Vaccinium vitis-idaea L. Fruits: Chromatographic Analysis of Seasonal and Geographical Variation in Bioactive Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Collecting Conditions
2.2. Chemicals and Solvents
2.3. Extraction and Chromatographic Analysis
2.3.1. Estimation of Anthocyanins
2.3.2. Estimation of Other Phenolics
2.3.3. Estimation of Triterpenoids
2.4. Statistical Analysis
3. Results
3.1. Seasonal Patterns of Secondary Metabolites Accumulation in Lingonberry Fruits
3.1.1. Phenological Analysis of Phenolics
3.1.2. Phenological Analysis of Triterpenoids
3.1.3. Hierarchical Cluster Analysis of Phenological Data
3.2. Phytogeographical Patterns of Secondary Metabolites Accumulation in Lingonberry Fruits
3.2.1. Phytogeographical Analysis of Phenolics
3.2.2. Phytogeographical Analysis of Triterpenoids
3.2.3. Principal Component Analysis of Phytogeographical Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zec, M.; Glibetic, M. Biotic and Abiotic Safety Concerns for Herbs and Spices; John and Wiley and Sons: Hoboken, NJ, USA, 2020; pp. 301–319. [Google Scholar] [CrossRef]
- Metlen, K.L.; Aschehoug, E.T.; Callaway, R.M. Plant behavioural ecology: Dynamic plasticity in secondary metabolites. Plant Cell Environ. 2009, 32, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Dragović, S.; Dragović-Uzelac, V.; Pedisić, S.; Čošić, Z.; Friščić, M.; Garofulić, I.E.; Zorić, Z. The mastic tree (Pistacia lentiscus L.) leaves as source of BACs: Effect of growing location, phenological stage and extraction solvent on phenolic content. Food Technol. Biotechnol. 2020, 58, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, S.; Mollaei, S.; Angourani, H.R.; Hosseini, S.J.; Sedaghat, M.; Nicola, S. How do essential oil composition and phenolic acid profile of Heracleum persicum fluctuate at different phenological stages? Food Sci. Nutr. 2020, 8, 6192–6206. [Google Scholar] [CrossRef] [PubMed]
- Wahba, H.E.; Sarhan, A.Z.; Salama, A.; Sharafeldin, M.; Gad, H.M. Effect of seasonal variation on the growth and chemical composition of Cynara cardunculus L. plants. J. Mater. Environ. Sci. 2017, 8, 318–323. [Google Scholar]
- Karimi, A.; Krähmer, A.; Herwig, N.; Schulz, H.; Hadian, J.; Meiners, T. Variation of secondary metabolite profile of Zataria multiflora Boiss. Populations Linked to geographic, climatic, and edaphic factors. Front. Plant Sci. 2020, 11, 969. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, S.E.; Kay, S.A. The plant circadian clock: From a simple timekeeper to a complex developmental manager. Cold Spring Harb. Perspect. Biol. 2016, 8, a027748. [Google Scholar] [CrossRef] [PubMed]
- Hurkova, K.; Uttl, L.; Rubert, J.; Navratilova, K.; Kocourek, V.; Stranska-Zachariasova, M.; Paprstein, F.; Hajslova, J. Cranberries versus lingonberries: A challenging authentication of similar Vaccinium fruit. Food Chem. 2019, 284, 162–170. [Google Scholar] [CrossRef]
- Kowalska, K. Lingonberry (Vaccinium vitis-idaea L.) Fruit as a source of bioactive compounds with health-promoting effects—A review. Int. J. Mol. Sci. 2021, 22, 5126. [Google Scholar] [CrossRef]
- Debnath, S.C.; Arigundam, U. In vitro propagation strategies of medicinally important berry crop, lingonberry (Vaccinium vitis-idaea L.). Agronomy 2020, 10, 744. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, Z.; Liu, N.; Shi, G.; Liu, D.; Yang, Y.; Gu, H.; Yang, L.; Zhou, Z. Natural antioxidant of rosemary extract used as an additive in the ultrasound-assisted extraction of anthocyanins from lingonberry (Vaccinium vitis-idaea L.) pomace. Ind. Crop. Prod. 2019, 138, 111425. [Google Scholar] [CrossRef]
