Reviewing Research Trends—A Scientometric Approach Using Gunshot Residue (GSR) Literature as an Example
Abstract
:1. Introduction
2. Materials and Methods
2.1. Publication Lists.
2.2. Keywords Analysis.
2.3. Authors.
3. Results
3.1. Overview of Data
3.2. Open Access
3.3. Authors
3.4. Citations
3.5. Keywords
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bell, S.; Sah, S.; Albright, T.D.; Gates, S.J.; Denton, M.B.; Casadevall, A. A call for more science in forensic science. Proc. Natl. Acad. Sci. USA 2018, 115, 4541–4544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. Strengthening Forensic Science in the United States: A Path Forward; The National Academies Press: Washington, DC, USA, 2009; p. 348. [Google Scholar] [CrossRef]
- President’s Council of Advisors on Science and Technology. Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods; Executive Office of the President of the United States: Washington, DC, USA, 2016. Available online: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_forensic_science_report_final.pdf (accessed on 15 November 2019).
- House of Lords Science and Technology Select Committee. Forensic Science and the Criminal Justice System: A Blueprint for Change; 3rd Report of session 2017–2019 HL Paper 333; House of Lords Science and Technology Select Committee: London , UK, 2019; Available online: https://publications.parliament.uk/pa/ld201719/ldselect/ldsctech/333/333.pdf (accessed on 15 November 2019).
- Ioannidis, J.P.A. Why Most Published Research Findings Are False. PLoS Med. 2005, 2, e124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Open Science Collaboration. Estimating the reproducibility of psychological science. Science 2015, 349, aac4716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, J.M.; Ribeiro, G.; Rairden, A. Open forensic science. J. Law Biosci. 2019, 6, 255–288. [Google Scholar] [CrossRef] [PubMed]
- Kessler, M.M. Bibliographic coupling between scientific papers. Am. Doc. 1963, 14, 10–25. [Google Scholar] [CrossRef]
- De Solla Price, D.J. Networks of Scientific Papers. Science 1965, 149, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Thilakaratne, M.; Falkner, K.; Atapattu, T. A systematic review on literature-based discovery workflow. PeerJ Comput. Sci. 2019, 5, e235. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Song, M. Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS ONE 2019, 14, e0223994. [Google Scholar] [CrossRef] [Green Version]
- Kostoff, R.N.; Boylan, R.; Simons, G.R. Disruptive technology roadmaps. Technol. Forecast. Soc. Chang. 2004, 71, 141–159. [Google Scholar] [CrossRef]
- Waltman, L. A review of the literature on citation impact indicators. J. Informetr. 2016, 10, 365–391. [Google Scholar] [CrossRef]
- Sobreira, C.; Klu, J.; Cole, C.; Nic Daéid, N.; Ménard, H. LRCFS/GSR_Paper: Release for paper review. Zenodo 2019. [Google Scholar] [CrossRef]
- Price, G. Firearms Discharge Residues on Hands. J. Forensic Sci. Soc. 1965, 5, 199–200. [Google Scholar] [CrossRef]
- National Science Board. Science and Engineering Indicators 2018. NSB-2018-1; National Science Foundation: Alexandria, VA, USA, 2018. Available online: https://www.nsf.gov/statistics/indicators/ (accessed on 15 November 2019).
