Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends
Abstract
:1. Introduction
2. Pesticide Residue Occurrence in Food Distributed in the EU
3. EU regulatory Requirements on Pesticide Residues
4. Pesticide Residue Optical Screening in Food Matrices
4.1. Sample Preparation
4.2. Optical Screening Methods
4.2.1. Biochemical Assays
4.2.2. Biosensors
Colorimetric Biosensors
Fluorescent Biosensors
Surface Plasmon Resonance Biosensors
Surface-Enhanced Raman Spectroscopy
4.3. Coupling Optical Screening Methods to Smartphones
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Sulaiman, N.S.; Rovina, K.; Joseph, V.M. Classification, extraction and current analytical approaches for detection of pesticides in various food products. J. Consum. Prot. Food Saf. 2019, 14, 209–221. [Google Scholar] [CrossRef]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, A.K.; Sharma, M.K.; Chamoli, S. Bioaccumulation of organochlorine pesticides in aquatic system—An overview. Environ. Monit. Assess. 2011, 173, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Patočka, J.; Cabal, J.; Kuča, K.; Jun, D. Oxime reactivation of acetylcholinesterase inhibited by toxic phosphorus esters: In vitro kinetics and thermodynamics. J. Appl. Biomed. 2005, 3, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-N.; Lin, C.-L.; Lin, M.-C.; Lai, C.-H.; Lin, H.-H.; Yang, C.-H.; Kao, C.-H. Increased risk of dementia in patients with acute organophosphate and carbamate poisoning: A nationwide population-based cohort study. Medicine 2015, 94, e1187. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C.; Crissman, J.W. Chapter 42—Agricultural Chemicals. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 3rd ed.; Haschek, W.M., Rousseaux, C.G., Wallig, M.A., Eds.; Academic Press: Boston, MA, USA, 2013; pp. 1349–1372. ISBN 978-0-12-415759-0. [Google Scholar]
- Tsagkaris, A.S.; Nelis, J.L.D.; Ross, G.M.S.; Jafari, S.; Guercetti, J.; Kopper, K.; Zhao, Y.; Rafferty, K.; Salvador, J.P.; Migliorelli, D.; et al. Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. TrAC Trends Anal. Chem. 2019, 121, 115688. [Google Scholar] [CrossRef]
- Stachniuk, A.; Fornal, E. Liquid Chromatography-Mass Spectrometry in the Analysis of Pesticide Residues in Food. Food Anal. Methods 2016, 9, 1654–1665. [Google Scholar] [CrossRef] [Green Version]
- Hakme, E.; Lozano, A.; Uclés, S.; Fernández-Alba, A.R. Further improvements in pesticide residue analysis in food by applying gas chromatography triple quadrupole mass spectrometry (GC-QqQ-MS/MS) technologies. Anal. Bioanal. Chem. 2018, 410, 5491–5506. [Google Scholar] [CrossRef]
- Mrzlikar, M.; Heath, D.; Heath, E.; Markelj, J.; Borovšak, A.K.; Prosen, H. Investigation of neonicotinoid pesticides in Slovenian honey by LC-MS/MS. LWT 2019, 104, 45–52. [Google Scholar] [CrossRef]
- Hou, X.; Han, M.; Dai, X.; Yang, X.; Yi, S. A multi-residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and gas chromatography-tandem mass spectrometry. Food Chem. 2013, 138, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, K.; Iwatsuki, K.; Akama, R.; Koike, R. Rapid multiresidue determination of pesticides in livestock muscle and liver tissue via modified QuEChERS sample preparation and LC-MS/MS. Food Addit. Contam. Part A 2017, 34, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Mezcua, M.; Malato, O.; García-Reyes, J.F.; Molina-Díaz, A.; Fernández-Alba, A.R. Accurate-Mass Databases for Comprehensive Screening of Pesticide Residues in Food by Fast Liquid Chromatography Time-of-Flight Mass Spectrometry. Anal. Chem. 2009, 81, 913–929. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Tan, H.; Li, Y.; De Boevre, M.; Zhang, H.; Zhou, J.; Li, Y.; Yang, S. An integrated data-dependent and data-independent acquisition method for hazardous compounds screening in foods using a single UHPLC-Q-Orbitrap run. J. Hazard. Mater. 2021, 401, 123266. [Google Scholar] [CrossRef]
- Musatadi, M.; González-Gaya, B.; Irazola, M.; Prieto, A.; Etxebarria, N.; Olivares, M.; Zuloaga, O. Focused ultrasound-based extraction for target analysis and suspect screening of organic xenobiotics in fish muscle. Sci. Total Environ. 2020, 740, 139894. [Google Scholar] [CrossRef]
- Vargas-Pérez, M.; Domínguez, I.; González, F.J.E.; Frenich, A.G. Application of full scan gas chromatography high resolution mass spectrometry data to quantify targeted-pesticide residues and to screen for additional substances of concern in fresh-food commodities. J. Chromatogr. A 2020, 1622, 461118. [Google Scholar] [CrossRef]