- Dudonné, S.; Dubé, P.; Anhê, F.F.; Pilon, G.; Marette, A.; Lemire, M.; Harris, C.; Dewailly, E.; Desjardins, Y. Comprehensive analysis of phenolic compounds and abscisic acid profiles of twelve native Canadian berries. J. Food Compos. Anal. 2015, 44, 214–224. [Google Scholar] [CrossRef]
- Dróżdż, P.; Šėžienė, V.; Pyrzynska, K. Phytochemical properties and antioxidant activities of extracts from wild blueberries and lingonberries. Plant Foods Hum. Nutr. 2017, 72, 360–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ek, S.; Kartimo, H.; Mattila, S.; Tolonen, A. Characterization of phenolic compounds from lingonberry (Vaccinium vitis-idaea). J. Agric. Food Chem. 2006, 54, 9834–9842. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.H.; Esposito, D.; Dunlap, K.L.; Lila, M.A. Comparative analysis of phenolic content and profile, antioxidant capacity, and anti-inflammatory bioactivity in wild alaskan and commercial vaccinium berries. J. Agric. Food Chem. 2013, 62, 4007–4017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klavins, L.; Klavina, L.; Huna, A.; Klavins, M. Polyphenols, carbohydrates and lipids in berries of Vaccinium species. Environ. Exp. Bot. 2015, 13, 147–158. [Google Scholar]
- Mane, C.; Loonis, M.; Juhel, C.; Dufour, C.; Malien-Aubert, C. Food grade lingonberry extract: Polyphenolic composition and in vivo protective effect against oxidative stress. J. Agric. Food Chem. 2011, 59, 3330–3339. [Google Scholar] [CrossRef]
- Hewage, S.M.; Prashar, S.; O, K.; Siow, Y. Lingonberry improves non-alcoholic fatty liver disease by reducing hepatic lipid accumulation, oxidative stress and inflammatory response. Antioxidants 2021, 10, 565. [Google Scholar] [CrossRef]
- Kowalska, K.; Dembczyński, R.; Gołąbek, A.; Olkowicz, M.; Olejnik, A. ROS modulating effects of lingonberry (Vaccinium vitis-idaea L.) polyphenols on obese adipocyte hypertrophy and vascular endothelial dysfunction. Nutrients 2021, 13, 885. [Google Scholar] [CrossRef]
- Nile, S.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Vaitkeviciene, R.; Zadeike, D.; Gaizauskaite, Z.; Valentaviciute, K.; Marksa, M.; Mazdzieriene, R.; Bartkiene, E.; Lele, V.; Juodeikiene, G.; Jakstas, V. Functionalisation of rice bran assisted by ultrasonication and fermentation for the production of rice bran–lingonberry pulp-based probiotic nutraceutical. Int. J. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Karppinen, K.; Zoratti, L.; Nguyenquynh, N.; Häggman, H.; Jaakola, L. On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. berries. Front. Plant Sci. 2016, 7, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soni, U.; Brar, S.; Gauttam, K.V. Effect of seasonal variation on secondary metabolites of medicinal plants. Int. J. Pharm. Sci. Res. 2015, 6, 3654–3662. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Heimler, D.; Romani, A.; Ieri, F. Plant polyphenol content, soil fertilization and agricultural management: A review. Eur. Food Res. Technol. 2017, 243, 1107–1115. [Google Scholar] [CrossRef]
- Bandzaitiene, Z.; Daubaras, R.; Labokas, J. Brukne: Vaccinium vitis-idaea, L.; Botanikos Instituto Leidykla: Vilnius, Lithuania, 2007; pp. 5–36. [Google Scholar]