- Ninomiya, T.; Nomura, S.; Taniguchi, K.; Ikeda, S. Applications of a Glazing Incidence X-Ray Fluorescence Analysis to Forensic Samplest. Anal. Sci. 1995, 11, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Zeichner, A.; Glattstein, B. Recent developments in the methods of estimating shooting distance. Sci. World J. 2002, 2, 573–585. [Google Scholar] [CrossRef] [Green Version]
- Tuǧcu, H.; Yorulmaz, C.; Bayraktaroǧlu, G.; Üner, H.B.; Karslioǧlu, Y.; Koç, S.; Ulukan, M.Ö.; Celasun, B. Determination of gunshot residues with image analysis: An experimental study. Mil. Med. 2005, 170, 802–805. [Google Scholar] [CrossRef] [Green Version]
- Saverio Romolo, F.; Margot, P. Identification of gunshot residue: A critical review. Forensic Sci. Int. 2001, 119, 195–211. [Google Scholar] [CrossRef]
- Dalby, O.; Butler, D.; Birkett, J.W. Analysis of gunshot residue and associated materials—A review. J. Forensic Sci. 2010, 55, 924–943. [Google Scholar] [CrossRef]
- Bratin, K.; Kissinger, P.T.; Briner, R.C.; Bruntlett, C.S. Determination of nitro aromatic, nitramine, and nitrate ester explosive compounds in explosive mixtures and gunshot residue by liquid chromatography and reductive electrochemical detection. Anal. Chim. Acta 1981, 130, 295–311. [Google Scholar] [CrossRef]
- Thali, M.J.; Yen, K.; Vock, P.; Ozdoba, C.; Kneubuehl, B.P.; Sonnenschein, M.; Dirnhofer, R. Image-guided virtual autopsy findings of gunshot victims performed with multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) and subsequent correlation between radiology and autopsy findings. Forensic Sci. Int. 2003, 138, 8–16. [Google Scholar] [CrossRef]
- Meng, H.H.; Caddy, B. Gunshot residue analysis—A review. J. Forensic Sci. 1997, 42, 553–570. [Google Scholar] [CrossRef]
- Thormann, W.; Lurie, I.S.; McCord, B.; Marti, U.; Cenni, B.; Malik, N. Advances of capillary electrophoresis in clinical and forensic analysis (1999–2000). Electrophoresis 2001, 22, 4216–4243. [Google Scholar] [CrossRef]
- Northrop, D.M.; Martire, D.E.; MacCrehan, W.A. Separation and Identification of Organic Gunshot and Explosive Constituents by Micellar Electrokinetic Capillary Electrophoresis. Anal. Chem. 1991, 63, 1038–1042. [Google Scholar] [CrossRef]
- Basu, S. Formation of gunshot residues. J. Forensic Sci. 1982, 27, 72–91. [Google Scholar] [CrossRef]
- Zeichner, A. Recent developments in methods of chemical analysis in investigations of firearm-related events. Anal. Bioanal. Chem. 2003, 376, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.H.R.; Walker, S.; Tahtouh, M.; Reedy, B. Detection of illicit substances in fingerprints by infrared spectral imaging. Anal. Bioanal. Chem. 2009, 394, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- Blus, L.J.; Neely, B.S. Jr.; Lamont, T.G.; Mulhern, B. Residues of organochlorines and heavy metals in tissues and eggs of brown pelicans, 1969 to 1973. Pestic. Monit. J. 1977, 11, 40–53. [Google Scholar]
- Goleb, J.A.; Midkiff, C.R., Jr. Determination of barium and antimony in gunshot residue by flameless atomic absorption spectroscopy using a tantalum strip atomizer. Appl. Spectrosc. 1975, 29, 44–48. [Google Scholar] [CrossRef]
- Keeley, R.H. Some Applications of Electron Probe Instruments in Forensic Science. Proc. Anal. Div. Chem. Soc. 1976, 13, 178–181. [Google Scholar]
- Jones, P.F.; Nesbitt, R.S. A photoluminescence technique for detection of gunshot residue. J. Forensic Sci. 1975, 20, 231–242. [Google Scholar] [CrossRef]
