Bromelain, a Group of Pineapple Proteolytic Complex Enzymes (Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary
Abstract
:1. Introduction
2. Physiochemical Properties and Pharmacokinetics of Bromelain
2.1. Structural Chemistry of Bromelain
2.2. Comparison of Stem and Fruit Bromelain
2.3. Methods for Bromelain Isolation and Purification
2.4. Absorption and Bioavailability of Bromelain
3. Use of Bromelain in the Medical and Cosmetic Industries
3.1. Clinical Application
3.2. Effects of Bromelain on Blood Coagulation and Fibrinolysis
3.3. Effects of Bromelain on Cardiovascular Disease
3.4. Effects of Bromelain on Cancer Cells
3.5. Antimicrobial Activity of Bromelain
3.6. Application of Bromelain in Unhealthy Tissue Burns
3.7. Anti-Inflammatory Activity of Bromelain
3.7.1. Allergic Airway Disease (AAD)
3.7.2. Arthritis
3.7.3. Colonic Inflammation
3.7.4. Sinus Inflammation
3.8. Toxicity Profile of Bromelain
3.9. Effect of Bromelain on SARS-CoV-2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heinicke, R.M. Complementary enzyme actions in the clotting of milk. Science 1953, 118, 753–754. [Google Scholar] [CrossRef] [PubMed]
- Benucci, I.; Liburdi, K.; Garzillo, A.M.; Esti, M. Bromelain from pineapple stem in alcoholic–acidic buffers for wine application. Food Chem. 2011, 124, 1349–1353. [Google Scholar] [CrossRef]
- Tochi, B.N.; Wang, Z.; Xu, S.Y.; Zhang, W. Therapeutic application of pineapple protease (bromelain): A review. Pak. J. Nutr. 2008, 7, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, A.; Lama, J.P.; Tawata, S. Utilization of pineapple waste: A review. J. Food Sci. Technol. Nepal 2010, 6, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Devakate, R.V.; Patil, V.V.; Waje, S.S.; Thorat, B.N. Purification and drying of bromelain. Sep. Purif. Technol. 2009, 64, 259–264. [Google Scholar] [CrossRef]
- Neta, J.L.; da Silva Lédo, A.; Lima, A.A.; Santana, J.C.; Leite, N.S.; Ruzene, D.S.; Silva, D.P.; de Souza, R.R. Bromelain enzyme from pineapple: In vitro activity study under different micropropagation conditions. Appl. Biochem. Biotechnol. 2012, 168, 234–246. [Google Scholar] [CrossRef]
- Nadzirah, K.Z.; Zainal, S.; Noriham, A.; Normah, I. Efficacy of selected purification techniques for bromelain. Int. Food Res. J. 2013, 20, 43. [Google Scholar]
- Amini, A.; Masoumi-Moghaddam, S.; Ehteda, A.; Liauw, W.; Morris, D.L. Potentiation of chemotherapeutics by bromelain and N-acetylcysteine: Sequential and combination therapy of gastrointestinal cancer cells. Am. J. Cancer Res. 2016, 6, 350. [Google Scholar]
- Heinicke, R.M.; van der Wal, L.; Yokoyama, M. Effect of bromelain (Ananase®) on human platelet aggregation. Experientia 1972, 28, 844–845. [Google Scholar] [CrossRef]
- Hennrich, N.; Klockow, M.; Lang, H.; Berndt, W. Isolation and properties of bromelin protease. FEBS Lett. 1969, 2, 278–280. [Google Scholar] [CrossRef] [Green Version]
- Murachi, T.; Yamazaki, M. Changes in conformation and enzymic activity of stem bromelain in alkaline media. Biochemistry 1970, 9, 1935–1938. [Google Scholar] [CrossRef] [PubMed]
- Doko, M.B.; Bassani, V.; Casadebaig, J.; Cavailles, L.; Jacob, M. Preparation of proteolytic enzyme extracts from Ananas comosus L., Merr. Fruit juice using semipermeable membrane, ammonium sulfate extraction, centrifugation and freeze-drying processes. Int. J. Pharm. 1991, 76, 199–206. [Google Scholar] [CrossRef]