- Nelis, J.L.D.; Tsagkaris, A.S.; Zhao, Y.; Lou-Franco, J.; Nolan, P.; Zhou, H.; Cao, C.; Rafferty, K.; Hajslova, J.; Elliott, C.T.; et al. The end user sensor tree: An end-user friendly sensor database. Biosens. Bioelectron. 2019, 130, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Liao, X.; Jia, B.; Shi, L.; Kang, L.; Zhou, L.; Kong, W. Recent progress in immunosensors for pesticides. Biosens. Bioelectron. 2020, 164, 112255. [Google Scholar] [CrossRef]
- Cao, J.; Wang, M.; Yu, H.; She, Y.; Cao, Z.; Ye, J.; Abd El-Aty, A.M.; Hacımüftüoğlu, A.; Wang, J.; Lao, S. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. J. Agric. Food Chem. 2020, 68, 7298–7315. [Google Scholar] [CrossRef]
- Capoferri, D.; Della Pelle, F.; Del Carlo, M.; Compagnone, D. Affinity sensing strategies for the detection of pesticides in food. Foods 2018, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Nelis, J.; Elliott, C.; Campbell, K. “The smartphone’s guide to the galaxy”: In situ analysis in space. Biosensors 2018, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelis, J.L.D.; Tsagkaris, A.S.; Dillon, M.J.; Hajslova, J.; Elliott, C.T. Smartphone-based optical assays in the food safety field. TrAC Trends Anal. Chem. 2020, 129, 115934. [Google Scholar] [CrossRef]
- Authority, E.F.S. The 2014 European Union report on pesticide residues in food. EFSA J. 2016, 14, e04611. [Google Scholar] [CrossRef]
- Authority, E.F.S. The 2015 European Union report on pesticide residues in food. EFSA J. 2017, 15, e04791. [Google Scholar]
- Authority, E.F.S. European Food Safety Authority The 2016 European Union report on pesticide residues in food. EFSA J. 2018, 16, e05348. [Google Scholar]
- Authority, E.F.S. The 2017 European Union report on pesticide residues in food. EFSA J. 2019, 17, e05743. [Google Scholar]
- Medina-Pastor, P.; Triacchini, G. The 2018 European Union report on pesticide residues in food. EFSA J. 2020, 18, e06057. [Google Scholar] [PubMed] [Green Version]
- EFSA. Statement on the available outcomes of the human health assessment in the context of the pesticides peer review of the active substance chlorpyrifos. EFSA J. 2019, 17, e05809. [Google Scholar]
- Van Klaveren, J.D.; Kennedy, M.C.; Moretto, A.; Verbeke, W.; van der Voet, H.; Boon, P.E. The ACROPOLIS project: Its aims, achievements, and way forward. Food Chem. Toxicol. 2015, 79, 1–4. [Google Scholar] [CrossRef]
- Jin, L.; Hao, Z.; Zheng, Q.; Chen, H.; Zhu, L.; Wang, C.; Liu, X.; Lu, C. A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food. Anal. Chim. Acta 2020, 1100, 215–224. [Google Scholar] [CrossRef]
- Jang, I.; Carrão, D.B.; Menger, R.F.; de Oliveira, A.R.M.; Henry, C.S. Pump-Free Microfluidic Rapid Mixer Combined with a Paper-Based Channel. ACS Sens. 2020, 5, 2230–2238. [Google Scholar] [CrossRef] [PubMed]
- Tsagkaris, A.S.; Pulkrabova, J.; Hajslova, J.; Filippini, D. A Hybrid Lab-on-a-Chip Injector System for Autonomous Carbofuran Screening. Sensors 2019, 19, 5579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arduini, F.; Forchielli, M.; Scognamiglio, V.; Nikolaevna, K.A.; Moscone, D. Organophosphorous pesticide detection in olive oil by using a miniaturized, easy-to-use, and cost-effective biosensor combined with QuEChERS for sample clean-up. Sensors 2017, 17, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Li, G.; Xu, X.; Zhu, L.; Huang, R.; Chen, X. Application of nano-ELISA in food analysis: Recent advances and challenges. TrAC Trends Anal. Chem. 2019, 113, 140–156. [Google Scholar] [CrossRef]
- Hongsibsong, S.; Prapamontol, T.; Xu, T.; Hammock, B.D.; Wang, H.; Chen, Z.-J.; Xu, Z.-L. Monitoring of the organophosphate pesticide chlorpyrifos in vegetable samples from local markets in Northern Thailand by developed immunoassay. Int. J. Environ. Res. Public Health 2020, 17, 4723. [Google Scholar] [CrossRef]
- Ivanov, Y. Development of MNPs based enzyme immuno-sorbent analysis for the determination of organophosphorus pesticides in milk. Open Biotechnol. J. 2019, 13, 146–154. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Tao, X.; Wang, K.; Ding, G.; Li, J.; Li, Q.X.; Gee, S.J.; Hammock, B.D.; Xu, T. One-step immunoassay for the insecticide carbaryl using a chicken single-chain variable fragment (scFv) fused to alkaline phosphatase. Anal. Biochem. 2019, 572, 9–15. [Google Scholar] [CrossRef]
