma, Q.; Wang, L. Physical and antioxidant properties of flexible soy protein isolate films by incorporating chestnut (Castanea mollissima) bur extracts. LWT Food Sci. Technol. 2016, 71, 33–39. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Rungraeng, N.; Osako, K.; Rawdkuen, S. Properties of fish myofibrillar protein film incorporated with catechin-kradon extract. Food Packag. Shelf Life 2017, 13, 56–65. [Google Scholar]
- Rawdkuen, S. Edible films incorporated with active compounds: Their properties and application. In Active Antimicrobial Food Packaging; Işıl, V., Uzunlu, S., Eds.; Intech Open: London, UK, 2018; pp. 1–22. [Google Scholar] [CrossRef] [Green Version]
- Motelica, L.; Ficai, D.; Ficai, A.; Oprea, O.C.; Kaya, D.A.; Andronescu, E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020, 9, 1438. [Google Scholar] [CrossRef]
- Amalia, V.; Adipraja, F.W.; Supriadin, A.; Khasanah, N.N.; Junitasari, A. Effect of addition of white turmeric extract against antibacterial properties in edible film sweet potato starch and whey protein. J. Phys. Conf. Ser. 2021, 1869, 012027. [Google Scholar] [CrossRef]
- Cardoso, L.G.; Pereira Santos, J.C.; Camilloto, G.P.; Miranda, A. Druzian, L.J.I.; Guimaraes, A.G. Development of active films poly (butylene adipate co-terephthalate)–PBAT incorporated with oregano essential oil and application in fish fillet preservation. Ind. Crops Prod. 2017, 108, 388–397. [Google Scholar] [CrossRef]
- Valdés, A.; Ramos, M.; Beltrán, A.; Jiménez, A.; Garrigós, M. State of the Art of Antimicrobial Edible Coatings for Food Packaging Applications. Coatings 2017, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Socaciu, M.-I.; Fogarasi, M.; Semeniuc, C.A.; Socaci, S.A.; Rotar, M.A.; Mureşan, V.; Pop, O.L.; Vodnar, D.C. Formulation and Characterization of Antimicrobial Edible Films Based on Whey Protein Isolate and Tarragon Essential Oil. Polymers 2020, 12, 1748. [Google Scholar] [CrossRef]
- Yao, Y.Z.; Ding, D.; Shao, H.Y.; Peng, Q.F.; Huang, Y.Q. Antibacterial Activity and Physical Properties of Fish Gelatin-Chitosan Edible Films Supplemented with D-Limonene. Int. J. Polym. Sci. 2017, 2017, 1837171. [Google Scholar] [CrossRef] [Green Version]
- Rusmawati, D.A.; Yuliasih, I.; Sunarti, T.C. Acetylated sago starch-based antimicrobial edible film. IOP Conf. Ser. Earth Environ. Sci. 2020, 472, 012028. [Google Scholar] [CrossRef]
- Abdollahi, M.; Rezaei, M.; Farzi, G.A. Novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J. Food Eng. 2012, 111, 343–350. [Google Scholar] [CrossRef]
- Othman, S.H. Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler. Agric. Sci. Procedia 2014, 2, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Nile, S.H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-Micro Lett. 2020, 12, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galus, S.; Kibar, E.A.A.; Gniewosz, M.; Krasniewska, K. Novel Materials in the Preparation of Edible Films and Coatings—A Review. Coatings 2020, 10, 674. [Google Scholar] [CrossRef]
- Trif, M.; Socaciu, C. Evaluation of effiency, release and oxidation stability of seabuckthorn microencapsulated oil using Fourier transformed infrared spectroscopy. Chem. Listy 2008, 102, s1198–s1199. [Google Scholar]
- Darie-Niță, R.N.; Râpă, M.; Sivertsvik, M.; Rosnes, J.T.; Popa, E.E.; Dumitriu, R.P.; Marincaș, O.; Matei, E.; Predescu, C.; Vasile, C. PLA-Based Materials Containing Bio-Plasticizers and Chitosan Modified with Rosehip Seed Oil for Ecological Packaging. Polymers 2021, 13, 1610. [Google Scholar] [CrossRef]
- Akgün, M.; Başaran, İ.; Suner, S.C.; Oral, A. Geraniol and cinnamaldehyde as natural antibacterial additives for poly (lactic acid) and their plasticizing effects. J. Polym. Eng. 2020, 40, 38–48. [Google Scholar] [CrossRef]
- Han, J.H. Edible Films and Coatings. In Innovations in Food Packaging, 2nd ed.; Han, J.H., Ed.; Academic Press: Amsterdam, The Netherlands; Elsevier: Amsterdam, The Netherlands, 2014; Chapter 9; pp. 213–255. [Google Scholar]
- Sanchez-Gonzalez, L.; Vargas, M.; Gonzalez-Martınez, C.; Chiralt, A.; Chafer, M. Use of Essential Oils in Bioactive Edible Coatings. Food Eng. Rev. 2011, 3, 1–16. [Google Scholar] [CrossRef]
- LaLonde, T.; Bowser, T.; Jadeja, R. Essential Oils as Antimicrobials. Madridge J. Food Technol. 2019, 4, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Hassanzadeh, P.; Tajik, H.; Rohani, S.M.R.; Moradi, M.; Hashemi, M.; Aliakbarlu, J. Effect of functional chitosan coating and gamma irradiation on the shelf-life of chicken meat during refrigerated storage. Radiat. Phys. Chem. 2017, 141, 103–109. [Google Scholar] [CrossRef]