- Hebbar, H.U.; Sumana, B.; Raghavarao, K.S. Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. Bioresour. Technol. 2008, 99, 4896–4902. [Google Scholar] [CrossRef] [PubMed]
- Hebbar, U.H.; Sumana, B.; Hemavathi, A.B.; Raghavarao, K.S. Separation and purification of bromelain by reverse micellar extraction coupled ultrafiltration and comparative studies with other methods. Food Bioprocess Technol. 2012, 5, 1010–1018. [Google Scholar] [CrossRef]
- Hossain, M.F.; Akhtar, S.; Anwar, M. Nutritional value and medicinal benefits of pineapple. Int. J. Nutr. Food Sci. 2015, 4, 84–88. [Google Scholar] [CrossRef]
- Pavan, R.; Jain, S.; Kumar, A. Properties and Therapeutic Application of Bromelain: A Review. Biotechnol. Res. Int. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Nor, M.Z.; Ramchandran, L.; Duke, M.; Vasiljevic, T. Integrated ultra-filtration process for the recovery of bromelain from pineapple waste mixture. J. Food Process Eng. 2017, 40, e12492. [Google Scholar] [CrossRef]
- Novaes, L.C.; Jozala, A.F.; Mazzola, P.G.; Júnior, A.P. The influence of pH, polyethylene glycol and polyacrylic acid on the stability of stem bromelain. Braz. J. Pharm. Sci. 2015, 50, 371–380. [Google Scholar] [CrossRef]
- Harrach, T.; Eckert, K.; Schulze-Forster, K.; Nuck, R.; Grunow, D.; Maurer, H.R. Isolation and partial characterization of basic proteinases from stem bromelain. J. Protein Chem. 1995, 14, 41–52. [Google Scholar] [CrossRef]
- Bhattacharyya, B.K. Bromelain: An overview. Indian J. Nat. Prod. Resour. 2008, 7, 359–363. [Google Scholar]
- Gautam, S.S.; Mishra, S.K.; Dash, V.; Goyal, A.K.; Rath, G. Comparative study of extraction, purification and estimation of bromelain from stem and fruit of pineapple plant. Thai. J. Pharm. Sci. 2010, 34, 67–76. [Google Scholar]
- Dave, S.; Dkhar, H.K.; Singh, M.P.; Gupta, G.; Chandra, V.; Mahajan, S.; Gupta, P. Hexafluoroisopropanol-induced helix–sheet transition of stem bromelain: Correlation to function. Int. J. Biochem. Cell Biol. 2010, 42, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Rowan, A.D.; Buttle, D.J.; Barrett, A.J. Ananain: A novel cysteine proteinase found in pineapple stem. Arch. Biochem. Biophys. 1988, 267, 262–270. [Google Scholar] [CrossRef]
- Rowan, A.D.; Buttle, D.J.; Barrett, A.J. The cysteine proteinases of the pineapple plant. Biochem. J. 1990, 266, 869. [Google Scholar] [PubMed]
- Harrach, T.; Eckert, K.; Maurer, H.R.; Machleidt, I.; Machleidt, W.; Nuck, R. Isolation and characterization of two forms of an acidic bromelain stem proteinase. J. Protein Chem. 1998, 17, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wu, C.Y.; Branford-White, C.J.; Ning, X.; Nie, H.L.; Zhu, L.M. Chemical modification of stem bromelain with anhydride groups to enhance its stability and catalytic activity. J. Mol. Catal. B Enzym. 2010, 63, 188–193. [Google Scholar] [CrossRef]
- Lopes, F.L.; Júnior, S.; Baptista, J.; Souza, R.R.; Ehrhardt, D.D.; Santana, J.C.; Tambourgi, E.B. Concentration by membrane separation processes of a medicinal product obtained from pineapple pulp. Braz. Arch. Biol. Technol. 2009, 52, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, M.P.; Carreira, R.L.; Silva, M.R.; Corgosinho, F.C.; Monteiro, M.R.; Morais, H.A. Effect of pH and temperature on the activity of enzymatic extracts from pineapple peel. Food Bioprocess Technol. 2012, 5, 1824–1831. [Google Scholar] [CrossRef]