- Watanabe, E.; Miyake, S. Direct determination of neonicotinoid insecticides in an analytically challenging crop such as Chinese chives using selective ELISAs. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2018, 53, 707–712. [Google Scholar] [CrossRef]
- Esteve-Turrillas, F.A.; Agulló, C.; Abad-Somovilla, A.; Mercader, J.V.; Abad-Fuentes, A. Fungicide multiresidue monitoring in international wines by immunoassays. Food Chem. 2016, 196, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
- Tsagkaris, A.S.; Uttl, L.; Pulkrabova, J.; Hajslova, J. Screening of Carbamate and Organophosphate Pesticides in Food Matrices Using an Affordable and Simple Spectrophotometric Acetylcholinesterase Assay. Appl. Sci. 2020, 10, 565. [Google Scholar] [CrossRef] [Green Version]
- Tsagkaris, A.S.; Migliorelli, D.; Uttl, L.; Filippini, D.; Pulkrabova, J.; Hajslova, J. A microfluidic paper-based analytical device (μPAD) with smartphone readout for chlorpyrifos-oxon screening in human serum. Talanta 2020, 222, 121535. [Google Scholar] [CrossRef] [PubMed]
- Halámek, E.; Kobliha, Z.; Pitschmann, V. Analysis of Chemical Warfare Agents; Univerzita Obrany: Brno, Czech Republic, 2009; ISBN 8072316583. [Google Scholar]
- Yang, X.; Dai, J.; Yang, L.; Ma, M.; Zhao, S.-J.; Chen, X.-G.; Xiao, H. Oxidation pretreatment by calcium hypochlorite to improve the sensitivity of enzyme inhibition-based detection of organophosphorus pesticides. J. Sci. Food Agric. 2018, 98, 2624–2631. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M.; Karasova, J.Z.; Kuca, K.; Pikula, J. Multichannel spectrophotometry for analysis of organophosphate paraoxon in beverages. Turk. J. Chem. 2010, 34, 91–98. [Google Scholar]
- Watanabe, E.; Miyake, S.; Yogo, Y. Review of Enzyme-Linked Immunosorbent Assays (ELISAs) for Analyses of Neonicotinoid Insecticides in Agro-environments. J. Agric. Food Chem. 2013, 61, 12459–12472. [Google Scholar] [CrossRef]
- Pohanka, M. Biosensors and bioassays based on lipases, principles and applications, a review. Molecules 2019, 24, 616. [Google Scholar] [CrossRef] [Green Version]
- Mishra, G.K.; Sharma, V.; Mishra, R.K. Electrochemical aptasensors for food and environmental safeguarding: A review. Biosensors 2018, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent Progress in Nanomaterial-Based Optical Aptamer Assay for the Detection of Food Chemical Contaminants. ACS Appl. Mater. Interfaces 2017, 9, 23287–23301. [Google Scholar] [CrossRef]
- Augusto, F.; Hantao, L.W.; Mogollón, N.G.S.; Braga, S.C.G.N. New materials and trends in sorbents for solid-phase extraction. TrAC Trends Anal. Chem. 2013, 43, 14–23. [Google Scholar] [CrossRef]
- Nery, E.W.; Kubota, L.T. Evaluation of enzyme immobilization methods for paper-based devices—A glucose oxidase study. J. Pharm. Biomed. Anal. 2016, 117, 551–559. [Google Scholar] [CrossRef]
- Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar]
- Lan, J.; Sun, W.; Chen, L.; Zhou, H.; Fan, Y.; Diao, X.; Wang, B.; Zhao, H. Simultaneous and rapid detection of carbofuran and 3-hydroxy-carbofuran in water samples and pesticide preparations using lateral-flow immunochromatographic assay. Food Agric. Immunol. 2020, 31, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Sankar, K.; Lenisha, D.; Janaki, G.; Juliana, J.; Kumar, R.S.; Selvi, M.C.; Srinivasan, G. Digital image-based quantification of chlorpyrifos in water samples using a lipase embedded paper based device. Talanta 2020, 208, 120408. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Rapp, B. Microfluidics: Modeling, Mechanics and Mathematics; Holt, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-1-4557-3141-1. [Google Scholar]
- Suska, A.; Filippini, D. Autonomous lab-on-a-chip generic architecture for disposables with integrated actuation. Sci. Rep. 2019, 9, 20320. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Guo, J.; Fu, Y.; Chen, X.; Guo, J. A review on microfluidics in the detection of food pesticide residues. Electrophoresis 2020, 41, 821–832. [Google Scholar] [CrossRef]
- Nouanthavong, S.; Nacapricha, D.; Henry, C.S.; Sameenoi, Y. Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst 2016, 141, 1837–1846. [Google Scholar] [CrossRef]