- Vilkickyte, G.; Motiekaityte, V.; Vainoriene, R.; Liaudanskas, M.; Raudone, L. Development, validation, and application of UPLC-PDA method for anthocyanins profiling in Vaccinium L. berries. J. Berry Res. 2021, 1–17. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Raudone, L.; Petrikaite, V. Phenolic fractions from Vaccinium vitis-idaea L. and their antioxidant and anticancer activities assessment. Antioxidants 2020, 9, 1261. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Raudone, L. Optimization, validation and application of HPLC-PDA methods for quantification of triterpenoids in Vaccinium vitis-idaea L. Molecules 2021, 26, 1645. [Google Scholar] [CrossRef]
- Brown, E.; Gill, C.; Stewart, D.; McDougall, G. Lingonberries (Vaccinium vitis-idaea L.) and blueberries (Vaccinium corymbosum) contain discrete epicatechin anthocyanin derivatives linked by ethyl bridges. J. Berry Res. 2016, 6, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Liang, H.; Guo, Y.; Yang, D. Cyanidin 3-O-galactoside: A natural compound with multiple health benefits. Int. J. Mol. Sci. 2021, 22, 2261. [Google Scholar] [CrossRef]
- Jagannathan, V.; Viswanathan, P. Proanthocyanidins—Will they effectively restrain conspicuous bacterial strains devolving on urinary tract infection? J. Basic Microbiol. 2018, 58, 567–578. [Google Scholar] [CrossRef]
- Kuk, J.H.; Ma, S.J.; Park, K.H. Isolation and characterization of benzoic acid with antimicrobial activity from needle of Pinus densiflora. Korean J. Food Sci. Technol. 1997, 29, 204–210. [Google Scholar]
- Gudoityte, E.; Arandarcikaite, O.; Mazeikiene, I.; Bendokas, V.; Liobikas, J. Ursolic and oleanolic acids: Plant metabolites with neuroprotective potential. Int. J. Mol. Sci. 2021, 22, 4599. [Google Scholar] [CrossRef]
- Bujor, O.-C.; Ginies, C.; Popa, V.I.; Dufour, C. Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, stem and fruit at different harvest periods. Food Chem. 2018, 252, 356–365. [Google Scholar] [CrossRef]
- Dashbaldan, S.; Becker, R.; Pączkowski, C.; Szakiel, A. Various patterns of composition and accumulation of steroids and triterpenoids in cuticular waxes from screened Ericaceae and Caprifoliaceae berries during fruit development. Molecules 2019, 24, 3826. [Google Scholar] [CrossRef] [Green Version]
- Jungfer, E.; Zimmermann, B.F.; Ruttkat, A.; Galensa, R. Comparing procyanidins in selected Vaccinium species by UHPLC-MS2 with regard to authenticity and health effects. J. Agric. Food Chem. 2012, 60, 9688–9696. [Google Scholar] [CrossRef] [PubMed]
- Saffaryazdi, A.; Ganjeali, A.; Farhoosh, R.; Cheniany, M. Variation in phenolic compounds, α-linolenic acid and linoleic acid contents and antioxidant activity of purslane (Portulaca oleracea L.) during phenological growth stages. Physiol. Mol. Biol. Plants 2020, 26, 1519–1529. [Google Scholar] [CrossRef]
- Vilkickyte, G.; Raudonis, R.; Motiekaityte, V.; Vainoriene, R.; Burdulis, D.; Viskelis, J.; Raudone, L. Composition of sugars in wild and cultivated lingonberries (Vaccinium vitis-idaea L.). Molecules 2019, 24, 4225. [Google Scholar] [CrossRef] [Green Version]
- Zuiter, A. Proanthocyanidin. In Chemistry and Biology: From Phenolic Compounds to Proanthocyanidins; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.D.; Gerós, H. Berry phenolics of grapevine under challenging environments. Int. J. Mol. Sci. 2013, 14, 18711–18739. [Google Scholar] [CrossRef] [Green Version]
- Gruz, J.; Ayaz, F.A.; Torun, H.; Strnad, M. Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem. 2011, 124, 271–277. [Google Scholar] [CrossRef]