- Kumar, S.; Hemavathi, A.B.; Hebbar, H.U. Affinity based reverse micellar extraction and purification of bromelain from pineapple (Ananas comosus L. Merryl) waste. Process Biochem. 2011, 46, 1216–1220. [Google Scholar] [CrossRef]
- Ketnawa, S.; Chaiwut, P.; Rawdkuen, S. Aqueous two-phase extraction of bromelain from pineapple peels (‘Phu Lae’cultv.) and its biochemical properties. Food Sci. Biotechnol. 2012, 20, 1219. [Google Scholar] [CrossRef]
- Silva, F.V.; Santos, R.L.A.; Fileti, A.M.F. Adaptive control of bromelain precipitation in a fed-batch stirred tank. In Proceedings of the International Symposium on Advanced Control of Chemical Processes, Gramado, Brazil, 2–5 April 2006. Available online: https://ac.els-cdn.com/S1474667016354556/1-s2.0-S1474667016354556-main.pdf?_tid=6c0b5c82-f15d-4d87-9e8c-32b32691aae7&acdnat=1524702268_7ebcf7c8331e5dba8cee07708515e408 (accessed on 3 March 2021).
- Coelho, D.F.; Silveira, E.; Junior, A.P.; Tambourgi, E.B. Bromelain purification through unconventional aqueous two-phase system (PEG/ammonium sulphate). Bioprocess Biosyst. Eng. 2013, 36, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Sun, C.K.; Han, X.; Xu, L.; Xu, Y.; Qi, Y.; Peng, J. Preparative purification of bromelain (EC 3.4. 22.33) from pineapple fruit by high-speed counter-current chromatography using a reverse-micelle solvent system. Food Chem. 2011, 129, 132–925. [Google Scholar] [CrossRef] [PubMed]
- Arshad, Z.I.; Amid, A.; Yusof, F.; Jaswir, I.; Ahmad, K.; Loke, S.P. Bromelain: An overview of industrial application and purification strategies. Appl. Microbiol. Biotechnol. 2014, 98, 7283–7297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiew, P.S.; Fang, Y.L.; Majid, F.A. In vitro study of bromelain activity in artificial stomach juice and blood. In Proceedings of the 3rd International Conference on Biotechnology for the Wellness Industry, Kuala Lumpur, Malaysia, 8–9 October 2010. [Google Scholar]
- Castell, J.V.; Friedrich, G.E.; Kuhn, C.S.; Poppe, G.E. Intestinal absorption of undegraded proteins in men: Presence of bromelain in plasma after oral intake. Am. J. Physiol. Gastrointest. Liver Physiol. 1997, 273, G139–G146. [Google Scholar] [CrossRef] [PubMed]
- Seifert, J. Die Resorption eines proteolytischen Enzyms pflanzlichen Ursprunges aus dem Magen-Darm-Trakt in das Blut und in die Lymphe von erwachsenen Ratten. Dünndarm A 1979, 17, 394–418. [Google Scholar] [CrossRef]
- Graf, J. Herbal anti-inflammatory agents for skin disease. Skin Ther. Lett. 2000, 5, 3–5. [Google Scholar]
- Bresolin, I.R.; Bresolin, I.T.; Silveira, E.; Tambourgi, E.B.; Mazzola, P.G. Isolation and purification of bromelain from waste peel of pineapple for therapeutic application. Braz. Arch. Biol. Technol. 2013, 56, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Babu, B.R.; Rastogi, N.K.; Raghavarao, K.S. Liquid–liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system. Chem. Eng. Process. 2008, 47, 83–89. [Google Scholar] [CrossRef]
- Ketnawa, S.; Sai-Ut, S.; Theppakorn, T.; Chaiwut, P.; Rawdkuen, S. Partitioning of bromelain from pineapple peel (Nang Lae cultv.) by aqueous two phase system. Asian J. Food Agro-Ind. 2009, 2, 457–468. [Google Scholar]
- Soares, P.A.; Vaz, A.F.; Correia, M.T.; Pessoa, A., Jr.; Carneiro-da-Cunha, M.G. Purification of bromelain from pineapple wastes by ethanol precipitation. Sep. Purif. Technol. 2012, 98, 389–395. [Google Scholar] [CrossRef]