- Merli, D.; Amadasi, A.; Mazzarelli, D.; Cappella, A.; Castoldi, E.; Ripa, S.; Cucca, L.; Cattaneo, C.; Profumo, A. Comparison of Different Swabs for Sampling Inorganic Gunshot Residue from Gunshot Wounds: Applicability and Reliability for the Determination of Firing Distance. J. Forensic Sci. 2019, 64, 558–564. [Google Scholar] [CrossRef]
- DeGaetano, D.; Siegel, J.A. Survey of gunshot residue analysis in forensic science laboratories. J. Forensic Sci. 1990, 35, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Maitre, M.; Kirkbride, K.P.; Horder, M.; Roux, C.; Beavis, A. Current perspectives in the interpretation of gunshot residues in forensic science: A review. Forensic Sci. Int. 2017, 270, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Singer, R.L.; Davis, D.; Houck, M.M. A survey of gunshot residue analysis methods. J. Forensic Sci. 1996, 41, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Singer, R.L.; Davis, D.; Houck, M.M. Erratum: A survey of gunshot residue analysis methods. J. Forensic Sci. 1996, 41, 542. [Google Scholar] [CrossRef]
- Berk, R.E.; Rochowicz, S.A.; Wong, M.; Kopina, M.A. Gunshot residue in Chicago Police vehicles and facilities: An empirical study. J. Forensic Sci. 2007, 52, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Lucas, N.; Brown, H.; Cook, M.; Redman, K.; Condon, T.; Wrobel, H.; Kirkbride, K.P.; Kobus, H. A study into the distribution of gunshot residue particles in the random population. Forensic Sci. Int. 2016, 262, 150–155. [Google Scholar] [CrossRef]
- Brozek-Mucha, Z. On the prevalence of gunshot residue in selected populations—An empirical study performed with SEM-EDX analysis. Forensic Sci. Int. 2014, 237, 46–52. [Google Scholar] [CrossRef]
- Hannigan, T.J.; McDermott, S.D.; Greaney, C.M.; O’Shaughnessy, J.; O’Brien, C.M. Evaluation of gunshot residue (GSR) evidence: Surveys of prevalence of GSR on clothing and frequency of residue types. Forensic Sci. Int. 2015, 257, 177–181. [Google Scholar] [CrossRef]
- Brozek-Mucha, Z.; Zadora, G. Grouping of ammunition types by means of frequencies of occurrence of GSR. Forensic Sci. Int. 2003, 135, 97–104. [Google Scholar] [CrossRef]
- Brozek-Mucha, Z.; Zadora, G. Frequency of occurrence of certain chemical classes of GSR from various ammunition types. Z Zagadnien Nauk Sadowych 2001, 46, 281–287. [Google Scholar]
- Brozek-Mucha, Z.; Jankowicz, A. Evaluation of the possibility of differentiation between various types of ammunition by means of GSR examination with SEM-EDX method. Forensic Sci. Int. 2001, 123, 39–47. [Google Scholar] [CrossRef]
- Tagliaro, F.; Bortolotti, F. Recent advances in the applications of CE to forensic sciences (2001–2004). Electrophoresis 2006, 27, 231–243. [Google Scholar] [CrossRef] [PubMed]
- French, J.; Morgan, R. An experimental investigation of the indirect transfer and deposition of gunshot residue: Further studies carried out with SEM-EDX analysis. Forensic Sci. Int. 2015, 247, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Taudte, R.V.; Beavis, A.; Blanes, L.; Cole, N.; Doble, P.; Roux, C. Detection of gunshot residues using mass spectrometry. Biomed Res. Int. 2014, 2014, 965403. [Google Scholar] [CrossRef] [Green Version]
- UK Data Services. Available online: https://www.ukdataservice.ac.uk/manage-data/format/recommended-formats (accessed on 16 November 2019).