- Bala, R.; Kumar, M.; Bansal, K.; Sharma, R.K.; Wangoo, N. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosens. Bioelectron. 2016, 85, 445–449. [Google Scholar] [CrossRef]
- Guo, L.; Li, Z.; Chen, H.; Wu, Y.; Chen, L.; Song, Z.; Lin, T. Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine-starch color reaction. Anal. Chim. Acta 2017, 967, 59–63. [Google Scholar] [CrossRef]
- Li, X.; Cui, H.; Zeng, Z. A simple colorimetric and fluorescent sensor to detect organophosphate pesticides based on adenosine triphosphate-modified gold nanoparticles. Sensors 2018, 18, 4302. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yan, X.; Lu, G.; Su, X. Carbon dot-based bioplatform for dual colorimetric and fluorometric sensing of organophosphate pesticides. Sens. Actuators B Chem. 2018, 260, 563–570. [Google Scholar] [CrossRef]
- Zeng, L.; Zhou, D.; Wu, J.; Liu, C.; Chen, J. A target-induced and equipment-free biosensor for amplified visual detection of pesticide acetamiprid with high sensitivity and selectivity. Anal. Methods 2019, 11, 1168–1173. [Google Scholar] [CrossRef]
- Nsibande, S.A.; Forbes, P.B.C. Fluorescence detection of pesticides using quantum dot materials—A review. Anal. Chim. Acta 2016, 945, 9–22. [Google Scholar] [CrossRef]
- Liu, B.; Zhuang, J.; Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano 2020, 7, 2195–2213. [Google Scholar] [CrossRef]
- Kalyani, N.; Goel, S.; Jaiswal, S. On-site sensing of pesticides using point-of-care biosensors: A review. Environ. Chem. Lett. 2020, 1–10. [Google Scholar] [CrossRef]
- Korram, J.; Dewangan, L.; Karbhal, I.; Nagwanshi, R.; Vaishanav, S.K.; Ghosh, K.K.; Satnami, M.L. CdTe QD-based inhibition and reactivation assay of acetylcholinesterase for the detection of organophosphorus pesticides. RSC Adv. 2020, 10, 24190–24202. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Hassan, M.M.; Guo, Z.; Zhang, Z.-Z.; Chen, Q. Fabricating an Acetylcholinesterase Modulated UCNPs-Cu2+ Fluorescence Biosensor for Ultrasensitive Detection of Organophosphorus Pesticides-Diazinon in Food. J. Agric. Food Chem. 2019, 67, 4071–4079. [Google Scholar] [CrossRef]
- Hu, W.; Chen, Q.; Li, H.; Ouyang, Q.; Zhao, J. Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, Ho@SiO2 and Au nanoparticles. Biosens. Bioelectron. 2016, 80, 398–404. [Google Scholar] [CrossRef]
- Hou, J.; Dong, G.; Tian, Z.; Lu, J.; Wang, Q.; Ai, S.; Wang, M. A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system. Food Chem. 2016, 202, 81–87. [Google Scholar] [CrossRef]
- Wu, X.; Song, Y.; Yan, X.; Zhu, C.; Ma, Y.; Du, D.; Lin, Y. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron. 2017, 94, 292–297. [Google Scholar] [CrossRef]
- Tan, G.; Zhao, Y.; Wang, M.; Chen, X.; Wang, B.; Li, Q.X. Ultrasensitive quantitation of imidacloprid in vegetables by colloidal gold and time-resolved fluorescent nanobead traced lateral flow immunoassays. Food Chem. 2020, 311, 126055. [Google Scholar] [CrossRef]
- Arvand, M.; Mirroshandel, A.A. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Food Chem. 2019, 280, 115–122. [Google Scholar] [CrossRef]
- Wang, X.; Hou, T.; Dong, S.; Liu, X.; Li, F. Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide. Biosens. Bioelectron. 2016, 77, 644–649. [Google Scholar] [CrossRef]
- Li, H.; Dong, B.; Dou, L.; Yu, W.; Yu, X.; Wen, K.; Ke, Y.; Shen, J.; Wang, Z. Fluorescent lateral flow immunoassay for highly sensitive detection of eight anticoagulant rodenticides based on cadmium-free quantum dot-encapsulated nanospheres. Sens. Actuators B Chem. 2020, 324, 128771. [Google Scholar] [CrossRef]
- Špačková, B.; Wrobel, P.; Bocková, M.; Homola, J. Optical Biosensors Based on Plasmonic Nanostructures: A Review. Proc. IEEE 2016, 104, 2380–2408. [Google Scholar] [CrossRef]
- Ross, G.M.S.; Bremer, M.G.E.G.; Wichers, J.H.; Van Amerongen, A.; Nielen, M.W.F. Rapid antibody selection using surface plasmon resonance for high-speed and sensitive hazelnut lateral flow prototypes. Biosensors 2018, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Pundir, C.S.; Malik, A. Preety Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019, 140, 111348. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Dolatabadi, J.E.N.; Torbati, M.; Homayouni-Rad, A. Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions. Biosens. Bioelectron. 2019, 127, 72–84. [Google Scholar] [CrossRef]