- Ahhmed, A.; Özcan, C.; Karaman, S.; Öztürk, İ.; Çam, M.; Fayemi, P.O. Utilization of fermented soybeans paste as flavoring lamination for Turkish dry-cured meat. Meat Sci. 2017, 127, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Martínez, O.; Salmerón, J.; Epelde, L.; Vicente, M.S.; de Vega, C. Quality enhancement of smoked sea bass (Dicentrarchus labrax) fillets by adding resveratrol and coating with chitosan and alginate edible films. Food Control 2018, 85, 168–176. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Sayed, S.M. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohyd. Polym. 2018, 193, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Du, W.X.; Olsen, C.W.; Avena-Bustillos, R.J.; Friedman, M.; McHugh, T.H. Physical and Antibacterial Properties of Edible Films Formulated with Apple Skin Polyphenols. J. Food Sci. 2011, 76, M149–M155. [Google Scholar] [CrossRef]
- Trezza, T.A.; Krochta, J.M. The Gloss of Edible Coatings as Affected by Surfactants, Lipids, Relative Humidity, and Time. J. Food Sci. 2000, 65, 658–662. [Google Scholar] [CrossRef]
- Al-Hassan, A.A.; Norziah, M.H. Starch gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocoll. 2012, 26, 108e117. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.; Biliaderis, C.G. Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chem. 1998, 62, 333–342. [Google Scholar] [CrossRef]
- Su, J.F.; Huang, Z.; Yuan, X.Y.; Wang, X.Y.; Li, M. Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films cross linked by Maillard reactions. Carbohydr. Polym. 2010, 79, 145–153. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; BursaćKovačević, D.; Shpigelman, A.; Granato, D.; Franco, D. Berries extracts as natural antioxidants in met produts: A review. Int. Food Res. J. 2018, 106, 1095–1104. [Google Scholar] [CrossRef]
- Vila-Lopez, N.; Küster-Boluda, I. A bibliometric analysis on packaging research: Towards sustainable and healthy packages. Br. Food J. 2020, 123, 684–701. [Google Scholar] [CrossRef]
Food Product | NAMAs | Film Matrix | Preparation Method | Findings | References |
---|---|---|---|---|---|
Fruits and Vegetables | |||||
Tomatoes and amla | Essential oil of turmeric/ginger/clove | Chitosan-based films | Heating & drying | Coated tomatoes and amla remained fresh for a longer time as compared to non coated samples | [85] |
Figs | Cinnamon essential oil | Chitosan | Spread | The color change was delayed and Alternaria alternata growth was inhibited | [86] |
Mangoes | Aloe vera | Chitosan-aloe vera films | Dipping | Suppress microbial decay (effective against Colletotrichumgloeospo-rides) of mango extend the storage life of mango fruit. | [87] |
Dates | Pomegranate peel extract Citrus essential oils | Chitosan nanoparticles Chitosan and locust Bean Gum | Spreading Coating | Antifungal activity against mycotoxigenic fungi, Aspergillus flavus, Aspergillus ochraceus and Fusarium moniliforme. Significantly reduced conidial germination and completely inhibited Aspergillus flavus growth in dates | [88,89] |
Apple and strawberry Cold stored fresh-cut apples | Olive oil Stevia rebaudiana | Chitosan Chitosan | Spreading Spreading | Protected against microbial decay Exhibited superior antimicrobial activity against mesophilic and psychrophilic aerobic bacteria | [90,91] |
Strawberries and raspberries | Green tea extract | Alginate-oleic acid | Spreading | Antiviral activity | [92] |
Fresh-cut melons | Coarse and nano emulsions of citral | Chitosan/carboxymethyl cellulose (CMC) polysaccharides | Nanoemulsified coatings | Superior antimicrobial protection (up to a 5-log reduction) and significantly extended the product’s storability (up to 13 days). | [93] |
Capsicum | Pomegranate peel extract | Alginate based coatings | Blending | Maintain the chlorophyll, ascorbic acid, firmness and color while inhibiting the growth of the fungal pathogen Colletotrichumgloeosporioides at 10 °C storage | [94] |
Organic baby spinach | Carvacrol or cinnamaldehyde | Hibiscus, carrot and apple-based films. | Blending and casting | Exhibited antimicrobial activity without affecting sensory characteristics of baby spinach | [95] |
Meat & Meat Products | |||||
Meat | Essential oil of Turmeric/Ginger/clove | Chitosan based films | Heating & drying | The meat remained fresh for seven days without any change in color, texture, odor and form. | [85] |