- Maurer, H.R. Bromelain: Biochemistry, pharmacology and medical use. Cell. Mol. Life Sci. 2001, 58, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.; Shamim, T.A.; Haq, S.K.; Khan, R.H. Identification and characterization of functional intermediates of stem bromelain during urea and guanidine hydrochloride unfolding. J. Biochem. 2007, 141, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Bhattacharyya, D. Resistance of bromelain to SDS binding. Biochim. Biophys. Acta Proteins Proteom. 2009, 1794, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Rathnavelu, V.; Alitheen, N.B.; Sohila, S.; Kanagesan, S.; Ramesh, R. Potential role of bromelain in clinical and therapeutic applications. Biomed. Rep. 2016, 5, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Baez, R.; Lopes, M.T.; Salas, C.E.; Hernandez, M. In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain. Planta Med. 2007, 73, 1377–1383. [Google Scholar] [CrossRef]
- Fan, P.; Gao, Y.; Zheng, M.; Xu, T.; Schoenhagen, P.; Jin, Z. Recent progress and market analysis of anticoagulant drugs. J. Thorac. Dis. 2018, 10, 2011. [Google Scholar] [CrossRef] [Green Version]
- Lotz-Winter, H. On the pharmacology of bromelain: An update with special regard to animal studies on dose-dependent effects. Planta Med. 1990, 56, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Taussig, S.J.; Batkin, S. Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update. J. Ethnopharmacol. 1988, 22, 191–203. [Google Scholar] [CrossRef]
- Bryant, C.D.; Chang, H.P.; Zhang, J.; Wiltshire, T.; Tarantino, L.M.; Palmer, A.A. A major QTL on chromosome 11 influences psychostimulant and opioid sensitivity in mice. Genes Brain Behav. 2009, 8, 795–805. [Google Scholar] [CrossRef]
- Juhasz, B.; Thirunavukkarasu, M.; Pant, R.; Zhan, L.; Penumathsa, S.V.; Secor, E.R., Jr.; Srivastava, S.; Raychaudhuri, U.; Menon, V.P.; Otani, H.; et al. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium. Am. J. Physiol. Heart Circ. 2008, 294, H1365–H1370. [Google Scholar] [CrossRef] [Green Version]
- Bahde, R.; Palmes, D.; Minin, E.; Stratmann, U.; Diller, R.; Haier, J.; Spiegel, H.U. Bromelain ameliorates hepatic microcirculation after warm ischemia. J. Surg. Res. 2007, 139, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Neumayer, C.; Fügl, A.; Nanobashvili, J.; Blumer, R.; Punz, A.; Gruber, H.; Polterauer, P.; Huk, I. Combined enzymatic and antioxidative treatment reduces ischemia-reperfusion injury in rabbit skeletal muscle. J. Surg. Res. 2006, 133, 150–158. [Google Scholar] [CrossRef]
- Bloomer, R.J. The role of nutritional supplements in the prevention and treatment of resistance exercise-induced skeletal muscle injury. Sports Med. 2007, 37, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Shibayama, Y. An experimental study into the cause of acute haemorrhagic gastritis in cirrhosis. J. Pathol. 1986, 149, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Chobotova, K.; Vernallis, A.B.; Majid, F.A. Bromelain’s activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Lett. 2010, 290, 148–156. [Google Scholar] [CrossRef]
- Eckert, K.; Grabowska, E.; Stange, R.A.; Schneider, U.; Eschmann, K.L.; Maurer, H.R. Effects of oral bromelain administration on the impaired immunocytotoxicity of mononuclear cells from mammary tumor patients. Oncol. Rep. 1999, 6, 1191–1200. [Google Scholar] [CrossRef]
- World Health Organization. Cancer. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 3 March 2021).