- Resnik, D.B.; Morales, M.; Landrum, R.; Shi, M.; Minnier, J.; Vasilevsky, N.A.; Champieux, R.E. Effect of impact factor and discipline on journal data sharing policies. Account. Res. 2019, 26, 139–156. [Google Scholar] [CrossRef]
- Hardwicke, T.E.; Mathur, M.B.; MacDonald, K.; Nilsonne, G.; Banks, G.C.; Kidwell, M.C.; Hofelich Mohr, A.; Clayton, E.; Yoon, E.J.; Henry Tessler, M.; et al. Data availability, reusability, and analytic reproducibility: Evaluating the impact of a mandatory open data policy at the journal Cognition. R. Soc. Open Sci. 2018, 5, 180448. [Google Scholar] [CrossRef] [Green Version]
- Kara, L.; Sarikavak, Y.; Lisesivdin, S.B.; Kasap, M. Evaluation of morphological and chemical differences of gunshot residues in different ammunitions using SEM/EDS technique. Environ. Forensics 2016, 17, 68–79. [Google Scholar] [CrossRef]
- Wolten, G.M.; Nesbitt, R.S.; Calloway, A.R.; Loper, G.L.; Jones, P.F. Equipment Systems Improvement Program Final Report on Particle Analysis for Gunshot Residue Detection; ATR-77(7915)-3; The Aerospace Corporation: Washington, DC, USA, 1977; pp. 1–223. [Google Scholar]
- Miranda, K.L.; Ortega-Ojeda, F.E.; García-Ruíz, C.; Martínez, P.S. Shooting distance estimation based on gunshot residues analyzed by XRD and multivariate analysis. Chemom. Intell. Lab. Syst. 2019, 193, 103831. [Google Scholar] [CrossRef]
- Sarapura, P.; Gonzalez, M.F.; Gonzalez, F.; Morzan, E.; Cerchietti, L.; Custo, G. Application of total X-Ray fluorescence to gunshot residue determination. Appl. Radiat. Isot. 2019, 153, 108841. [Google Scholar] [CrossRef]
- Goudsmits, E.; Blakey, L.S.; Chana, K.; Sharples, G.P.; Birkett, J.W. The analysis of organic and inorganic gunshot residue from a single sample. Forensic Sci. Int. 2019, 299, 168–173. [Google Scholar] [CrossRef]
- Argente-García, A.I.; Hakobyan, L.; Guillem, C.; Campíns-Falcó, P. Estimating diphenylamine in gunshot residues from a new tool for identifying both inorganic and organic residues in the same sample. Separations 2019, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Seyfang, K.E.; Lucas, N.; Popelka-Filcoff, R.S.; Kobus, H.J.; Redman, K.E.; Kirkbride, K.P. Methods for analysis of glass in glass-containing gunshot residue (gGSR) particles. Forensic Sci. Int. 2019, 298, 359–371. [Google Scholar] [CrossRef]
- Lucas, N.; Seyfang, K.E.; Plummer, A.; Cook, M.; Kirkbride, K.P.; Kobus, H. Evaluation of the sub-surface morphology and composition of gunshot residue using focussed ion beam analysis. Forensic Sci. Int. 2019, 297, 100–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- INTERPOL. 19th INTERPOL International Forensic Science Managers Symposium, Review Papers, Lyon, France, 7–10 October 2019; Houck, M.M., Ed.; INTERPOL: Lyon, France, 2019; pp. 1–861. Available online: https://www.interpol.int/en/How-we-work/Forensics/Forensic-Symposium (accessed on 31 January 2020).