- Solanki, T.; Aphalo, P.J.; Neimane, S.; Hartikainen, S.; Pieristè, M.; Shapiguzov, A.; Porcar-Castell, A.; Atherton, J.; Heikkilä, A.; Robson, T.M. UV-screening and springtime recovery of photosynthetic capacity in leaves of Vaccinium vitis-idaea above and below the snow pack. Plant Physiol. Biochem. 2018, 134, 40–52. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. J. Sci. Food Agric. 2014, 95, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Dincheva, I.; Badjakov, I.; Kondakova, V. Metabolic Engineering of Bioactive Compounds in Berries; John and Wiley and Sons: Hoboken, NJ, USA, 2015; pp. 463–482. [Google Scholar] [CrossRef]
- Jovancevic, M.; Balijagić, J.; Menkovic, N.; Savikin, K.; Zdunić, G.; Janković, T.; Dekic-Ivankovic, M. Analysis of phenolic compounds in wild populations of bilberry (Vaccinium myrtillus L.) from Montenegro. J. Med. Plants Res. 2011, 5, 910–914. [Google Scholar] [CrossRef]
- Tolić, M.-T.; Krbavčić, I.P.; Vujević, P.; Milinović, B.; Jurčević, I.L.; Vahčić, N. Effects of weather conditions on phenolic content and antioxidant capacity in juice of chokeberries (Aronia melanocarpa L.). Pol. J. Food Nutr. Sci. 2017, 67, 67–74. [Google Scholar] [CrossRef]
- Vyas, P.; Curran, N.H.; Igamberdiev, A.U.; Debnath, S.C. Antioxidant properties of lingonberry (Vaccinium vitis-idaea L.) leaves within a set of wild clones and cultivars. Can. J. Plant Sci. 2015, 95, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Shitan, N. Secondary metabolites in plants: Transport and self-tolerance mechanisms. Biosci. Biotechnol. Biochem. 2016, 80, 1283–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duraipandiyan, V.; Gnanasekar, M.; Ignacimuthu, S. Antifungal activity of triterpenoid isolated from Azima tetracantha leaves. Folia Histochem. Cytobiol. 2010, 48, 311–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maathuis, F.J. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef] [PubMed]
- De Bang, T.C.; Husted, S.; Laursen, K.H.; Persson, D.P.; Schjoerring, J.K. The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 2020, 229, 2446–2469. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Nestby, R.; Krogstad, T.; Joner, E.; Vohník, M. The effect of NP fertilization on European blueberry (Vaccinium myrtillus L.) development on cultivated land in mid-Norway. J. Berry Res. 2014, 4, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, J.; Song, T.; Li, J.; Tian, J.; Jin, K.; Yao, Y. Low medium pH value enhances anthocyanin accumulation in malus crabapple leaves. PLoS ONE 2014, 9, e97904. [Google Scholar] [CrossRef]
- Vrancheva, R.; Ivanov, I.; Dincheva, I.; Badjakov, I.; Pavlov, A. Triterpenoids and other non-polar compounds in leaves of wild and cultivated Vaccinium species. Plants 2021, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.T.; Song, B. Plant adaptation to climate change—Where are we? J. Syst. Evol. 2020, 58, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.-B.; Mo, L.-D.; Zhang, L.-H.; Zhang, J.-L.; Wu, J.-B.; Wang, J.-L.; Zhao, N.-X.; Gao, Y.-B. Phenotypic plasticity vs. local adaptation in quantitative traits differences of Stipa grandis in semi-arid steppe, China. Sci. Rep. 2018, 8, 3148. [Google Scholar] [CrossRef] [PubMed]
- Åkerström, A.; Jaakola, L.; Bång, U.; Jäderlund, A. Effects of Latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L. (bilberries). J. Agric. Food Chem. 2010, 58, 11939–11945. [Google Scholar] [CrossRef] [PubMed]