- Huang, Y.H.; Ho, H.P.; Kong, S.K.; Kabashin, A. V Phase-sensitive surface plasmon resonance biosensors: Methodology, instrumentation and applications. Ann. Phys. 2012, 524, 637–662. [Google Scholar] [CrossRef]
- Mohammadzadeh-Asl, S.; Keshtkar, A.; Dolatabadi, J.E.N.; de la Guardia, M. Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance. Biosens. Bioelectron. 2018, 110, 118–131. [Google Scholar] [CrossRef]
- Soler, M.; Huertas, C.S.; Lechuga, L.M. Label-free plasmonic biosensors for point-of-care diagnostics: A review. Expert Rev. Mol. Diagn. 2019, 19, 71–81. [Google Scholar] [CrossRef]
- Wu, S.; Li, D.; Gao, Z.; Wang, J. Controlled etching of gold nanorods by the Au(III)-CTAB complex, and its application to semi-quantitative visual determination of organophosphorus pesticides. Microchim. Acta 2017, 184, 4383–4391. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Usha, S.P.; Gupta, B.D. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting. Biosens. Bioelectron. 2016, 79, 150–157. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, R.; Liu, Y.; Xiang, D.; Liu, Y.; Gui, W.; Li, M.; Zhu, G. A non-competitive surface plasmon resonance immunosensor for rapid detection of triazophos residue in environmental and agricultural samples. Sci. Total Environ. 2018, 613–614, 783–791. [Google Scholar] [CrossRef]
- Li, Q.; Dou, X.; Zhao, X.; Zhang, L.; Luo, J.; Xing, X.; Yang, M. A gold/Fe3O4 nanocomposite for use in a surface plasmon resonance immunosensor for carbendazim. Microchim. Acta 2019, 186, 313. [Google Scholar] [CrossRef]
- Hirakawa, Y.; Yamasaki, T.; Watanabe, E.; Okazaki, F.; Murakami-Yamaguchi, Y.; Oda, M.; Iwasa, S.; Narita, H.; Miyake, S. Development of an Immunosensor for Determination of the Fungicide Chlorothalonil in Vegetables, Using Surface Plasmon Resonance. J. Agric. Food Chem. 2015, 63, 6325–6330. [Google Scholar] [CrossRef]
- Li, Q.; Dou, X.; Zhang, L.; Zhao, X.; Luo, J.; Yang, M. Oriented assembly of surface plasmon resonance biosensor through staphylococcal protein A for the chlorpyrifos detection. Anal. Bioanal. Chem. 2019, 411, 6057–6066. [Google Scholar] [CrossRef]
- Boyaci, I.H.; Temiz, H.T.; Geniş, H.E.; Soykut, E.A.; Yazgan, N.N.; Güven, B.; Uysal, R.S.; Bozkurt, A.G.; İlaslan, K.; Torun, O. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Adv. 2015, 5, 56606–56624. [Google Scholar] [CrossRef]
- Li, X.; Yang, T.; Song, Y.; Zhu, J.; Wang, D.; Li, W. Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sens. Actuators B Chem. 2019, 283, 230–238. [Google Scholar] [CrossRef]
- Gao, F.; Hu, Y.; Chen, D.; Li-Chan, E.C.Y.; Grant, E.; Lu, X. Determination of Sudan I in paprika powder by molecularly imprinted polymers–thin layer chromatography–surface enhanced Raman spectroscopic biosensor. Talanta 2015, 143, 344–352. [Google Scholar] [CrossRef]
- Lin, Z.; He, L. Recent Advance in SERS techniques for food safety and quality analysis: A brief review. Curr. Opin. Food Sci. 2019, 28, 82–87. [Google Scholar] [CrossRef]
- Yaseen, T.; Pu, H.; Sun, D.-W. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: A review of recent research trends. Trends Food Sci. Technol. 2018, 72, 162–174. [Google Scholar] [CrossRef]
- Hoppmann, E.P.; Wei, W.Y.; White, I.M. Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 2013, 63, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Wang, C.; Pu, S.; Wang, C.; Cheng, F.; Wang, Y.; Fan, M. Rapid and direct detection of illicit dyes on tainted fruit peel using a PVA hydrogel surface enhanced Raman scattering substrate. Anal. Methods 2016, 8, 4816–4820. [Google Scholar] [CrossRef]
- Lin, S.; Lin, X.; Han, S.; Liu, Y.; Hasi, W.; Wang, L. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core–shell nanospheres for reliable quantitative SERS measurements. Anal. Chim. Acta 2020, 1108, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Lin, X.; Liu, Y.; Zhao, H.; Hasi, W.; Wang, L. Self-assembly of Au@Ag core–shell nanocubes embedded with an internal standard for reliable quantitative SERS measurements. Anal. Methods 2018, 10, 4201–4208. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Yu, Z.; Yang, T. Surface-enhanced Raman spectroscopic analysis of phorate and fenthion pesticide in apple skin using silver nanoparticles. Appl. Spectrosc. 2014, 68, 483–487. [Google Scholar] [CrossRef]
- Fales, A.M.; Vo-Dinh, T. Silver embedded nanostars for SERS with internal reference (SENSIR). J. Mater. Chem. C 2015, 3, 7319–7324. [Google Scholar] [CrossRef]