- Tysnes, B.B.; Maurer, H.R.; Porwol, T.; Probst, B.; Bjerkvig, R.; Hoover, F. Bromelain reversibly inhibits invasive properties of glioma cells. Neoplasia 2001, 3, 469. [Google Scholar] [CrossRef] [Green Version]
- Ferris, R.L.; Grandis, J.R. NF-κB gene signatures and p53 mutations in head and neck squamous cell carcinoma. Clin. Cancer Res. 2007, 13, 5663–5664. [Google Scholar] [CrossRef] [Green Version]
- Perwez Hussain, S.; Harris, C.C. Inflammation and cancer: An ancient link with novel potentials. Int. J. Cancer 2007, 121, 2373–2380. [Google Scholar] [CrossRef]
- Bhui, K.; Prasad, S.; George, J.; Shukla, Y. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway. Cancer Lett. 2009, 282, 167–176. [Google Scholar] [CrossRef]
- Huang, J.R.; Wu, C.C.; Hou, R.C.; Jeng, K.C. Bromelain inhibits lipopolysaccharide-induced cytokine production in human THP-1 monocytes via the removal of CD14. Immunol. Investig. 2008, 37, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.C.; Chen, Y.S.; Huang, J.R.; Jeng, K.C. Cross-linked bromelain inhibits lipopolysaccharide-induced cytokine production involving cellular signaling suppression in rats. J. Agric. Food Chem. 2006, 54, 2193–2198. [Google Scholar] [CrossRef] [PubMed]
- Mynott, T.L.; Guandalini, S.T.; Raimondi, F.R.; Fasano, A.L. Bromelain prevents secretion caused by Vibrio cholerae and Escherichia coli enterotoxins in rabbit ileum in vitro. Gastroenterology 1997, 113, 175–184. [Google Scholar] [CrossRef]
- Stepek, G.; Lowe, A.E.; Buttle, D.J.; Duce, I.R.; Behnke, J.M. In vitro and in vivo anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode, Trichuris muris. Parasitology 2006, 132, 681–689. [Google Scholar] [CrossRef]
- Brakebusch, M.; Wintergerst, U.; Petropoulou, T.; Notheis, G.; Husfeld, L.; Belohradsky, B.H.; Adam, D. Bromelain is an accelerator of phagocytosis, respiratory burst and Killing of Candida albicans by human granulocytes and monocytes. Eur. J. Med. Res. 2001, 6, 193–200. [Google Scholar]
- Massimiliano, R.; Pietro, R.; Paolo, S.; Sara, P.; Michele, F. Role of bromelain in the treatment of patients with pityriasis lichenoides chronica. J. Dermatol. Treat. 2007, 18, 219–222. [Google Scholar] [CrossRef]
- Tinozzi, S.; Venegoni, A. Effect of bromelain on serum and tissue levels of amoxicillin. Drugs Exp. Clin. Res. 1978, 4, 39–44. [Google Scholar]
- Glade, M.J.; Kendra, D.; Kaminski, M.V., Jr. Improvement in protein utilization in nursing home patients on tube feeding supplemented with an enzyme product derived from Aspergillus niger and bromelain. Nutrition 2001, 17, 348–350. [Google Scholar] [CrossRef]
- Singer, A.J.; McClain, S.A.; Taira, B.R.; Rooney, J.; Steinhauff, N.; Rosenberg, L. Rapid and selective enzymatic debridement of porcine comb burns with bromelain-derived Debrase®: Acute-phase preservation of noninjured tissue and zone of stasis. J. Burn. Care Res. 2010, 31, 304–309. [Google Scholar] [CrossRef]
- Hirche, C.; Citterio, A.; Hoeksema, H.; Koller, J.; Lehner, M.; Martinez, J.R.; Monstrey, S.; Murray, A.; Plock, J.A.; Sander, F.; et al. Eschar removal by bromelain based enzymatic debridement (Nexobrid®) in burns: An European consensus. Burns 2017, 43, 1640–1653. [Google Scholar] [CrossRef]
- Krieger, Y.; Rubin, G.; Schulz, A.; Rosenberg, N.; Levi, A.; Singer, A.J.; Rosenberg, L.; Shoham, Y. Bromelain-based enzymatic debridement and minimal invasive modality (mim) care of deeply burned hands. Ann. Burns Fire Disasters 2017, 30, 198. [Google Scholar]