- Laslo, É.; Köbölkuti, Z.A. Total phenol content and antimicrobial activity of lingonberry (Vaccinium vitis-idaea L.) from several areas in the Eastern Carpathians. Not. Sci. Biol. 2017, 9, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Lätti, A.K.; Riihinen, K.R.; Kainulainen, P.S. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 2008, 56, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Zoratti, L.; Jaakola, L.; Häggman, H.; Giongo, L. Anthocyanin profile in berries of wild and cultivated Vaccinium spp. along altitudinal gradients in the Alps. J. Agric. Food Chem. 2015, 63, 8641–8650. [Google Scholar] [CrossRef] [Green Version]
- Klepacka, J.; Gujska, E.; Michalak, J. Phenolic compounds as cultivar- and variety-distinguishing factors in some plant products. Plant Foods Hum. Nutr. 2011, 66, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Moore, B.D.; Andrew, R.; Külheim, C.; Foley, W. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol. 2013, 201, 733–750. [Google Scholar] [CrossRef]
- Raudone, L.; Vilkickyte, G.; Pitkauskaite, L.; Raudonis, R.; Vainoriene, R.; Motiekaityte, V. Antioxidant activities of Vaccinium vitis-idaea L. leaves within cultivars and their phenolic compounds. Molecules 2019, 24, 844. [Google Scholar] [CrossRef] [Green Version]
No. | Forest | Geographical Parameters | Soil Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Altitude, m | Coordinates | pH | EC, mS/cm | N, mg/L | P, mg/L | K, mg/L | Ca, mg/L | Mg, mg/L | Cl, mg/L | ||
1 | Žadeikiai | 52 | 56°00′52.8″ N 24°28′03.2″ E | 3.0 | 0.17 | 6 | 2 | 36 | 12 | 5 | 18 |
2 | Vosniūnai | 77 | 55°53′59.4″ N 24°41′08.8″ E | 3.1 | 0.67 | 27 | 7 | 65 | 41 | 14 | 18 |
3 | Galvokai | 80 | 56°03′28.4″ N 24°53′30.5″ E | 3.1 | 0.38 | 40 | 3 | 29 | 19 | 7 | 23 |
4 | Viršilai | 102 | 56°05′37.2″ N 25°18′48.8″ E | 3.1 | 0.64 | 28 | 7 | 50 | 55 | 8 | 18 |
5 | Plunksnuočiai | 107 | 56°04′32.8″ N 25°29′41.1″ E | 3.4 | 0.36 | 16 | 2 | 32 | 15 | 5 | 18 |
6 | Ilgalaukiai | 107 | 55°59′20.6″ N 25°25′48.2″ E | 2.9 | 0.47 | 30 | 8 | 51 | 57 | 8 | 19 |
7 | Apūniškis | 110 | 56°00′40.6″ N 25°31′29.4″ E | 4.2 | 1.10 | 116 | 6 | 48 | 60 | 23 | 18 |
8 | Bakūriškis | 123 | 56°03′46.9″ N 25°40′44.1″ E | 2.9 | 0.83 | 39 | 10 | 66 | 61 | 15 | 23 |
9 | Andrioniškis | 111 | 55°36′03.3″ N 25°02′20.4″ E | 3.6 | 0.56 | 50 | 10 | 91 | 24 | 6 | 18 |
10 | Pažemys | 171 | 55°39′45.0″ N 25°59′43.1″ E | 3.5 | 0.94 | 114 | 3 | 87 | 23 | 9 | 23 |
11 | Giteniškė | 173 | 55°35′45.1″ N 26°07′53.7″ E | 4.1 | 0.19 | 7 | 0.2 | 20 | 9 | 4 | 18 |
12 | Smėlynė | 187 | 55°23′56.0″ N 26°08′55.3″ E | 3.9 | 0.14 | 60 | 6 | 64 | 26 | 5 | 15 |
13 | Šakarva | 149 | 55°18′41.6″ N 26°03′47.4″ E | 3.6 | 1.68 | 6 | 2 | 31 | 10 | 4 | 23 |
14 | Labanoras | 165 | 55°09′25.1″ N 25°48′24.9″ E | 3.3 | 0.27 | 12 | 0.9 | 20 | 12 | 4 | 18 |
15 | Šalčininkėliai | 171 | 54°22′40.3″ N 25°22′30.6″ E | 3.1 | 0.90 | 73 | 17 | 101 | 24 | 9 | 20 |
16 | Bruknynė | 189 | 54°20′55.1″ N 25°23′12.0″ E | 3.2 | 0.95 | 80 | 17 | 113 | 26 | 11 | 20 |
17 | Jurgionys | 139 | 54°27′46.2″ N 24°29′58.3″ E | 3.3 | 1.11 | 89 | 28 | 116 | 25 | 18 | 22 |
18 | Tolkūnai | 145 | 54°16′26.2″ N 24°24′25.3″ E | 3.8 | 0.52 | 70 | 18 | 88 | 31 | 12 | 19 |
19 | Marcinkonys | 137 | 54°04′09.9″ N 24°26′06.1″ E | 3.2 | 0.21 | 9 | 1 | 26 | 12 | 4 | 12 |
20 | Šilainė | 134 | 54°04′48.8″ N 23°42′40.9″ E | 2.9 | 0.29 | 11 | 2 | 30 | 17 | 6 | 23 |
21 | Bitėnai | 22 | 55°03′51.1″ N 22°02′50.7″ E | 3.2 | 0.99 | 27 | 4 | 36 | 13 | 6 | 17 |
22 | Šilinė | 39 | 55°11′10.5″ N 22°18′52.0″ E | 3.3 | 0.25 | 57 | 12 | 45 | 13 | 6 | 18 |