Beef | Lactobacillus sakei | whey protein films | Spreading | Exhibited inhibitory action against E. coli or L. monocytogenes. | [96] |
Chicken | Cinnamon essential oil and silver-copper | Linear low-density polyethylene | Wrapping | Showed enhanced antimicrobial activity and shelf-life was also increased | [97,98,99,100] |
Fresh chicken breast Fresh Chicken Breast Fillets Chicken breast fillets | Oriental mustard extract (allyl isothiocyanate) Nisin and oregano oil Nisin | ĸ-Carrageenan and chitosan Guar gum (GG) and isolated soy protein Chitosan | Dipping Coating Coating | Effectively inhibited growth of Campylobacter jejuni and shelf-life was extended Delayed the growth of Pseudomonas and Salmonella, increasing the product shelf life (9 days) compared to the control samples (6 days) Reducing the growth of Salmonella and Staphylococcus aureus | |
Abalone | Bamboo leaf extract | Alginate | Spreading | Enhanced microbial safety | [101] |
Dairy Products | |||||
Sweet meat or Doda Burfi | Nisin and Natamycin | Corn starch | Spreading | Superior efficacy against Bacillus cereus and Aspergillus niger | [102] |
Gouda cheese | Lysozyme | Whey protein concentrate film | Casting method | Inhibit microorganisms (Lactic acid bacteria, Enterococcus, Coliform, E. coli, Salmonella, S. aureus, and yeast/mold) both at the surface and inside the region of gouda cheese during ripening. | [103,104,105,106,107,108] |
Paneer (Cottage cheese) | Cinnamon essential oil | Sodium alginate crosslinked with calcium | Spreading | Increased the shelf-life of paneer samples to 13 days from 5-6 days and showed antimicrobial activity | |
Low-fat cheese | Oregano essential oil | Nanoemulsion containing essential oil and mandarin fiber | Coating | Exhibited antimicrobial activity against S. aureus and extended the shelf life of low-fat cut cheese. | |
Cheese | Essential oils of Laurus nobilis and Rosmarinus officinalis | Zein nanofibers | Coating | excellent antibacterial property against S. aureus and L. monocytogenes even after 28 days of storage | |
Kashar Cheese | Ginger essential oil | Sorbitol, whey protein isolate, alginate | Coating | Exhibited antimicrobial properties against Escherichia coli O157:H7 and Staphylococcus aureus | |
Fresh Kashar cheese | Lysozyme | Zein-Carnauba wax | Coating | Significantly reduced bacterial (Listeria monocytogenes) count |
Potential Advantages | Pitfalls |
---|---|
| Antimicrobial edible films do not ensure food safety where unsanitary conditions during food handling are there. Exhibit poor mechanical characteristics. Hence, an additional synthetic packaging material will be required during food product distribution and storage. Production cost is high If hydrophilic constituents are selected for edible films during manufacturing, the films will exhibit poor moisture and water vapor barrier properties, thus defying the aim of ensuring safe food to consumers. Some essential oils used as NAMAs are under the GRAS category, while some are prohibited for cytotoxic effects, toxicological reasons, or allergenicity. Hence, regulatory aspect should be taken into consideration. Some essential oils, if not encapsulated, may lead to alterations in color or sensory characteristics of food. If the target pathogen has a very short lag phase, then the biopolymer, which slowly releases antimicrobial compounds, will be ineffective in controlling their growth. If the antimicrobial incorporated into edible packaging is congenial with the constituents of edible film, it may not get released. In contrast, it is has a conflicting approach it may be released very swiftly. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punia Bangar, S.; Chaudhary, V.; Thakur, N.; Kajla, P.; Kumar, M.; Trif, M. Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review. Foods 2021, 10, 2282. https://doi.org/10.3390/foods10102282
Punia Bangar S, Chaudhary V, Thakur N, Kajla P, Kumar M, Trif M. Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review. Foods. 2021; 10(10):2282. https://doi.org/10.3390/foods10102282
Chicago/Turabian StylePunia Bangar, Sneh, Vandana Chaudhary, Neha Thakur, Priyanka Kajla, Manoj Kumar, and Monica Trif. 2021. "Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review" Foods 10, no. 10: 2282. https://doi.org/10.3390/foods10102282
APA StylePunia Bangar, S., Chaudhary, V., Thakur, N., Kajla, P., Kumar, M., & Trif, M. (2021). Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review. Foods, 10(10), 2282. https://doi.org/10.3390/foods10102282