- Rosenberg, L.; Krieger, Y.; Silberstein, E.; Arnon, O.; Sinelnikov, I.A.; Bogdanov-Berezovsky, A.; Singer, A.J. Selectivity of a bromelain based enzymatic debridement agent: A porcine study. Burns 2012, 38, 1035–1040. [Google Scholar] [CrossRef]
- Miller, J.G.; Carruthers, H.R.; Burd, D.A. An algorithmic approach to the management of cutaneous burns. Burns 1992, 18, 200–211. [Google Scholar] [CrossRef]
- Hu, W.; Wang, A.M.; Wu, S.Y.; Zhang, B.; Liu, S.; Gou, Y.B.; Wang, J.M. Debriding effect of bromelain on firearm wounds in pigs. J. Trauma Acute Care Surg. 2011, 71, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Kargutkar, S.; Brijesh, S. Anti-inflammatory evaluation and characterization of leaf extract of Ananas comosus. Inflammopharmacology 2018, 26, 469–477. [Google Scholar] [CrossRef]
- Engwerda, C.R.; Andrew, D.; Murphy, M.; Mynott, T.L. Bromelain activates murine macrophages and natural killer cells in vitro. Cell. Immunol. 2001, 210, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Engwerda, C.R.; Andrew, D.; Ladhams, A.; Mynott, T.L. Bromelain modulates T cell and B cell immune responses in vitro and in vivo. Cell. Immunol. 2001, 210, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desser, L.; Rehberger, A. Induction of tumor necrosis factor in human peripheral-blood mononuclear cells by proteolytic enzymes. Oncology 1990, 47, 475–477. [Google Scholar] [CrossRef]
- Desser, L.; Rehberger, A.; Kokron, E.; Paukovits, W. Cytokine synthesis in human peripheral blood mononuclear cells after oral administration of polyenzyme preparations. Oncology 1993, 50, 403–407. [Google Scholar] [CrossRef]
- Desser, L.; Rehberger, A.; Paukovits, W. Proteolytic enzymes and amylase induce cytokine production in human peripheral blood mononuclear cells in vitro. Cancer Biother. Radiopharm. 1994, 9, 253–263. [Google Scholar] [CrossRef]
- Caughey, G.H. Mast cell proteases as protective and inflammatory mediators. In Mast Cell Biology; Springer: Boston, MA, USA, 2011; pp. 212–234. [Google Scholar]
- Secor, E.R., Jr.; Carson, W.F., IV; Cloutier, M.M.; Guernsey, L.A.; Schramm, C.M.; Wu, C.A.; Thrall, R.S. Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cell. Immunol. 2005, 237, 68–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspani, L.; Bianchi, M.; Limiroli, E.; Panerai, A.E.; Sacerdote, P. The analgesic drug tramadol prevents the effect of surgery on natural killer cell activity and metastatic colonization in rats. J. Neuroimmunol. 2002, 129, 18–24. [Google Scholar] [CrossRef]
- Barth, H.; Guseo, A.; Klein, R. In vitro study on the immunological effect of bromelain and trypsin on mononuclear cells from humans. Eur. J. Med. Res. 2005, 10, 325. [Google Scholar] [PubMed]
- Salas, C.E.; Gomes, M.T.; Hernandez, M.; Lopes, M.T. Plant cysteine proteinases: Evaluation of the pharmacological activity. Phytochemistry 2008, 69, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
- Leipner, J.; Iten, F.; Saller, R. Therapy with proteolytic enzymes in rheumatic disorders. BioDrugs 2001, 15, 779–789. [Google Scholar] [CrossRef]
- Bierie, B.; Moses, H.L. TGFβ: The molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 2006, 6, 506–520. [Google Scholar] [CrossRef]
- Oh-ishi, S.; Uchida, Y.; Ueno, A.; Katori, M. Bromelain, a thilprotease from pineapple stem, depletes high molecular weight kininogen by activation of Hageman factor (factor XII). Thromb. Res. 1979, 14, 665–672. [Google Scholar] [CrossRef]