23 | Komarinė | 47 | 55°11′12.2″ N 22°27′04.3″ E | 2.9 | 0.62 | 48 | 6 | 56 | 22 | 8 | 18 |
24 | Pagramantis | 89 | 55°23′28.6″ N 22°13′04.4″ E | 3.2 | 0.85 | 105 | 12 | 76 | 32 | 15 | 20 |
25 | Tyrelis | 59 | 55°19′22.0″ N 22°10′04.1″ E | 3.2 | 0.97 | 166 | 10 | 96 | 49 | 16 | 20 |
26 | Kūprė | 145 | 55°34′30.2″ N 22°48′57.3″ E | 3.8 | 0.22 | 8 | 0.4 | 15 | 9 | 4 | 23 |
27 | Kukuliškiai | 34 | 55°46′55.7″ N 21°05′22.3″ E | 4.8 | 1.70 | 52 | 7 | 61 | 10 | 13 | 20 |
28 | Kernai | 44 | 56°13′45.8″ N 21°29′18.5″ E | 4.0 | 1.13 | 185 | 13 | 113 | 76 | 27 | 23 |
Phenolic Compound | 1 July | 15 July | 29 July | 11 August | 24 August | 6 September | 20 September | 4 October | 28 December |
---|---|---|---|---|---|---|---|---|---|
Delphinidin-3-O-galactoside | ND | ND | ND | NQ | 8.2 ± 0.1 | 10.4 ± 0.3 | 14.9 ± 0.2 | 34.1 ± 1.1 * | 9.6 ± 0.2 |
Delphinidin-3-O-glucoside | ND | ND | ND | ND | NQ | NQ | NQ | NQ | NQ |
Cyanidin-3-O-galactoside | 5.9 ± 0.1 | 10.3 ± 0.3 | 119.6 ± 0.5 | 1411 ± 35.2 | 1464.6 ± 24.0 | 2147.1 ± 6.5 | 2578.6 ± 84.2 | 3135.7 ± 61.0 * | 2105.1 ± 87.9 |
Cyanidin-3-O-glucoside | ND | ND | 6.4 ± 0.0 | 70.9 ± 3.0 | 115.1 ± 4.3 | 191.8 ± 0.5 | 195.0 ± 2.9 | 229.2 ± 10.3 * | 191.6 ± 3.5 |
Cyanidin-3-O-arabinoside | ND | ND | 1.7 ± 0.0 | 81.2 ± 3.0 | 127.1 ± 3.9 | 274.7 ± 0.6 | 299.1 ± 13.2 | 400.2 ± 10.6 * | 325.6 ± 9.5 |
Petunidin-3-O-glucoside | ND | ND | ND | ND | 10.5 ± 0.1 | 11.0 ± 0.1 | 11.3 ± 0.4 | 16.1 ± 0.8 * | 10.9 ± 0.1 |
Peonidin-3-O-glucoside | ND | ND | NQ | 10.4 ± 0.4 | 11.6 ± 0.2 | 23.0 ± 0.3 | 25.3 ± 1.4 | 31.2 ± 0.3 * | 28.7 ± 1.0 |
Malvidin-3-O-glucoside | ND | ND | ND | ND | ND | ND | ND | NQ | NQ |
Cyanidin | ND | ND | ND | 7.5 ± 0.3 | 8.2 ± 0.3 | 10.3 ± 0.5 | 11.4 ± 0.2 | 15.4 ± 0.5 * | 8.6 ± 0.3 |
Sum of anthocyanins | 5.9 | 10.3 | 127.7 | 1581.1 | 1745.4 | 2668.3 | 3135.6 | 3862.0 | 2680.2 |
(+)-Catechin | 7697.8 ± 17.7 * | 7121.9 ± 38.5 | 4217.2 ± 6.6 | 4662.6 ± 94.6 | 3744.3 ± 22.3 | 3635.7 ± 101.3 | 3482.8 ± 37.3 | 4076.6 ± 146.0 | 874.9 ± 4.7 |
(−)-Epicatechin | 441.6 ± 0.2 * | 293.6 ± 7.9 | 182.1 ± 11.0 | 181.1 ± 3.9 | 151.9 ± 5.9 | 129.7 ± 5.3 | 118.1 ± 2.7 | 172.1 ± 3.6 | 51.2 ± 1.0 |
Sum of flavan-3-ols | 8139.4 | 7415.5 | 4399.3 | 4843.7 | 3896.2 | 3765.4 | 3600.9 | 4248.7 | 926.1 |
Procyanidin A1 | 2149.1 ± 10.3 * | 1590.3 ± 10.1 | 965.6 ± 31.9 | 956.9 ± 2.2 | 908.5 ± 10.9 | 817.4 ± 48.6 | 801.6 ± 22.2 | 998.6 ± 15.4 | 361.8 ± 17.1 |
Procyanidin A2 | 705.3 ± 18 * | 449.0 ± 0.3 | 286.4 ± 9.5 | 275.6 ± 9.4 | 275.5 ± 11.5 | 272.2 ± 8.9 | 220.8 ± 5.7 | 381.5 ± 17.9 | 349.2 ± 3.7 |
Procyanidin A4 | 158.0 ± 3.4 * | 74.6 ± 7.2 | 17.2 ± 0.3 | 15.1 ± 0.5 | 14.8 ± 0.2 | 14.4 ± 0.2 | 12.3 ± 0.5 | 14.0 ± 0.1 | 2.8 ± 0.2 |
Procyanidin B1 | 2442.7 ± 11.8 * | 2230.5 ± 6.5 | 1920.1 ± 80.0 | 1670.9 ± 8.0 | 1425.7 ± 29.6 | 1418.9 ± 13.0 | 1284.7 ± 19.5 | 1313.3 ± 9.9 | 572.4 ± 19.2 |
Procyanidin B2 | 1117.7 ± 25.1 * | 695.0 ± 32.3 | 598.6 ± 21.4 | 455.9 ± 20.6 | 470.8 ± 2.8 | 460.0 ± 18.6 | 351.7 ± 14.9 | 519.3 ± 7.5 | 154.7 ± 4.4 |
Procyanidin B3 | 5389.0 ± 14.9 * | 3703.5 ± 57.9 | 3167.4 ± 9.6 | 1805.8 ± 43.2 | 1376.9 ± 63.7 | 1252.1 ± 26.3 | 1159.8 ± 41.6 | 1162.0 ± 43.4 | 207.3 ± 7.9 |
Procyanidin C1 | 1515.3 ± 25.1 * | 1065.8 ± 8.3 | 633.6 ± 21.4 | 576.3 ± 16.6 | 493.9 ± 12.7 | 467.8 ± 4.8 | 425.2 ± 4.3 | 489.9 ± 12.2 | 367.0 ± 6.7 |
Sum of proanthocyanidins | 13477.1 | 9808.7 | 7588.9 | 5756.5 | 4966.1 | 4702.8 | 4256.1 | 4878.6 | 2015.2 |
Quercetin | 39.4 ± 0.2 * | 40.5 ± 0.4 * | 38.5 ± 0.8 | 37.5 ± 1.9 | 35.9 ± 1.4 | 34.3 ± 0.0 | 33.5 ± 0.1 | 43.3 ± 1.7 * | 43.0 ± 0.1 * |