- Benito, S.; Abrego, Z.; Sánchez, A.; Unceta, N.; Goicolea, M.A.; Barrio, R.J. Characterization of organic gunshot residues in lead-free ammunition using a new sample collection device for liquid chromatography-quadrupole time-of-flight mass spectrometry. Forensic Sci. Int. 2015, 246, 79–85. [Google Scholar] [CrossRef]
- Donghi, M.; Mason, K.; Romolo, F.S. Detecting Gunshot Residue from Sellier & Bellot Nontox Heavy Metal-free Primer by in situ Cathodoluminescence. J. Forensic Sci. 2019, 64, 1658–1667. [Google Scholar] [CrossRef]
- Meng, H.H.; Lin, C.-H. Particle analysis of lighter flint residues using scanning electron microscopy/energy dispersive X-ray spectrometry. Forensic Sci. J. 2008, 7, 37–44. [Google Scholar]
Year | Publications 1 | Authors | Ratio 4 | Author Percentage 5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total | Art. | Rev. | Conf. | Book Ch. | Other | Total | New 2 | First and Only 3 | |||
2006 | 19 | 13 | 2 | 4 | 0 | 0 | 72 | 47 | 33 | 3.8 | 65.3 |
2007 | 20 | 16 | 0 | 2 | 1 | 1 | 84 | 52 | 39 | 4.2 | 61.9 |
2008 | 12 | 8 | 0 | 2 | 2 | 0 | 41 | 21 | 17 | 3.4 | 51.2 |
2009 | 17 | 14 | 1 | 2 | 0 | 0 | 44 | 35 | 24 | 2.6 | 79.5 |
2010 | 20 | 14 | 1 | 5 | 0 | 0 | 75 | 59 | 43 | 3.8 | 78.7 |
2011 | 27 | 22 | 0 | 5 | 0 | 0 | 119 | 74 | 51 | 4.4 | 62.2 |
2012 | 45 | 34 | 1 | 2 | 7 | 1 | 187 | 127 | 73 | 4.2 | 67.9 |
2013 | 38 | 28 | 5 | 3 | 2 | 0 | 177 | 96 | 81 | 4.7 | 54.2 |
2014 | 37 | 28 | 2 | 6 | 1 | 0 | 139 | 80 | 62 | 3.8 | 57.6 |
2015 | 31 | 26 | 2 | 2 | 0 | 1 | 143 | 74 | 57 | 4.6 | 51.7 |
2016 | 41 | 33 | 2 | 2 | 3 | 1 | 178 | 89 | 76 | 4.3 | 50.0 |
2017 | 47 | 40 | 2 | 2 | 1 | 2 | 179 | 107 | 91 | 3.8 | 59.8 |
2018 | 45 | 36 | 6 | 1 | 0 | 2 | 194 | 113 | 110 | 4.3 | 58.2 |
Reference | Year | Authors | FWCI 1 | Citation | Scopus List 2 |
---|---|---|---|---|---|
[20] | 2001 | F.S. Romolo and P. Margo | 2.37 | 201 | 166 |
[21] | 2010 | O. Dalby et al. | 5.65 | 173 | 137 |
[22] | 1981 | K. Bratin et al. | NA | 148 | 19 |
[23] | 2003 | M.J. Thali et al. | 1.70 | 123 | 5 |
[24] | 1997 | H.-H. Meng and B.Caddy | 0.91 | 119 | 97 |
[25] | 2001 | W. Thormann et al. | 2.14 | 89 | 3 |
[26] | 1991 | D.M. Northrop et al. | NA | 85 | 19 |
[27] | 1982 | S. Basu | NA | 75 | 65 |
[28] | 2003 | A. Zeichner | 0.61 | 68 | 56 |
[29] | 2009 | P.H.R. Ng et al. | 2.06 | 68 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobreira, C.; Klu, J.K.; Cole, C.; Nic Daéid, N.; Ménard, H. Reviewing Research Trends—A Scientometric Approach Using Gunshot Residue (GSR) Literature as an Example. Publications 2020, 8, 7. https://doi.org/10.3390/publications8010007
Sobreira C, Klu JK, Cole C, Nic Daéid N, Ménard H. Reviewing Research Trends—A Scientometric Approach Using Gunshot Residue (GSR) Literature as an Example. Publications. 2020; 8(1):7. https://doi.org/10.3390/publications8010007
Chicago/Turabian StyleSobreira, Catarina, Joyce K. Klu, Christian Cole, Niamh Nic Daéid, and Hervé Ménard. 2020. "Reviewing Research Trends—A Scientometric Approach Using Gunshot Residue (GSR) Literature as an Example" Publications 8, no. 1: 7. https://doi.org/10.3390/publications8010007
APA StyleSobreira, C., Klu, J. K., Cole, C., Nic Daéid, N., & Ménard, H. (2020). Reviewing Research Trends—A Scientometric Approach Using Gunshot Residue (GSR) Literature as an Example. Publications, 8(1), 7. https://doi.org/10.3390/publications8010007