- Xie, J.; Li, L.; Khan, I.M.; Wang, Z.; Ma, X. Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 231, 118104. [Google Scholar] [CrossRef]
- Yan, M.; She, Y.; Cao, X.; Ma, J.; Chen, G.; Hong, S.; Shao, Y.; Abd El-Aty, A.M.; Wang, M.; Wang, J. A molecularly imprinted polymer with integrated gold nanoparticles for surface enhanced Raman scattering based detection of the triazine herbicides, prometryn and simetryn. Microchim. Acta 2019, 186, 1–9. [Google Scholar] [CrossRef]
- Cui, H.; Li, S.; Deng, S.; Chen, H.; Wang, C. Flexible, Transparent, and Free-Standing Silicon Nanowire SERS Platform for in Situ Food Inspection. ACS Sens. 2017, 2, 386–393. [Google Scholar] [CrossRef]
- Huang, S.; Yan, W.; Liu, M.; Hu, J. Detection of difenoconazole pesticides in pak choi by surface-enhanced Raman scattering spectroscopy coupled with gold nanoparticles. Anal. Methods 2016, 8, 4755–4761. [Google Scholar] [CrossRef]
- Wang, C.; Wu, X.; Dong, P.; Chen, J.; Xiao, R. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Biosens. Bioelectron. 2016, 86, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Tognaccini, L.; Ricci, M.; Gellini, C.; Feis, A.; Smulevich, G.; Becucci, M. Surface enhanced Raman spectroscopy for in-field detection of pesticides: A test on dimethoate residues in water and on olive leaves. Molecules 2019, 24, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, S.; Wang, F.; Dong, R.; Qiu, M.; Zhao, J.; Huang, L.; Zhang, D. Fast and Quantitative Analysis of Ediphenphos Residue in Rice Using Surface-Enhanced Raman Spectroscopy. J. Food Sci. 2018, 83, 1179–1185. [Google Scholar] [CrossRef]
- Wang, K.; Huang, M.; Chen, J.; Lin, L.; Kong, L.; Liu, X.; Wang, H.; Lin, M. A “drop-wipe-test” SERS method for rapid detection of pesticide residues in fruits. J. Raman Spectrosc. 2018, 49, 493–498. [Google Scholar] [CrossRef]
- Kanchi, S.; Sabela, M.I.; Mdluli, P.S.; Bisetty, K. Smartphone based bioanalytical and diagnosis applications: A review. Biosens. Bioelectron. 2018, 102, 136–149. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Ma, W.; Guo, Z.; Li, X.; Song, S.; Tang, H.; Li, X.; Zhang, Q. Development of precise GC-EI-MS method to determine the residual fipronil and its metabolites in chicken egg. Food Chem. 2019, 281, 85–90. [Google Scholar] [CrossRef]
- Dekker, S.; Isgor, P.K.; Feijten, T.; Segerink, L.I.; Odijk, M. From chip-in-a-lab to lab-on-a-chip: A portable Coulter counter using a modular platform. Microsyst. Nanoeng. 2018, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Keçili, R.; Büyüktiryaki, S.; Hussain, C.M. 8—Micro total analysis systems with nanomaterials. In Handbook of Nanomaterials in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 185–198. ISBN 978-0-12-816699-4. [Google Scholar]
- Ross, G.M.S.; Filippini, D.; Nielen, M.W.F.; Salentijn, G.I.J. Interconnectable solid-liquid protein extraction unit and chip-based dilution for multiplexed consumer immunodiagnostics. Anal. Chim. Acta 2020, 1140, 190–198. [Google Scholar] [CrossRef]
- Nelis, J.L.D.; Bura, L.; Zhao, Y.; Burkin, K.M.; Rafferty, K.; Elliott, C.T.; Campbell, K. The Efficiency of Color Space Channels to Quantify Color and Color Intensity Change in Liquids, pH Strips, and Lateral Flow Assays with Smartphones. Sensors 2019, 19, 5104. [Google Scholar] [CrossRef] [Green Version]
- Ross, G.; Salentijn, G.I.J.; Nielen, M.W.F. A critical comparison between flow-through and lateral flow immunoassay formats for visual and smartphone-based multiplex allergen detection. Biosensors 2019, 9, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelis, J.L.D.; Zhao, Y.; Bura, L.; Rafferty, K.; Elliott, C.T.; Campbell, K. A Randomized Combined Channel Approach for the Quantification of Color- And Intensity-Based Assays with Smartphones. Anal. Chem. 2020, 92, 7852–7860. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wong, J.X.H.; Cui, C.; Li, X.; Yu, H.-Z. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues. Analyst 2015, 140, 5518–5525. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Elliott, C.; Zhou, H.; Rafferty, K. Spectral Illumination Correction: Achieving Relative Color Constancy Under the Spectral Domain. In Proceedings of the 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA, 6–8 December 2018; pp. 690–695. [Google Scholar]