Kaempferol | 1.8 ± 0.0 * | 1.8 ± 0.0 * | NQ | NQ | NQ | NQ | NQ | 1.9 ± 0.1 * | 1.7 ± 0.1 * |
Rutin | 85.6 ± 0.8 * | 81.2 ± 0.3 | 3.0 ± 0.0 | ND | ND | ND | ND | ND | ND |
Hyperoside | 196.7 ± 1.3 * | 177.4 ± 0.1 | 120.2 ± 4.5 | 91.2 ± 0.5 | 79.1 ± 1.7 | 78.3 ± 2.9 | 72.5 ± 0.6 | 66.8 ± 2.1 | 65.7 ± 1.0 |
Isoquercitrin | 716.2 ± 3.0 | 1153.7 ± 30.5 * | 566.4 ± 18.0 | 149.3 ± 5.4 | 85.7 ± 2.5 | 56.8 ± 2.0 | 51.6 ± 1.6 | 43.9 ± 0.9 | 39.2 ± 0.6 |
Reynoutrin | 57.0 ± 0.1 * | 49.9 ± 0.2 | 35.4 ± 1.0 | 29.1 ± 0.1 | 28.9 ± 0.9 | 32.9 ± 0.6 | 33.4 ± 0.5 | 39.9 ± 0.6 | 46.5 ± 1.0 |
Guaiaverin | 42.6 ± 1.5 * | 45.0 ± 0.9 * | 27.8 ± 1.2 | 19.9 ± 0.1 | 17.1 ± 0.2 | 17.0 ± 0.4 | 16.9 ± 0.3 | 14.7 ± 0.8 | 21.0 ± 0.6 |
Avicularin | 214.5 ± 0.2 * | 199.0 ± 0.1 | 114.8 ± 5.6 | 105.5 ± 0.8 | 100.4 ± 2.3 | 94.4 ± 0.9 | 92.6 ± 8.3 | 90.8 ± 3.9 | 127.5 ± 2.4 |
Quercitrin | 627.0 ± 3.2 * | 514.0 ± 4.2 | 456.1 ± 14.7 | 332.3 ± 2.7 | 329.9 ± 14.4 | 303.5 ± 15.2 | 281.0 ± 7.2 | 272.8 ± 9.3 | 375.8 ± 7.0 |
Quercetin-HMG-rhamnoside | 384.1 ± 2.7 * | 346.0 ± 1.6 | 253.8 ± 0.8 | 206.3 ± 0.1 | 186.3 ± 3.6 | 172.2 ± 10.1 | 149.8 ± 2.9 | 145.7 ± 2.1 | 227.0 ± 4.2 |
Astragalin | 5.6 ± 0.2 * | 5.5 ± 0.1 * | 5.4 ± 0.1 * | 5.2 ± 0.1 | 5.0 ± 0.1 | 5.0 ± 0.2 | 4.6 ± 0.2 | 4.7 ± 0.1 | 5.4 ± 0.3 * |
Afzelin | 12.2 ± 1.2 * | 12.0 ± 1.3 * | 11.4 ± 0.5 * | 10.7 ± 0.1 | 8.3 ± 0.4 | 7.9 ± 0.2 | 6.9 ± 0.1 | 7.1 ± 0.2 | 9.3 ± 0.4 |
Sum of flavonols | 2382.7 | 2626.0 | 1632.8 | 987.0 | 876.6 | 802.3 | 742.8 | 731.6 | 962.1 |
Benzoic acid | 92.9 ± 1.7 | 110.7 ± 4.3 | 191.8 ± 7.1 | 338.8 ± 7.9 | 573.3 ± 26.6 | 1126.0 ± 13.7 | 1536.8 ± 65.1 | 2633.1 ± 62.0 | 3713.6 ± 52.4 * |
trans-Cinnamic acid | 8.1 ± 0.0 | 10.5 ± 0.9 | 11.6 ± 0.1 | 11.9 ± 0.1 | 13.9 ± 0.4 | 16.2 ± 0.7 | 17.5 ± 0.1 | 27.2 ± 1.7 * | 24.8 ± 0.0 * |
Sum of phenolic acids precursors | 101.0 | 121.2 | 203.4 | 350.7 | 587.2 | 1142.2 | 1554.3 | 2660.3 | 3738.4 |
Vanillic acid | 65.0 ± 0.7 * | 39.3 ± 1.1 | 21.0 ± 0.0 | 14.5 ± 0.3 | 11.2 ± 0.6 | 15.7 ± 0.9 | 19.4 ± 0.9 | 22.3 ± 0.8 | 44.9 ± 1.2 |
Protocatechuic acid | 104.1 ± 0.1 * | 99.6 ± 0.5 * | 96.5 ± 1.1 | 90.0 ± 1.9 | 89.5 ± 1.9 | 84.5 ± 3.4 | 78.1 ± 2.3 | 102.5 ± 2.8 * | 96.8 ± 1.0 |
Chlorogenic acid | 464.8 ± 2 * | 311.0 ± 0.1 | 196.0 ± 8.2 | 178.4 ± 5.3 | 172.9 ± 7.6 | 166.1 ± 6.3 | 124.6 ± 6.2 | 168.3 ± 5.6 | 103.7 ± 2.2 |
Cryptochlorogenic acid | 161.3 ± 5.4 * | 119.0 ± 1.4 | 84.0 ± 0.6 | 83.2 ± 1.8 | 77.7 ± 0.2 | 75.0 ± 2.1 | 71.6 ± 3.0 | 103.3 ± 1.8 | 70.2 ± 0.4 |
Neochlorogenic acid | 42.9 ± 2.4 * | 38.1 ± 0.4 * | 33.3 ± 0.9 | 31.3 ± 0.6 | 29.3 ± 0.2 | 16.8 ± 0.3 | 13.4 ± 0.2 | 19.5 ± 0.3 | 15.3 ± 0.4 |
p-Coumaric acid | 203.7 ± 1.8 * | 118.0 ± 2.8 | 108.0 ± 4.5 | 69.8 ± 0.7 | 61.3 ± 1.2 | 59.2 ± 1.4 | 39.8 ± 1.2 | 65.1 ± 3.0 | 39.4 ± 0.5 |
Sinapic acid | 8.1 ± 0.2 * | 3.8 ± 0.1 | NQ | NQ | NQ | 2.3 ± 0.1 | 2.5 ± 0.2 | 4.4 ± 0.4 | 6.2 ± 0.2 |
Ferulic acid | 16.4 ± 0.3 * | 12.5 ± 0.1 | 7.7 ± 0.2 | 7.7 ± 0.2 | 5.7 ± 0.1 | 9.5 ± 0.2 | 9.7 ± 0.3 | 12.1 ± 0.5 | 9.6 ± 0.3 |
Sum of phenolic acids | 1066.3 | 741.3 | 546.5 | 474.9 | 447.6 | 429.1 | 359.1 | 497.5 | 386.1 |
Arbutin | 1518.7 ± 10.3 * | 1117.9 ± 2.6 | 603.6 ± 29.5 | 519.5 ± 9.9 | 518.2 ± 4.4 | 445.4 ± 5.0 | 342.1 ± 1.3 | 430.2 ± 6.7 | 69.3 ± 3.2 |
2-O-caffeoylarbutin | 128.7 ± 1.1 * | 83.4 ± 0.3 | 39.0 ± 1.1 | 38.0 ± 0.4 | 36.2 ± 1.2 | 28.8 ± 1.7 | 24.9 ± 0.3 | 31.8 ± 1.8 | 14.1 ± 0.1 |
Sum of arbutin derivatives | 1647.4 | 1201.3 | 642.6 | 557.5 | 554.4 | 474.2 | 367.0 | 462.0 | 83.4 |