- Stopper, H.; Schinzel, R.; Sebekova, K.; Heidland, A. Genotoxicity of advanced glycation end products in mammalian cells. Cancer Lett. 2003, 190, 151–156. [Google Scholar] [CrossRef]
- Brennan-Olsen, S.L.; Cook, S.; Leech, M.T.; Bowe, S.J.; Kowal, P.; Naidoo, N.; Ackerman, I.N.; Page, R.S.; Hosking, S.M.; Pasco, J.A.; et al. Prevalence of arthritis according to age, sex and socioeconomic status in six low and middle-income countries: Analysis of data from the World Health Organization study on global AGEing and adult health (SAGE) Wave 1. BMC Musculoskelet. Disord. 2017, 18, 271. [Google Scholar] [CrossRef] [Green Version]
- Jafarzadeh, S.R.; Felson, D.T. Updated estimates suggest a much higher prevalence of arthritis in United States adults than previous ones. Arthritis Rheumatol. 2018, 70, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Walker, A.F.; Bundy, R.; Hicks, S.M.; Middleton, R.W. Bromelain reduces mild acute knee pain and improves well-being in a dose-dependent fashion in an open study of otherwise healthy adults. Phytomedicine 2002, 9, 681–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrozier, T.; Mathieu, P.; Bonjean, M.; Marc, J.F.; Renevier, J.L.; Balblanc, J.C. A complex of three natural anti-inflammatory agents provides relief of osteoarthritis pain. Altern. Ther. Health Med. 2014, 20, 32–37. [Google Scholar] [PubMed]
- Brien, S.; Lewith, G.; Walker, A.; Hicks, S.M.; Middleton, D. Bromelain as a treatment for osteoarthritis: A review of clinical studies. Evid. Based Complement. Altern. Med. 2004, 1, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Kumakura, S.; Yamashita, M.; Tsurufuji, S. Effect of bromelain on kaolin-induced inflammation in rats. Eur. J. Pharmacol. 1988, 150, 295–301. [Google Scholar] [CrossRef]
- Grover, A.K.; Samson, S.E. Benefits of antioxidant supplements for knee osteoarthritis: Rationale and reality. Nutr. J. 2015, 15, 1. [Google Scholar] [CrossRef] [Green Version]
- Alatab, S.; Sepanlou, S.G.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.; Nixon, M.R.; Abdoli, A.; Abolhassani, H.; et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Petryszyn, P.W.; Witczak, I. Costs in inflammatory bowel diseases. Prz. Gastroenterol. 2016, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Hale, L.P. Proteolytic activity and immunogenicity of oral bromelain within the gastrointestinal tract of mice. Int. Immunopharmacol. 2004, 4, 255–264. [Google Scholar] [CrossRef]
- Hale, L.P.; Greer, P.K.; Trinh, C.T.; James, C.L. Proteinase activity and stability of natural bromelain preparations. Int. Immunopharmacol. 2005, 5, 783–793. [Google Scholar] [CrossRef]
- Hale, L.P.; Chichlowski, M.; Trinh, C.T.; Greer, P.K. Dietary supplementation with fresh pineapple juice decreases inflammation and colonic neoplasia in IL-10-deficient mice with colitis. Inflamm. Bowel Dis. 2010, 16, 2012–2021. [Google Scholar] [CrossRef]
- Onken, J.E.; Greer, P.K.; Calingaert, B.; Hale, L.P. Bromelain treatment decreases secretion of pro-inflammatory cytokines and chemokines by colon biopsies in vitro. Clin. Immunol. 2008, 126, 345–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, S.; Goldberg, M.J. Use of bromelain for mild ulcerative colitis. Ann. Intern. Med. 2000, 132, 680. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, Z.; Nawaz, A.; Mukhtar, H.; Haq, I. Bromelain: Methods of extraction, purification and therapeutic applications. Braz. Arch. Biol. Technol. 2016, 59. [Google Scholar] [CrossRef] [Green Version]