- Cheng, N.; Song, Y.; Fu, Q.; Du, D.; Luo, Y.; Wang, Y.; Xu, W.; Lin, Y. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosens. Bioelectron. 2018, 117, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Montali, L.; Calabretta, M.M.; Lopreside, A.; D’Elia, M.; Guardigli, M.; Michelini, E. Multienzyme chemiluminescent foldable biosensor for on-site detection of acetylcholinesterase inhibitors. Biosens. Bioelectron. 2020, 162, 112232. [Google Scholar] [CrossRef]
- Cheng, N.; Shi, Q.; Zhu, C.; Li, S.; Lin, Y.; Du, D. Pt–Ni(OH)2 nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides. Biosens. Bioelectron. 2019, 142, 111498. [Google Scholar] [CrossRef]
- Wei, J.; Yang, L.; Luo, M.; Wang, Y.; Li, P. Nanozyme-assisted technique for dual mode detection of organophosphorus pesticide. Ecotoxicol. Environ. Saf. 2019, 179, 17–23. [Google Scholar] [CrossRef]
- Wang, Y.; Zeinhom, M.M.A.; Yang, M.; Sun, R.; Wang, S.; Smith, J.N.; Timchalk, C.; Li, L.; Lin, Y.; Du, D. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid. Anal. Chem. 2017, 89, 9339–9346. [Google Scholar] [CrossRef]
a. Based on Target Pest | |||
---|---|---|---|
Pesticide Type | Pest | ||
Algicide | Algae | ||
Avicide | Birds | ||
Bactericide | Bacteria | ||
Fungicide | Fungi | ||
Herbicide | Weeds | ||
Insecticide | Insects | ||
Miticide | Mites | ||
Molluscicide | Snails | ||
Nematicide | Nematodes | ||
Piscicide | Fish | ||
Rodenticide | Rodents | ||
b. Based on Toxicity | |||
Type | Toxicity Level | LD50 for Rats (mg kg−1 Body Weight) | |
Oral | Dermal | ||
Ia | extremely hazardous | <5 | <50 |
Ib | highly hazardous | 5 to 50 | 50–200 |
II | moderately hazardous | 50–2000 | 200–2000 |
U | unlikely to present acute hazard | >5000 | |
c. Based on the Way of Entry into a Pest | |||
Ways of Entry | Details | ||
Systemic | Absorption by tissues such as leaves, stems, and roots | ||
Non-systemic | Physical contact between the pesticides and the target organism | ||
Stomach poisoning | Pesticide digestion | ||
Fumigants | Target organism killing through vapors | ||
Repellents | Inhibit the ability of pests to localize in crops |
Analyte | Matrix | Analytical Platform | Sample Preparation | LOD | EU MRL | Reference |
---|---|---|---|---|---|---|
Methyl-paraoxon and chlorpyrifos-oxon | cabbage and dried mussel | paper-based device coated with nanoceria using an enzyme inhibition assay with AChE and ChOX | methanol vortex extraction, centrifugation, PSA clean-up, centrifugation, evaporation | 0.040 mg kg−1 | 0.010 mg kg−1 | [60] |
Carbofuran and carbofuran-3-hydroxy | water | LF immunoassay | none | 7 μg L−1 (carbofuran) and 10 μg L−1 (carbofuran-3-hydroxy) | 0.1 μg L−1 | [54] |
Malathion | apple | aptasensor employing gold nanoparticles | methanol extraction, filtered and evaporation | 5.2 pM (or 0.001 μg kg−1) | 0.02 mg kg−1 | [61] |
Paraoxon | vegetable irrigation water | enzyme cascade and iodine starch color reaction | filtration | 10 μg L−1 | n.a. | [62] |
Ethoprophos | tap water | gold nanoparticle aggregation combined to adenosine triphosphate | no | 4 μM (or 0.96 mg L−1) | 0.1 μg L−1 | [63] |
Paraoxon | rice and cabbage | AChE assay coupled to carbon dots | acetonitrile ultrasonic extraction, centrifugation, filtration through sodium sulfate and evaporation | 0.005 mg kg−1 | 0.01 mg kg−1 (cabbage) and 0.02 kg−1 (rice) | [64] |
Acetamiprid | spinach | aptamer with DNA probe | ethanol ultrasonic extraction, centrifugation, filtration, and 20-times dilution | 0.1 nM (or 0.022 μg kg−1) | 0.6 mg kg−1 | [65] |
Analyte | Matrix | Analytical Platform | Sample Preparation | LOD | EU MRL | Reference |
---|---|---|---|---|---|---|
Acetamiprid | tea | aptasensor | methylene chloride extraction, filtration, and evaporation | 0.002 mg kg−1 | 0.05 mg kg−1 | [71] |
Dichlorvos | cabbage and fruit juice | carbon dots–Cu(II) system | PBS extraction | 0.84 ng mL−1 | n.a. | [72] |
Paraoxon | water | BChE assay | no | 0.25 μg L−1 | 0.1 μg L−1 | [73] |
Imidacloprid | Chinese leek, sweet potato, and potato | LF immunoassay | PBS extraction and supernatant dilution with PBS | 0.5 ng g−1 | 0.5 mg kg−1 | [74] |
Diazinon | cucumber and apple | aptasensor | Dilution with water, water-heated bath, centrifugation | 0.13 nM (0.039 μg kg−1) | 0.01 mg kg−1 | [75] |
Aldicarb | ginger | AChE-based assay | QuEChERS | 100 μg kg−1 | 0.05 mg kg−1 | [76] |