Resveratrol (Stilbene) | 0.5 ± 0.0 * | ND | ND | ND | ND | ND | ND | ND | ND |
Total identified phenolics | 26,820.3 | 21,924.3 | 15,141.2 | 14,551.3 | 13,073.4 | 13,984.3 | 14,015.8 | 17,340.6 | 10,791.4 |
Triterpenoid | 1 July | 15 July | 29 July | 11 August | 24 August | 6 September | 20 September | 4 October | 28 December |
---|---|---|---|---|---|---|---|---|---|
Maslinic acid | 23.6 ± 1.1 | 13.4 ± 0.0 | 12.0 ± 0.2 | 11.6 ± 0.4 | 9.9 ± 0.3 | 9.2 ± 0.1 | 17.2 ± 0.1 | 25.7 ± 0.7 | 35.2 ± 1.0 * |
Corosolic acid | 39.8 ± 1.0 | 31.3 ± 0.8 | 30.3 ± 0.5 | 26.9 ± 0.7 | 26.2 ± 1.5 | 25.0 ± 0.7 | 33.3 ± 0.7 | 33.6 ± 0.3 | 66.4 ± 6.3 * |
Betulinic acid | NQ | NQ | NQ | NQ | NQ | NQ | NQ | 3.12 ± 0.21 | 12.38 ± 0.56 * |
Oleanolic acid | 1031.7 ± 0.9 * | 818.9 ± 2.0 | 791.8 ± 6.3 | 690.9 ± 98.7 | 659.8 ± 35.9 | 497.3 ± 4.9 | 537.5 ± 10.9 | 555.3 ± 5.3 | 1109.3 ± 21.8 * |
Ursolic acid | 5067.3 ± 32.9 * | 4636.1 ± 14.6 | 4019.3 ± 53.6 | 3677.5 ± 13.6 | 3383.1 ± 65.0 | 2879.7 ± 35.9 | 3071.1 ± 21.6 | 3164.0 ± 22.5 | 4920.6 ± 34.5 * |
Sum of triterpenoid acids | 6162.4 | 5499.7 | 4853.4 | 4406.9 | 4079.0 | 3411.2 | 3659.1 | 3781.7 | 6143.9 |
Betulin | 368.0 ± 12.9 | 298.3 ± 14.3 | 291.3 ± 5.3 | 141.3 ± 1.3 | 149.4 ± 1.2 | 236.9 ± 7.1 | 244.5 ± 5.5 | 466.6 ± 11.9 | 930.4 ± 28.3 * |
Erythrodiol | 30.5 ± 1.4 * | 6.0 ± 0.1 | 6.4 ± 0.4 | 2.2 ± 0.1 | 6.7 ± 0.2 | 6.2 ± 0.2 | 8.8 ± 0.6 | 11.4 ± 0.2 | 27.7 ± 1.0 * |
Uvaol | 64.3 ± 1.6 | 44.9 ± 1.5 | 36.4 ± 3.2 | 29.6 ± 0.2 | 28.7 ± 0.4 | 30.4 ± 0.6 | 34.5 ± 0.3 | 35.9 ± 1.4 | 80.5 ± 0.3 * |
Lupeol | 242.4 ± 4.4 * | 210.8 ± 1.2 | 174.5 ± 0.3 | 90.4 ± 2.2 | 108.9 ± 3.6 | 203.7 ± 0.4 | 204.0 ± 8.6 | 204.4 ± 4.8 | 218.1 ± 2.3 |
α-Amyrin | 686.5 ± 9.1 | 593.3 ± 30.8 | 482.0 ± 2.8 | 435.2 ± 6.6 | 476.4 ± 9.3 | 504.9 ± 12.4 | 558.2 ± 13.0 | 599.5 ± 12.6 | 979.8 ± 125.1 * |
β-Amyrin | 166.6 ± 5.9 * | 155.7 ± 0.9 * | 152.1 ± 2.3 | 138.1 ± 1.7 | 114.8 ± 4.4 | 103.6 ± 4.4 | 111.5 ± 2.0 | 119.7 ± 1.6 | 150.5 ± 4.1 |
Friedelin | 471.3 ± 13.0 * | 444.8 ± 16.0 | 359.3 ± 11.3 | 180.1 ± 4.2 | 189.2 ± 4.0 | 215.6 ± 9.4 | 314.6 ± 3.6 | 353.0 ± 9.2 | 437.6 ± 15.1 |
Sum of neutral triterpenoids | 2029.6 | 1753.8 | 1502.0 | 1016.9 | 1074.1 | 1301.3 | 1476.1 | 1790.5 | 2824.6 |
β-Sitosterol (Sterol) | 1087.7 ± 11.5 * | 999.8 ± 22.5 | 959.1 ± 31.3 | 821.7 ± 6.7 | 829.7 ± 0.7 | 830.5 ± 4.6 | 879.4 ± 0.9 | 940.7 ± 4.6 | 1105.7 ± 14.5 * |
Total identified triterpenoids | 9279.7 | 8253.2 | 7314.5 | 6245.6 | 5982.7 | 5543.0 | 6014.6 | 6512.9 | 10,074.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilkickyte, G.; Raudone, L. Vaccinium vitis-idaea L. Fruits: Chromatographic Analysis of Seasonal and Geographical Variation in Bioactive Compounds. Foods 2021, 10, 2243. https://doi.org/10.3390/foods10102243
Vilkickyte G, Raudone L. Vaccinium vitis-idaea L. Fruits: Chromatographic Analysis of Seasonal and Geographical Variation in Bioactive Compounds. Foods. 2021; 10(10):2243. https://doi.org/10.3390/foods10102243
Chicago/Turabian StyleVilkickyte, Gabriele, and Lina Raudone. 2021. "Vaccinium vitis-idaea L. Fruits: Chromatographic Analysis of Seasonal and Geographical Variation in Bioactive Compounds" Foods 10, no. 10: 2243. https://doi.org/10.3390/foods10102243
APA StyleVilkickyte, G., & Raudone, L. (2021). Vaccinium vitis-idaea L. Fruits: Chromatographic Analysis of Seasonal and Geographical Variation in Bioactive Compounds. Foods, 10(10), 2243. https://doi.org/10.3390/foods10102243