- Yip, J.; Vescan, A.D.; Witterick, I.J.; Monteiro, E. The personal financial burden of chronic rhinosinusitis: A Canadian perspective. Am. J. Rhinol. Allergy. 2017, 31, 216–221. [Google Scholar] [CrossRef]
- Selzer, A.; Kelly, J.J.; Vannitamby, M.; Walker, P.; Gerbode, F.; Kerth, W.J. The syndrome of mitral insufficiency due to isolated rupture of the chordae tendineae. Am. J. Med. 1967, 43, 822–836. [Google Scholar] [CrossRef]
- Ahle, N.W.; Hamlet, M.P. Enzymatic frostbite eschar debridement by bromelain. Ann. Emerg. Med. 1987, 16, 1063–1065. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID19): A review. J. Am. Med. Assoc. 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Meini, S.; Zanichelli, A.; Sbrojavacca, R.; Iuri, F.; Roberts, A.T.; Suffritti, C.; Tascini, C. Understanding the pathophysiology of COVID-19: Could the contact system Be the key? Front. Immunol. 2020, 11, 2014. [Google Scholar] [CrossRef]
- Yadav, V.S.; Mishra, K.P.; Singh, D.P.; Mehrotra, S.; Singh, V.K. Immunomodulatory Effects of Curcumin. Immunopharmacol. Immunotoxicol. 2005, 27, 485–497. [Google Scholar] [CrossRef]
- Soni, V.K.; Mehta, A.; Ratre, Y.K.; Tiwari, A.K.; Amit, A.; Singh, R.P.; Sonkar, S.C.; Chaturvedi, N.; Shukla, D.; Vishvakarma, N.K. Curcumin, a traditional spice component, can hold the promise against COVID-19? Eur. J. Pharmacol. 2020, 886, 173551. [Google Scholar] [CrossRef]
- Praditya, D.; Kirchhoff, L.; Brüning, J.; Rachmawati, H.; Steinmann, J.; Steinmann, E. Anti-infective properties of the golden spice curcumin. Front. Microbiol. 2019, 10, 912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol. Adv. 2014, 32, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Kritis, P.; Karampela, I.; Kokoris, S.; Dalamaga, M. The combination of bromelain and curcumin as an immune-boosting nutraceutical in the prevention of severe COVID-19. Metab. Open 2020, 8, 100066. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.M. Nutritional and botanical modulation of the inflammatory cascade–eicosanoids, cyclooxygenases, and lipoxygenases–as an adjunct in cancer therapy. Integr. Cancer Ther. 2002, 1, 7–37. [Google Scholar] [CrossRef] [PubMed]
- Sagar, S.; Rathinavel, A.K.; Lutz, W.E.; Struble, L.R.; Khurana, S.; Schnaubelt, A.T.; Mishra, N.K.; Guda, C.; Broadhurst, M.J.; Reid, S.; et al. Bromelain Inhibits SARS-CoV-2 Infection in VeroE6 Cells. bioRxiv 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varilla, C.; Marcone, M.; Paiva, L.; Baptista, J. Bromelain, a Group of Pineapple Proteolytic Complex Enzymes (Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary. Foods 2021, 10, 2249. https://doi.org/10.3390/foods10102249
Varilla C, Marcone M, Paiva L, Baptista J. Bromelain, a Group of Pineapple Proteolytic Complex Enzymes (Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary. Foods. 2021; 10(10):2249. https://doi.org/10.3390/foods10102249
Chicago/Turabian StyleVarilla, Carolina, Massimo Marcone, Lisete Paiva, and Jose Baptista. 2021. "Bromelain, a Group of Pineapple Proteolytic Complex Enzymes (Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary" Foods 10, no. 10: 2249. https://doi.org/10.3390/foods10102249
APA StyleVarilla, C., Marcone, M., Paiva, L., & Baptista, J. (2021). Bromelain, a Group of Pineapple Proteolytic Complex Enzymes (Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary. Foods, 10(10), 2249. https://doi.org/10.3390/foods10102249