Eight rodenticides | wheat | LF immunoassay combined with quantum dots | acetonitrile ultrasonic extraction, centrifugation, filtration, and filtrate 10-times dilution in PBS | 1–100 μg kg−1 depending the analyte | 0.01 mg kg−1 | [77] |
Analyte | Matrix | Analytical Platform | Sample Preparation | LOD | EU MRL | Reference |
---|---|---|---|---|---|---|
Parathion | cabbage washing solutions | AChE + SPR | The spiked cabbage sample was washed with 30 mL of distilled water twice | 0.069 mg L−1 | n.a. | [85] |
Profenofos | water | fiber optic sensor based on MIP recognition | No sample preparation | 0.02 μg L−1 | 0.1 μg L−1 | [86] |
Triazophos | cabbage, cucumber, apple | immunosensor | QuEChERS, 10-times dilution for cabbage and cucumber 20-times dilution for apple | 0.1 μg kg−1 (cabbage and cucumber) and 0.4 μg kg−1 | 0.01 mg kg−1 | [87] |
Carbendazim | medlar | immunosensor with Au/Fe3O4 nanocomposite probe for SPR signal enhancement | 80% methanol extraction, centrifugation, dilution with PBS to 5% methanol | 5 ng mL−1 in the extract (there is no information about sample weight) | 0.01 mg kg−1 | [88] |
Chlorothalonil | lettuce, cabbage, onion | immunosensor | Methanol extraction, centrifugation, 8.5 times dilution to 10% methanol | 1 mg kg−1 | 0.6 mg kg−1 (cabbage) and 0.01 mg kg−1 (lettuce, onion) | [89] |
Chlorpyrifos | maize, apple, cabbage, medlar | immunosensor | 80% methanol extraction, supernatant diluted 10-times with PBS | 0.0025 mg kg−1 | 0.01 mg kg −1 (apple, cabbage, medlar) and 0.05 mg kg−1 (maize) | [90] |
Analyte | Matrix | Analytical Platform | Sample Preparation | LOD | EU MRL | Reference |
---|---|---|---|---|---|---|
Methyl parathion | apple | portable SERS | none | 0.011 μg cm−2 | 0.010 mg kg−1 | [102] |
Prometryn and simetryn | wheat and rice | MIP-SERS | QuEChERS | 20 μg·kg−1 | 0.010 mg kg−1 | [103] |
Thiram | lemon | SERS with nanowire Si paper as a substrate | none | 72 ng cm−2 | 0.100 mg kg−1 | [104] |
Difenoconazole | pak choi | portable SERS | acetonitrile extraction, centrifugation, dSPE clean-up, evaporation, and reconstitution to ethyl acetate | 0.41 mg kg−1 | 2.0 mg kg−1 | [105] |
Paraquat | apple and grape juice | portable SERS | none | 100 nM (0.025 mg L−1) | n.a. | [106] |
Dimethoate | olive leaves | portable SERS | none | 5 × 10−7 M | n.a. | [107] |
Edifenphos | rice | SERS | two times acetone extraction, centrifugation; six times pre-concentration | 0.1 mg kg −1 | 0.01 mg kg−1 | [108] |
Thiram | apple, pear, and grape | “drop-wipe-test” using portable SERS | none | 5 ng cm−2 | 5 mg kg−1 (apple and pear) and 0.1 mg kg−1 (grape) | [109] |
Analyte | Matrix | Analytical Platform | Sample Preparation | LOD | EU MRL | Reference |
---|---|---|---|---|---|---|
Chlorpyrifos, diazinon, and malathion | spinach, lettuce, and cabbage | LF multiplex aptasensor | homogenization and homogenate filtration | 0.010 mg kg−1 | 0.01 to 0.5 mg kg−1, depending the analyte matrix | [120] |
Carbofuran | apple | hybrid paper-LOC prototype | QuEChERS and evaporation | 0.050 mg kg−1 | 0.001 mg kg−1 | [34] |
Chlorpyrifos methyl | cabbage | chemiluminescent enzyme origami paper-based biosensor | mixing with water and centrifugation | 0.6 mM (193 mg kg−1) | 0.01 mg kg−1 | [121] |
Acetochlor and fenpropathrin | corn, apple, and cabbage | multiplex LF immunoassay | PBS 0.05% Tween-20 and 10% methanol extraction, centrifugation, dilution | 6.3 ng g−1 (acetochlor) and 2.4 ng g−1 (fenpropathin) | 0.010 mg kg−1 | [122] |
Chlorpyrifos | fruit and vegetable wash water | lipase paper-based device | 65 ng mL−1 | n.a. | [55] | |
Methyl paraoxon | pear | nanoceria-based assay | ethyl acetate ultrasonic extraction, centrifugation, and evaporation | 0.060 mg kg−1 | 0.010 mg kg−1 | [123] |
2,4-Dichlorophenoxyacetic acid | water | ELISA in 3D-printed device | no | 1 μg L−1 | 0.1 μg L−1 | [124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsagkaris, A.S.; Pulkrabova, J.; Hajslova, J. Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends. Foods 2021, 10, 88. https://doi.org/10.3390/foods10010088
Tsagkaris AS, Pulkrabova J, Hajslova J. Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends. Foods. 2021; 10(1):88. https://doi.org/10.3390/foods10010088
Chicago/Turabian StyleTsagkaris, Aristeidis S., Jana Pulkrabova, and Jana Hajslova. 2021. "Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends" Foods 10, no. 1: 88. https://doi.org/10.3390/foods10010088